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The following considerations concerning the RI-CLPM may serve as a guideline for 
researchers who want to implement the model in their own research. For a more 
detailed explanation of the model and its capabilities, the reader is referred to the 
manuscript by Hamaker, Kuiper 1. First, the repeated measures are depicted in Figure 
1 as manifest variables (i.e., in squares, directly observed). However, one could also 
specify a RI-CLPM with repeated measures of latent variables, that is, including a 
measurement part in the model. Second, modeling cross-lagged relations among more 
than two variables is possible as well. Third, control variables may be added by 
regressing the within-person factors on control variables of interest (e.g. age, sex, 
disease complexity), thereby providing a partial solution for the confounding variable 
problem. Fourth, many times, the cross-lagged and/or stability effects (among 
variables X and Y) are fixed over time (e.g. cyx1=cyx2=cyx3=cyx; sx1=sx2=sx3=sx). 
By doing this, the model becomes less complex and gains degrees of freedom, which 
is good. However, fixing paths to be equal across time must make sense in the realm 
of researchers’ hypotheses, which is not always the case. When there are strong 
expectations that the relationship between two variables or the stability of a variable 
may change across the different time-intervals, fixing the model’s paths across time 
may result in poor model fit. Fifth, the model can take into account unequally spaced 
time-intervals between observations, but more advanced SEM techniques that model 
time continuously may be more suited in such case2. Sixth, the model requires at least 
three waves of data to be identified, and even more waves are preferred to increase 
statistical power and allow for a more flexible specification of the model3, 4. Seventh, 
one’s sample size needs to be large enough in order for the estimates to be reliable 
and to achieve large enough statistical power (this applies to SEM models in general). 
Ideally, one should conduct a power analysis to obtain an idea of the required sample 
size. An alternative, but less preferred, option is using a rule of thumb. One such rule 
states that the ratio of the sample size to the number of freely estimated parameters in 
the model should exceed five5. Finally, to practically implement the model, researchers 
must impose some restrictions on the variance structures of the included variables. For 
example, all measurement error variances of the observed variables need to be fixed 
to zero, since one assumption of the RI-CLPM is that all the observed variance can be 
split into a within- and a between-person variance component. Sometimes the 
estimation of parameters in SEM models (in general, thus not restricted to RI-CLPMs) 
may result in impossible values like negative variances. Such impossible values are 
also referred to as Heywood cases, for which several possible causes may exist6. For 
Heywood cases that do not significantly differ from zero, a simple solution is to fix their 
values to zero. Readers are referred to the R-code in Supplementary Material 2 for a 
practical example of how fixing parameters at a certain value can be done.   
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Supplemental material 2: R-code for the RI-CLPM model 

 
RICLPM <- ' 
### Random intercepts ### 
RIucla =~ 1*uclaT1 + 1*uclaT2 + 1*uclaT3 + 1*uclaT4 
RIqol =~ 1*qolT1 + 1*qolT2 + 1*qolT3 + 1*qolT4 
 
### within-person residuals ### 
Lucla_1 =~ 1*uclaT1 
Lucla_2 =~ 1*uclaT2 
Lucla_3 =~ 1*uclaT3 
Lucla_4 =~ 1*uclaT4 
 
Lqol_1 =~ 1*qolT1 
Lqol_2 =~ 1*qolT2 
Lqol_3 =~ 1*qolT3 
Lqol_4 =~ 1*qolT4 
 
### autoregressive parameters ### 
Lucla_4 ~ sx*Lucla_3 
Lucla_3 ~ sx*Lucla_2 
Lucla_2 ~ sx*Lucla_1 
 
Lqol_4 ~ sy*Lqol_3 
Lqol_3 ~ sy*Lqol_2 
Lqol_2 ~ sy*Lqol_1 
 
### cross-lagged ### 
Lucla_4 ~ cyx*Lqol_3 
 
Lucla_3 ~ cyx*Lqol_2 
 
Lucla_2 ~ cyx*Lqol_1 
 
Lqol_4 ~ cxy*Lucla_3 
 
Lqol_3 ~ cxy*Lucla_2 
 
Lqol_2 ~ cxy*Lucla_1 
 
### within-time associations ### 
Lucla_1 ~~ Lqol_1 
Lucla_2 ~~ Lqol_2 
Lucla_3 ~~ Lqol_3 
Lucla_4 ~~ Lqol_4 
 
### some further constraints on the variance structure ### 
# The error variances of the observed variables need to be constrained to 
zero 
uclaT1~~0*uclaT1 
uclaT2~~0*uclaT2 
uclaT3~~0*uclaT3 
uclaT4~~0*uclaT4 
 
qolT1~~0*qolT1 
qolT2~~0*qolT2 
qolT3~~0*qolT3 
qolT4~~0*qolT4 
 



# The covariance between the intercepts and exogenous variables need to be 
constrained to zero 
# This includes the latent derivatives at T1, which are exogenous variables 
Lucla_1~~0*RIucla 
Lucla_1~~0*RIqol 
 
Lqol_1~~0*RIucla 
Lqol_1~~0*RIqol 
' 
RICLPM.fit <- sem(RICLPM, data = dataset, missing = "fiml", estimator = 
"MLR") 
summary(RICLPM.fit, standardized = TRUE, fit.measures = TRUE) 


