Supporting information

CRISPR interference of genes involved in nucleotide biosynthesis improves production of a single-domain antibody

Jenny Landberg1, Naia Risager Wright1, Tune Wulff1, Markus J. Herrgård1,2, Alex Toftgaard Nielsen1*

1 The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark 2 Current address: BioInnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark

Grants: Novo Nordisk Foundation Grant no. NNF16CC0020908, Novo Nordisk Foundation Grant no. NNF10CC1016517, Innovation Fund Denmark case no. 7038-00165B, Novo Nordisk R&D STAR Fellowship Programme

*Corresponding Author

Alex Toftgaard Nielsen The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kemitorvet, 2800 Kongens Lyngby Denmark Email: atn@biosustain.dtu.dk

Supplementary Table 1

Table S1. Primers used in the study.

Nr.	Primer sequence 5'- 3'	Description
j137	TTTACCTTCGTCACCCCATTGTTTTAGAGCTAG	Forward insert of purA sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j138	AATGGGGTGACGAAGGTAAAACTAGTCTTTTCT	Reverse insert of purA sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
j139	TCCATCGACAGGGGAAACGGGTTTTAGAGCTAG	Forward insert of purB sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j140	CCGTTTCCCCTGTCGATGGAACTAGTCTTTTCTC	Reverse insert of purB sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl41	CGGGTTTTCCGTGCTGTATAGTTTTAGAGCTAG	Forward insert of purC sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl42	TATACAGCACGGAAAACCCCGACTAGTCTTTTCT	Reverse insert of purC sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl43	CGGCGACTGGGCCGCTTTCCGTTTTAGAGCTAG	Forward insert of purD sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl44	GGAAAGCGGCCCAGTCGCCGACTAGTCTTTCT	Reverse insert of purD sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl45	GACACGCGCCGGATTATTGCGTTTTAGAGCTAG	Forward insert of purE sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl46	GCAATAATCCGGCGCGTGTC ACTAGTCTTTTCT	Reverse insert of purE sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl47	TCATAAATCGACTGGTTAAC GTTTTAGAGCTAG	Forward insert of purF sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl48	GTTAACCAGTCGATTTATGA ACTAGTCTTTTCTC	Reverse insert of purF sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl49	AAACACTGAGCAGAGCGCGGGTTTTAGAGCTA	Forward insert of purH sgRNA
	GAAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j150	CCGCGCTCTGCTCAGTGTTTACTAGTCTTTTCTC	Reverse insert of purH sgRNA
	TATCACTGATAGGGA	into pSLQ1236
j151	GGCCTAACTGCCCGTTACCGGTTTTAGAGCTAG	Forward insert of purK sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236

j152	CGGTAACGGGCAGTTAGGCCACTAGTCTTTTCT	Reverse insert of purK sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
j153	ATTCGGAATGCCGACAGTGCGTTTTAGAGCTAG	Forward insert of purL sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j154	GCACTGTCGGCATTCCGAATACTAGTCTTTTCT	Reverse insert of purL sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
j155	GGCATCTTTGTAGCTAAGAGGTTTTTAGAGCTAG	Forward insert of purM sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl56	CTCTTAGCTACAAAGATGCCACTAGTCTTTTCTC	Reverse insert of purM sgRNA
	TATCACTGATAGGGA	into pSLQ1236
j157	CTGTAAATTACTTCCGTTGC GTTTTAGAGCTAG	Forward insert of purN sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j158	GCAACGGAAGTAATTTACAGACTAGTCTTTTCT	Reverse insert of purN sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
j159	GAGAACCGAAGTCCAGAATGGTTTTAGAGCTAG	Forward insert of guaA sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j160	CATTCTGGACTTCGGTTCTCACTAGTCTTTTCTC	Reverse insert of guaA sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl61	CGGTAGAGTGAGCAGGAACGGTTTTAGAGCTA	Forward insert of guaB sgRNA
	GAAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl62	CGTTCCTGCTCACTCTACCGACTAGTCTTTTCTC	Reverse insert of guaB sgRNA
	TATCACTGATAGGGA	into pSLQ1236
j163	ATGATATGTTTCTGATATAG GTTTTAGAGCTAG	Forward insert of pyrB sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl64	CTATATCAGAAACATATCATACTAGTCTTTTCTC	Reverse insert of pyrB sgRNA
	TATCACTGATAGGGA	into pSLQ1236
j165	GCGGCGGATCTTTAATACCTGTTTTAGAGCTAG	Forward insert of pyrC sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl66	AGGTATTAAAGATCCGCCGCACTAGTCTTTTCT	Reverse insert of pyrC sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl67	AAAAGGGCTTTACGAACGAAGTTTTAGAGCTAG	Forward insert of pyrD sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j168	TTCGTTCGTAAAGCCCTTTTACTAGTCTTTTCTC	Reverse insert of pyrD sgRNA
	TATCACTGATAGGGA	into pSLQ1236

jl69	TAAGCGCAAATTCAATAAACGTTTTAGAGCTAG	Forward insert of pyrE sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j170	GTTTATTGAATTTGCGCTTAACTAGTCTTTTCTC	Reverse insert of pyrE sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl71	AGGAGAATTCGTAACAGCGCGTTTTAGAGCTAG	Forward insert of pyrF sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl72	GCGCTGTTACGAATTCTCCTACTAGTCTTTTCTC	Reverse insert of pyrF sgRNA
	TATCACTGATAGGGA	into pSLQ1236
j173	GGCAATGCCTTTACCCAGAGGTTTTAGAGCTAG	Forward insert of pyrG sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl74	CTCTGGGTAAAGGCATTGCCACTAGTCTTTTCT	Reverse insert of pyrG sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl75	TTTATAGACGGGTTTTGCATGTTTTAGAGCTAG	Forward insert of pyrH sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl76	ATGCAAAACCCGTCTATAAAACTAGTCTTTTCTC	Reverse insert of pyrH sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl77	GGCCATCAATGGTAATAACCGTTTTAGAGCTAG	Forward insert of cmk sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
jl78	GGTTATTACCATTGATGGCC ACTAGTCTTTTCTC	Reverse insert of cmk sgRNA
	TATCACTGATAGGGA	into pSLQ1236
jl79	ACGTTTTTTGCTACCGCGTTGTTTTAGAGCTAG	Forward insert of ndk sgRNA
	AAATAGCAAGTTAAAATAAGGC	into pSLQ1236
j180	AACGCGGTAGCAAAAACGTACTAGTCTTTTCT	Reverse insert of ndk sgRNA
	CTATCACTGATAGGGA	into pSLQ1236
jl130	ACATGTTCUTTCCTGCGTTATCCC	Forward primer for amplifying
		psdAb-TIR1/2 to change origin
		of replication to CloDF13
jl131	ATCTTTTCUACGGGGTCTGACGC	Reverse primer for amplifying
		psdAb-TIR1/2 to change origin
		of replication to CloDF13
jl154	AGAAAAGAUCAAATAGCTAGCTCACTCGG	Forward primer for amplifying
		pCDF-Duet CloDf13 origin
jl155	AGAACATGUAAATCTAGAGCGGTTCAGTAG	Reverse primer for amplifying
		pCDF-Duet CloDf13 origin

Supplementary Table 2

Table S2. Strains and plasmids used in the study. The name used in the study.	sed to refer to a specific strain or plasmid
in the main text is written in bold.	

Strain	Description	Reference /source
E. coli NEB	fhuA2 $\Delta(argF-lacZ)U169$ phoA glnV44 Φ 80 $\Delta(lacZ)M15$	New England Biolabs
5-alpha	gyrA96 recA1 relA1 endA1 thi-1 hsdR17; cloning strain	
E. coli K12	F- lambda- ilvG- rfb-50 rph-1	Lab collection
MG1655		
SIJ19	MG1655-gfp: MG1655 Bb_J23100 gfp :::FRT	(Bonde et al., 2016)
E.coli	MG1655-DE3 : MG1655 λ(<i>DE3</i>)	(Mundhada et al.,
MG1655		2016)
(DE3)		
JL100	MG1655-DE3-dCas9 : MG1655 λ(<i>DE3</i>) attB-186(O): tetR-	This study
	Ptet-dCas9	
JL86	MG1655-gfp with psgRNA-purA and pdCas9	This study
JL87	MG1655-gfp with psgRNA-purB and pdCas9	This study
JL88	MG1655-gfp with psgRNA-purC and pdCas9	This study
JL89	MG1655-gfp with psgRNA-purD and pdCas9	This study
JL90	MG1655-gfp with psgRNA-purE and pdCas9	This study
JL91	MG1655-gfp with psgRNA-purF and pdCas9	This study
JL92	MG1655-gfp with psgRNA-purH and pdCas9	This study
JL93	MG1655-gfp with psgRNA-purK and pdCas9	This study
JL94	MG1655-gfp with psgRNA-purL and pdCas9	This study
JL95	MG1655-gfp with psgRNA-purM and pdCas9	This study
JL96	MG1655-gfp with psgRNA-purN and pdCas9	This study
JL97	MG1655-gfp with psgRNA-guaA and pdCas9	This study
JL98	MG1655-gfp with psgRNA-guaB and pdCas9	This study
JL99	MG1655-gfp with psgRNA-pyrB and pdCas9	This study
JL101	MG1655-gfp with psgRNA-pyrD and pdCas9	This study
JL102	MG1655-gfp with psgRNA-pyrE and pdCas9	This study
JL103	MG1655-gfp with psgRNA-pyrF and pdCas9	This study
JL104	MG1655-gfp with psgRNA-pyrG and pdCas9	This study
JL105	MG1655-gfp with psgRNA-pyrH and pdCas9	This study

JL214	MG1655-DE3-dCas9 with psgRNA-pyrF and psdAb-TIR1	This study
JL215	MG1655-DE3-dCas9 with psgRNA-pyrG and psdAb-TIR1	This study
JL216	MG1655-DE3-dCas9 with psgRNA-cmk and psdAb-TIR1	This study
JL217	MG1655-DE3-dCas9 with psgRNA-blank and psdAb-TIR1	This study
JL218	MG1655-DE3-dCas9 with psgRNA-pyrF and psdAb-TIR2	This study
JL219	MG1655-DE3-dCas9 with psgRNA-pyrG and psdAb-TIR2	This study
JL220	MG1655-DE3-dCas9 with psgRNA-cmk and psdAb-TIR2	This study
JL221	MG1655-DE3-dCas9 with psgRNA-blank and psdAb-TIR2	This study

Plasmid	Description	Reference/source
pCDF-Duet	Cloning and expression vector; Specr	Novagen
pdCas9-	pdCas9: p15A vector with aTc-inducible expression of	(Larson et al., 2013)
bacteria	dCas9; Chlorr	
pSLQ1236	pSLQ1236: pColE1 vector with aTc-inducible expression of	(Larson et al., 2013)
	sgRNA; Ampr	
pOSIP KO	Cloning-integration plasmid, integrates at the phage 186 site;	(St-Pierre et al., 2013)
	Kanr	
pOSIP KO-	Plasmid for genomic integration of aTc-inducible dCas9;	(Li et al., 2016)
dCas9	Kanr	
pE-FLP	Plasmid for expressing FLP recombinase to excise the	(St-Pierre et al., 2013)
	integration plasmid backbone; Ampr	
pET28a-	pBR322/ROP vector with Nanobody® expressed from the T7	(Rennig et al., 2018)
Nanobody®-	promoter. Synthetically evolved translation initiation region	
TIRsynEvo1	(TIR) for optimized expression; Kanr	
pET28a-	pBR322/ROP vector with Nanobody® expressed from the T7	(Rennig et al., 2018)
Nanobody®-	promoter. Synthetically evolved TIR for optimized	
TIRSynEvo2	expression; Kanr	
psgRNA-	control: pSLQ1236 without sgRNA sequence; Ampr	(Li et al., 2016)
blank		
pJL45	purA : pSLQ1236 with sgRNA targeting purA; Ampr	This study
pJL46	purB: pSLQ1236 with sgRNA targeting purB, Ampr	This study
pJL51	purC: pSLQ1236 with sgRNA targeting purC; Ampr	This study
pJL52	purD: pSLQ1236 with sgRNA targeting purD; Ampr	This study
pJL53	purE: pSLQ1236 with sgRNA targeting purE; Ampr	This study

pJL54	purF: pSLQ1236 with sgRNA targeting purF; Ampr	This study
pJL55	purH: pSLQ1236 with sgRNA targeting purH; Ampr	This study
pJL56	purK: pSLQ1236 with sgRNA targeting purK; Ampr	This study
pJL57	purL: pSLQ1236 with sgRNA targeting purL; Ampr	This study
pJL58	purM: pSLQ1236 with sgRNA targeting purM; Ampr	This study
pJL59	purN: pSLQ1236 with sgRNA targeting purN; Ampr	This study
pJL60	guaA: pSLQ1236 with sgRNA targeting guaA; Ampr;	This study
pJL61	guaB: pSLQ1236 with sgRNA targeting guaB; Ampr	This study
pJL62	pyrB: pSLQ1236 with sgRNA targeting pyrB; Ampr	This study
pJL64	pyrD: pSLQ1236 with sgRNA targeting pyrD; Ampr	This study
pJL65	pyrE: pSLQ1236 with sgRNA targeting pyrE; Ampr	This study
pJL66	pyrF: pSLQ1236 with sgRNA targeting pyrF; Ampr	This study
pJL67	pyrG: pSLQ1236 with sgRNA targeting pyrG; Ampr	This study
pJL68	pyrH: pSLQ1236 with sgRNA targeting pyrH; Ampr	This study
pJL69	cmk: pSLQ1236 with sgRNA targeting cmk; Ampr	This study
pJL70	ndk: pSLQ1236 with sgRNA targeting ndk; Ampr	This study
pJL97	psdAb-TIR1: pET28a-Nanobody®-TIRsynEvol plasmid with	This study
	origin of replication changed to ClodF13; Kanr	
pJL98	psdAb-TIR2: pET28a-Nanobody®-TIRsynEvo1 plasmid with	This study
	origin of replication changed to ClodF13; Kanr	

Figure S1. Screening the purine and pyrimidine biosynthesis pathway for growth decoupling targets. (a) GFP fluorescence in CRISPRi-induced and uninduced strains after 12 h of growth. (b) OD of CRISPRi-induced and uninduced strains after 12 h of growth. (c) GFP fluorescence in CRISPRi-induced and uninduced strains after 24 h of growth. (d) OD of CRISPRi-induced and uninduced strains after 24 h of growth. (d) OD of CRISPRi-induced and uninduced strains after 24 h of growth. (e) Histograms over 12 h and 24 h GFP fluorescence in CRISPRi-induced and not induced cultures harboring sgRNA plasmids targeting *pyrF*, *pyrG*, *cmk* or an empty control vector. The OD and fluorescence were calculated as the average of three biological replicates. Standard deviations between replicates are shown as error bars. CRISPRi-induced strains are shown in dark green (fluorescence in bar plots), dark grey (OD) or red (fluorescence in histograms), and uninduced strains are shown in bright green (fluorescence in bar plots), bright grey (OD) or blue (fluorescence in histograms).

Supplementary Figure 2

Figure S2. Protein levels of PyrF, PyrG and Cmk in sdAb production strains with or without induction of the CRISPRi growth decoupling system. (a) Protein levels of PyrF (panel 1), PyrG (panel 2) and Cmk (panel 3) in strains harboring the psdAb-TIR1 plasmid and sgRNA plasmids targeting *pyrF*, *pyrG*, *cmk* or an empty control vector. (a) Protein levels of PyrF (panel 1), PyrG (panel 2) and Cmk (panel 3) in strains harboring the psdAb-TIR2 plasmid and sgRNA plasmids targeting *pyrF*, *pyrG*, *cmk* or an empty control vector. CRISPRi-induced strains are shown in dark grey and uninduced strains are shown in bright grey. Protein LFQ intensities are normalized to OD and were calculated as the average of three biological replicates. Standard deviations between replicates are shown as error bars. The proteome data set can be found in Supplementary File S1.

Supplementary Figure 3

Figure S3. Growth and protein levels during production of sdAb in shake flask fermentation. (a) OD of CRISPRi-induced and not induced strains harboring psdAb-TIR1 and an sgRNA plasmid targeting *cmk* or an empty control vector (panel 1), and psdAb-TIR2 and an sgRNA plasmid targeting *pyrG* or an empty control vector (panel 2). CRISPRi-induced strains are shown in dark orange (*cmk* and *pyrG*) or dark grey (control), and uninduced strains are shown in bright orange (*cmk* and *pyrG*) or bright grey (control). (b) Protein levels of Cmk in strains harboring the psdAb-TIR1 plasmid and sgRNA plasmids targeting *cmk* or an empty control vector (panel 1). Protein levels of PyrG in strains harboring the psdAb-TIR2 plasmid and sgRNA plasmids targeting *pyrG* or an empty control vector (panel 2). CRISPRi-induced strains are shown in dark grey and uninduced strains are shown in bright grey. LFQ intensities are normalized to OD. The OD and protein LFQ intensities were calculated as the average of three biological replicates. Standard deviations between replicates are shown as error bars. The proteome data set can be found in Supplementary File S1.