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Maximum A Posteriori Signal
Recovery for Optical Coherence
Tomography Angiography Image
Generation and Denoising:
supplemental document

This supplementary document contains a section explaining the relationship of the presented
reconstrucion algorithm to compressed sensing, the maximum likelihood estimate for speckle
variance, and reconstruction results for OCTA using speckle variance.

1. RELATIONSHIP WITH COMPRESSED SENSING

The presented reconstruction algorithm is based on Bayesian statistics, but can be related to
compressed sensing (CS) when a regularizer is used which enforces sparsity, such as wavelet
thresholding or total variation minimization. The following description should be read as a
supplementary to section 2.1 in the main paper.

CS has already been used in the past for the generation of structural OCT images [1]. Liu
et al. and Mohan et al. demonstrated the use of CS for spectral domain OCT to reduce the
amount of k-space samples that need to be acquired [2–4]. Young et al. employed CS for real-
time volumetric imaging [5] while Fang et al. performed so called multiscale sparsity-based
tomographic denoising [6, 7]. This CS method allows the denoising of spectral domain OCT data
using custom scan patterns. Zhang et al. also utilized CS by using a linear mask in k-space for
subsampling which reduces the number of samples necessary for OCT signal generation [8]. Xu
et al. implemented a denosing method for spectral domain OCT also based on CS and achieved
real-time capability [9–11].

The challenge which CS addresses, is the case where the system matrix A is a linear mapping
with M < N. In that case, A is being underdetermined which leads to an infinite number of
possible solutions for X. CS allows to find solutions in this case by exploiting sparsity of X in a
certain basis. A good example for a different basis used in CS are the coefficients of a wavelet
transform. X is then called k-sparse when it has k non-zero entries in that basis.

In addition to that, based on the iterative hard thresholding algorithm, Blumensath generalized
CS for cases in which A is non-linear and non-invertible and showed that under certain conditions
the Landweber iteration can also be used here [5, 6].

2. MAXIMUM LIKELIHOOD ESTIMATE FOR SPECKLE VARIANCE

Speckle variance is defined as the variance of the amplitude values y1 to yN [12]
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with µ being the mean of y1 to yN . This can be shown through a maximum likelihood estimation.
Under the assumption that yi is normally distributed and
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the likelihood of all yi. Choosing µ and x to maximize log LSV yields

arg max
µ,x
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µ,xSV
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Note that working with the log-likelihood simplifies the derivation below. In order to find the
maximum we look at the first order derivative with respect to xSV,p and set it to 0

d log LSV
dx

=

−N ⋅ x +∑N
i=1 (ai − µ)2

2x2 . (S5)

This shows that the maximum is located at

x =
1
N

N
∑

i=1
(yi − µ)2 , (S6)

which is the function for SV.

3. RESULTS

Fig. S1 shows peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) plots for the recon-
struction results, while Fig. S2 shows the 98th percentile en face projections of the reconstructed
volumes.
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Fig. S1. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) during reconstruc-
tion. The color indicates whether three, five, or ten repeated B-scans were used for reconstruc-
tion. The rows show PSNR for amplitude decorrelation and interframe variance, the columns
indicate the regularizer.
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Fig. S2. En face projections of the GT and reconstruction results. More detailed areas are
shown in enlargements next to the en face images. Rows show initial OCTA, wavelet shrink-
age, total variation reconstructions, and median filter for comparison. Columns are grouped by
the number of scan repeats used.
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