
Additional File 3: Parameter fitting and diagnostic mod-

els

The Kato-Katz diagnostic method for detecting the presence of STH in a host and assessing
the intensity of infection has a long history [1, 2]. A standardised volume of material is
taken from a stool sample and examined under a microscope to count the type and number
of STH eggs. The mean number of eggs counted is taken to be a function of the number of
female worms in the host, nf , modified by a density factor mechanism that reduces fecundity
through overcrowding,

Ē = λnf exp(−γnf ) (1)

where λ is the net egg count per female and γ parmeterizes the density-dependent fecundity
of egg production. The higher the density of female worms in a host the fewer countable
eggs each produces. For hookworm, female worms only produce eggs when fertilized, which
means that at least one male worm needs to be present in the host for eggs to be seen. The
egg count is highly variable across samples from successive days, having a negative binomial
distribution overall [3, 4]. Hence, the probability of counting E eggs from nf fertilized females
in a host is

P (E;nf , λ, ke, γ) = NegBin(E; Ē, ke). (2)

As a result, a zero egg count can arise even when fertilized females are present. Hence,
for each individual in a sample, the quantity 1 − P (0;nf , λ, ke, γ) gives the probability of
getting a positive diagnosis. When applied to all individuals within a sample, this will give
a number of positive individuals and hence a prevalence estimate. Values for the paramters
λ and ke were investigated in earlier fitting work on hookworm prevalence and intensity [5].
Equations 2 and 1 give a probabilistic relationship between baseline egg count data and
modelled quantities such as the distribution of female worms in the host population and
serves as the basis for the construction of a likelihood function for the data.

Although the simulator is a stochastic model, we use a simplified deterministic version
with two age classes and the same parameters to construct a likelihood for the data.

dM1

dt
= Lβ1 − σM1, (3)

dM2

dt
= Lβ2 − σM2, (4)

dL

dt
= ψ (π1M1f(M1; θ) + π2M2f(M2; θ))− µL. (5)

Here, the subscripts 1 and 2 represent school-age children and adult classes, respectively.
The variable M is the mean worm burden in the age class and L the quantity of infectious
material in the environmental reservoir. Worms are assumed to have a negative binomial
distribution across hosts with an aggregation parameter, k. Parameters πi are the fraction
of the population age in group i; Σπi = 1. The parameter ψ controls the intensity of the
transmission cycle and is proportional to the reproductive ratio, R0. The function f(M) is
as defined in equations 6 and 7;

f(M) =

(
1 +

M(1− z)

k

)−(k+1)

φ(M) (6)
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and φ(M) is the mating probability factor,

φ(M) = 1−
(

1 +M(1− z)/k

1 +M(2− z)/k

)(k+1)

. (7)

where the parameter z = exp(−γ). The flux term between age classes is neglected, given
the short lifespan of the worm compared to the width of the age classes. This also allows for
closed form solutions for the equilibrium state of the model which make fitting more efficient.
We assume that the parasite burden is in equilibrium at the baseline. Although this may not
be the case, due to previous rounds of MDA, levels of prior coverage are highly uncertain
and likely to be quite low. Previous fitting work which included treatment rounds prior to
baseline in the Tumikia study found minimal impact from it [5].

At equilibrium, the solution of the model 3 is given by

Λi = L∗βi, M∗
i =

Λi

σ
=
L∗βi
σ

The age-dependent contact rates, βi, are normalised such that Σiπiβi = 1. This causes the
definition of L to be the mean FOI experienced by an individual in the population. As a
result,

βi =
Λi

π1Λ1 + π2Λ2

, (8)

L∗ = π1Λ1 + π2Λ2, (9)

R0 =
ψz

σµ
(10)

The parameter ψ (which also defines R0) is defined by

ψ (π1M1f(M1; θ) + π2M2f(M2; θ)) = µL∗

The probability of a given egg count data from an individual from a population with mean
worm burden, M∗, is given by summing over all possible worm burdens of an individual,

P (Ei;M
∗, λ, ke, γ) =

∞∑
nf=0

P (E;nf , λ, ke, γ)NB(nf ;M∗, k) (11)

In reality, we can approximate this distribution with a single negative binomial for the egg
count in terms of M∗ and the other parameters by matching its mean and variance with that
of equation 11, which can be calculated in closed form (see Appendix of [5] for details). As
a result, we write the likelihood for the individual egg counts, Ei as

L({E};M∗, λ, ke, γ) =
∏
i

P (Ei;M
∗
i , λ, ke, γ) (12)

where M∗
i is the equilibrium mean burden for the ith individual.

The likelihood is subject to two priors. The first arises from considerations of the sta-
bility of the model 3. It is well known that sexual reproduction of the parasite within the
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host introduces a ‘breakpoint’ into the dynamics of parasite transmission, such that when
parasites are too scarce for enough mating pairs in the host population, the parasite popu-
lation collapses [6]. In terms of the model, this situation arises when the determinant of the
Jacobian of the endemic solution, |J |, is positive. The determinant is given by

|J | = −σ
(
σµ− ψ

(
β1

∂Q

∂M1

+ β2
∂Q

∂M2

))
(13)

where Q = π1M1f(M1; θ) + π2M2f(M2; θ) and θ represents the other parameters. Hence the
first prior, πJ , is given by

πJ(M1,M2, θ) =

{
1, |J | < 0

0, otherwise

A further prior arises from the need to avoid very large worm burdens. Given the highly
skewed nature of the naturally-occurring distributions of worms within hosts, it is hard to
define an upper limit. However, work by Anderson and Schad in populations with high preva-
lence of hookworm indicate a maximum of around 150 worms within a large number of expul-
sions [3]. To incorporate this information, we define a critical value, w+

f , of female worms, such
that the 95% quantile of the negative binomial distribution of worms in an age group should
be below w+

f . We let w+
f = 60. Given the largely independent nature of the two age classes,

we write the maximum worm prior, πw(M1,M2, k) = πw(M1, k;w+
f , α,∆)πw(M2, k;w+

f , α,∆)
where

πw(Mi, k;w+
f , α,∆) =

1

1 + f(Mi, k;w+
f , α,∆)

and
f(Mi, k;w+

f , α,∆) = exp{−(qNB(α;Mi/σ, k)− w+
f )/∆}

where qNB is the quantile function of the negative binomial. That is, the sharp transition
generated by the critical worm burden w+

f is ‘smoothed’ by a logistic function. The quantities

w+
f = 60, α = 0.95,∆ = 2 are hyper-parameters.

For each cluster in each study arm of each country site, we fit force of infection for each
age class, Λi, and the aggregation of the worms in the host, k. We take these parameters to
represent the heterogeneity in demographic and epidemiological processes that characterise
each cluster. From these, values for R0, mean worm burden and other quantities can be
calculated as described. Fig 1 shows the MLE values and 90% credible interval of the aggre-
gation parameter, k, and the estimated reproduction number R0 for each site, as fitted to the
baseline data. Within the simulator, study arms in each country are constructed from the
relevant clusters with parameters sampled from the appropriate distributions. Each cluster in
each country site is fitted independently to data from the baseline cross-section. The general
pattern of fitted aggregation dropping linearly with decreasing prevalence and R0 increasing
with deceasing prevalence is seen in the clusters in both India and Malawi. However, the low
prevalence and high degree of aggregation encountered in the Benin baseline data make the
data difficult to fit to. It is clear that the parameter R0 has a highly skewed distribution,
with MLE value very low and falling outside the 90% credible interval, which reaches very

3



●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Measured prevalence

A
gg

re
ga

tio
n,

 k

A

●

● ●

●

●

●

●

●

●●●
●

●

●

●

●●

●●
●

●● ●● ●

●

●●●

●

●● ●
● ● ●

●
●

●●

1

10

100

0.0 0.2 0.4 0.6
Measured prevalence

R
0

B

●

●
●

●

●

●
●●●●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15 0.20
Measured prevalence

A
gg

re
ga

tio
n,

 k

C

●● ●

●

●

●

●
●●●●

●

● ●●
●

●

●
●

●

●● ●●

●

●●●

●

●

●

●

●● ●● ●
●
● ●

1

3

10

30

0.00 0.05 0.10 0.15 0.20
Measured prevalence

R
0

D

●

●
●

●●

●

●●●
●●

●

●

●●

●

●● ● ●
●

●
● ●●●

●
●

●

●

●●● ●

●

●
●

●

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15 0.20
Measured prevalence

A
gg

re
ga

tio
n,

 k

E

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

3

5

10

0.00 0.05 0.10 0.15 0.20
Measured prevalence

R
0

F

Figure 1: Distributions of fitted parameter values by country site and individual cluster (A
and B - India, C and D - Malawi, E and F - Benin). Panels A, C, E show the distributions
of worm aggregation, k against measured cluster prevalence and panels B, D, F show the
distributions of the basic reproduction number, R0. Dots mark the MLE value and bars
represent the 90% credible interval for the parameter.
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high values. In this case, an upper limit prior on R0 has been added to prevent very high
values.

Other parameter values are shared among all clusters and drawn from the literature.
Parameters are listed in Table 1. Worm density dependence describes the effect of the pop-
ulation of worms in an individual on the egg output of individual fertilised female worms, as
measured by a standard Kato-Katz slide. The higher the worm burden, the lower the per
capita output of eggs. Output of eggs (as counted by Kato-Katz) is highly variable across
repeated samples on successive days. The distribution of counts is approximately negative bi-
nomial with aggregation parameter, ke. The reservoir timescale is the mean effective survival
period for infectious material in the environment.

Parameter Symbol Value Source
Worm density dependence γ 0.01 [5]
Mean egg output/female λ 2.5 eggs/female [5]

Egg aggregation ke 0.8 [5]
Mean worm lifespan 1/σ 2 years [7]
Reservoir timescale 1/µ 2 weeks [8]

Drug efficacy ef 0.94 [9]

Table 1: Global fixed parameter values used by all clusters in all sites with sources.
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