OMTN, Volume 23

Supplemental Information

Long non-coding RNA Inc-CCNL1-3:1 promotes

granulosa cell apoptosis and suppresses glucose

uptake in women with polycystic ovary syndrome

Jiayu Huang, Jun Zhao, Xueying Geng, Weiwei Chu, Shang Li, Zi-Jiang Chen, and Yanzhi Du

Table S1. Small interfering R	NA sequences used for transfection
TT 4	

	Target genes	Sequences $(5' \rightarrow 3')$
	FOXO1	F:5'- GGACAACAACAGUAAAUUUdTdT -3'
г		

Notes: F, forward; R, reverse; FOXO1, forkhead box protein O1.

Genes	Primer sequences $(5' \rightarrow 3')$	Amplification condition
CONI	F:5'-TTTGCAGCATTTCCTCCTCT-3'	
CCNL	R:5'-CTCCCAAAGTGCTGGGTTTA-3'	
EOVO1	F:5'-TCGTACGCCGACCTCATCA-3'	_
FUAUI	R:5'-TCCTTGAAGTAGGGCACGCTC-3'	_
	F:5'-CTCCATCCTGGCCTCGCTGT-3'	 Stage 1: 95°C, 10 sec Stage 2: 95°C, 5 sec 60°C, 24 sec
ACID	R:5'-GCTGTCACCTTCACCGTTCC-3'	
ЦC	F:5'-CTCGCTTCGGCAGCACA-3'	
00	R:5'-AACGCTTCACGAATTTGCGT-3'	-60° C, 34 sec
CADD45	F:5'-TGCTGGTGACGAATCCAC-3'	- Number of cycles.40
GADD430	R:5'-TAGCGACTTTCCCGGCAA-3'	_
	F:5'-ACATTGTCTTCTCCAAACTCCA-3'	_
IKAIL	R:5'-GCTCAGGAATGAATGCCCA-3'	_
Dire	F:5'-GCTTACTATGCAAGGAGGGTAT -3'	_
BIM	R:5'- ACAAGAGAACCGCTGGCT -3'	_

 Table S2. Primer sequences and amplification conditions used for real-time PCR

Notes: F, forward; R, reverse; CCNL: Lnc-CCNL1-3:1; FOXO1: forkhead box protein O1; ACTB: β -Actin. GADD45 α : Growth arrest and DNA damage inducible protein 45 α ; TRAIL: TNF related apoptosis inducing ligand; Bim: Bcl-2 interacting mediator of cell death.

 Table S3. Primer sequences and amplification conditions used for real-time PCR in RLM-RACE

Fragm	ented primers	Sequences $(5' \rightarrow 3')$	Amplification condition		
	Lnc-CCNL1-F	GGGTCTCTAGATGTCCATGA	Stage 1:		
	Lnc-CCNL1-R	GCTGGGTTTACAGGTGTAAG	Stage 2:		
5'D A CE	rLnc-CCNL1-R1	GATAGCCTATGCCCAGGTTTCTGAGGAGTT	94°C, 30 sec		
J KACE	rLnc-CCNL1-R2	CCTGGTGTTGTAACTGGGATGCAGTCTTG	68°C, 30 sec		
2'D A CE	rLnc-CCNL1-F1	GGTCAAAGGCATGAGTTTCCAGGAGAT	Number of cycles:		
3 KACE	rLnc-CCNL1-F2	GACTAGAGGATGACTGTTGACTAGATT	- 30		

Notes: RLM-RACE, RNA ligase-mediated rapid amplification of 5'and 3'cDNA ends; F, forward; R, reverse; CCNL: Lnc-CCNL1-3:1;

Protein target	Host	Dilution used	Manufacturer	
β-Actin	Mouse Monoclonal	1:3000	Proteintech Group Inc	
GAPDH	Mouse Monoclonal	1:3000	Proteintech Group Inc	
Lamin A/C	Mouse Monoclonal	1:3000	Cell Signaling Technology	
Tubulin	Mouse Monoclonal	1:3000	Proteintech Group Inc	
FOXO1	Rabbit Monoclonal	1:1000	Cell Signaling Technology	
Total PARP	Rabbit Monoclonal	1:1000	Cell Signaling Technology	
Cleaved PARP	Rabbit Monoclonal	1:500	Invitrogen	
Total Caspase-3	Rabbit Monoclonal	1:1000	Cell Signaling Technology	
Cleaved Caspase-3	Rabbit Monoclonal	1:1000	Cell Signaling Technology	
Bcl-2	Rabbit Monoclonal	1:1000	Cell Signaling Technology	
Bax	Mouse Monoclonal	1:1000	Cell Signaling Technology	
GLUT4	Rabbit Polyclonal	1:1000	Abcam	
IRS1	Rabbit Polyclonal	1:1000	Cell Signaling Technology	
Phospho-Rb	Rabbit Polyclonal	1:1000	Cell Signaling Technology	
Rb	Mouse Monoclonal	1:2000	Cell Signaling Technology	
Phospho-CDK2	Rabbit Polyclonal	1:1000	Cell Signaling Technology	
CDK2	Mouse Monoclonal	1:1000	Cell Signaling Technology	
P21 (CDKN1A)	Rabbit Polyclonal	1:1000	Cell Signaling Technology	
Alexa Fluor 488 (green)-conjugated	Goat Polyclonal	1:100	Invitrogen	

Table S4. Primar	v antibodies us	ed for western	blot and	Immunofluorescence assav

goat anti-rabbit IgG

Notes: FOXO1: forkhead box protein O1; PARP: poly-ADP-ribose polymerase; Bcl-2: B cell lymphoma-2; Bax: BCL2-associated X; GLUT4: glucose transporter 4; IRS1: insulin receptor substrate 1; CDK2: cyclin-dependent kinase 2; P21 (CDKN1A): cyclin-dependent kinase inhibitor 1A.

	PCOS (n = 43)
BMI (kg/m ²)	22.73 ± 3.34
FBG (mmol/L)	5.46 ± 0.55
2HPG (IU/L)	6.97 ± 1.99
Flns (mIU/L)	17.50 ± 16.53
HOMA-IR	4.46 ± 0.73

 Table S5. The relative endocrine parameters in patients with PCOS

Notes:All data are mean \pm SD value. FPG: Fasting blood glucose; 2HPG: 2 hour postprandial blood glucose; Flns: fasting insulin; HOMA-IR: Homeostasis model assessment of insulin resistance.

HOMA-IR				
Minimu	0.71			
Maximu	m	20.73		
Tertile	33.33	2.04		
_	66.66	3.89		

Table S6. Range of HOMA-IR in women with PCOSHOMA-IR

Notes: HOMA-IR: Homeostasis model assessment of insulin resistance

Table S7. Prediction of Lnc-CCNL1-3:1 and FOXO1 affinity using the RPISeqRNA-Protein Interaction Prediction (RPISeq)

Protein Sequence (FOXO1)

MRSKHTANCLAFRCILAWPGGLAQNCWCQNSIRHNLSLHSKFIRVQNEGTG KSSWWMLNPEGGKSGKSPRRRAASMDNNSKFAKSRSRAAKKKASLQSGQ EGAGDSPGSQFSKWPASPGSHSNDDFDNWSTFRPRTSSNASTISGRLSPIMT EQDDLGEGDVHSMVYPPSAAKMASTLPSLSEISNPENMENLLDNLNLLSSP TSLTVSTQSSPGTMMQQTPCYSFAPPNTSLNSPSPNYQKYTYGQSSMSPLPQ MPIQTLQDNKSSYGGMSQYNCAPGLLKELLTSDSPPHNDIMTPVDPGVAQP NSRVLGQNVMMGPNSVMSTYGSQASHNKMMNPSSHTHPGHAQQTSAVN GRPLPHTVSTMPHTSGMNRLTQVKTPVQVPLPHPMQMSALGGYSSVSSCN GYGRMGLLHQEKLPSDLDGMFIERLDCDMESIIRNDLMDGDTLDFNFDNV LPNQSFPHSVKTTTHSWVSG

RNA Sequence (lnc-CCNL1-3:1)

AGCTCTTCAGTGTTGTGCTCATTGGTTTCATCAAAGCAGGACAATACTTG GCACTAAGTCGACAAAATTCTCACTTCTGCAGTGGGTCTCTAGATGTCCA TGACCCTGCCTTCTCAGGAAAAGAGGGAGGACATGCGGCTGGAGGGAC ACAGAGGGCAAGACTGCATCCCAGTTACAACACCAGGAAGCCACGTCT GAAAGGAAACTCCTCAGAAACCTGGGCATAGGCTATCGGGAAAGTAAA GAAGACATCTGGAGAGGCGAATATTCTGAAGGAATCTCTGCCAGAGGAG AAGGGAAAAGGAAAGCACTTATCCAGGTCAAAGGCATGAGTTTCCAGG AGATTATTCATCGTGACTAGAGGATGACTGTTGACTAGATTTATTCCACAG GTATGGAAGGAAAAGTCTTGGTACATTTTTTGCAGCATTTCCTCCTCCC ATATAGACTGTTCTCATTCTGCAGGGCTGGGGTTCACCCAGTATTCAACT CCAAGCCCTTCACATAGTAAAAGAAGTAAGGGGAGCCAGGCATGGTGGC TGAGCTCAGGAGTTCGACCCCAACCTGGGCAACATGGTGAAACCCTGTC TCTACTAAAAATACAAAAATTAGCTGGGTGTGGTGGTGCATGCCTGTGGT CCCAGCTACTCTGGAGGCTGAGGTGGTAGGATTGCTTGAGCCCACATGT GTGAGGCTGCAGTGAGCTGTGATCACACCACTGCTCTCCAGCCTGGGTG ACAGAGTGAGAGACCCTGTCCCCCAACCACCCCCCCAACAAAAAA AAAAAAA

Interaction probabilities	
Prediction using RF classifier	0.75
Prediction using SVM classifier	0.65

Notes: The sequence of lnc-CCNL1-3:1 (CCNL) was obtained from the RACE assay. Interaction probabilities generated by RPISeq range from 0 to 1. In performance evaluation experiments, predictions with probabilities > 0.5 were considered "positive," indicating that the corresponding RNA and protein are likely to interact.

 Table S8. Prediction of Lnc-CCNL1-3:1 and EZH2 affinity using the RPISeq

RNA-Protein Interaction Prediction (RPISeq) Protein Sequence (EZH2)

MGQTGKKSEKGPVCWRKRVKSEYMRLRQLKRFRRADEVKSMFSSNRQKI LERTEILNQEWKQRRIQPVHILTSCSVTSDLDFPTQVIPLKTLNAVASVPIMYS WSPLQQNFMVEDETVLHNIPYMGDEVLDQDGTFIEELIKNYDGKVHGDRE CGFINDEIFVELVNALGQYNDDDDDDDDDDDDPEEREEKQKDLEDHRDDKES RPPRKFPSDKIFEAISSMFPDKGTAEELKEKYKELTEQQLPGALPPECTPNID GPNAKSVQREQSLHSFHTLFCRRCFKYDCFLHPFHATPNTYKRKNTETALD NKPCGPQCYQHLEGAKEFAAALTAERIKTPPKRPGGRRRGRLPNNSSRPSTP TINVLESKDTDSDREAGTETGGENNDKEEEEKKDETSSSSEANSRCQTPIKM KPNIEPPENVEWSGAEASMFRVLIGTYYDNFCAIARLIGTKTCRQVYEFRVK ESSIIAPAPAEDVDTPPRKKKRKHRLWAAHCRKIQLKKGQNRFPGCRCKAQ CNTKQCPCYLAVRECDPDLCLTCGAADHWDSKNVSCKNCSIQRGSKKHLL LAPSDVAGWGIFIKDPVQKNEFISEYCGEIISQDEADRRGKVYDKYMCSFLF NLNNDFVVDATRKGNKIRFANHSVNPNCYAKVMMVNGDHRIGIFAKRAIQ TGEELFFDYRYSQADALKYVGIEREMEIP

RNA Sequence (Inc-CCNL1-3:1)

AGCTCTTCAGTGTTGTGCTCATTGGTTTCATCAAAGCAGGACAATACTTG GCACTAAGTCGACAAAATTCTCACTTCTGCAGTGGGTCTCTAGATGTCCA TGACCCTGCCTTCTCAGGAAAAGAGGGAGGACATGCGGCTGGAGGGAC ACAGAGGGCAAGACTGCATCCCAGTTACAACACCAGGAAGCCACGTCT GAAAGGAAACTCCTCAGAAACCTGGGCATAGGCTATCGGGAAAGTAAA GAAGACATCTGGAGAGGCGAATATTCTGAAGGAATCTCTGCCAGAGGAG AAGGGAAAAGGAAAGCACTTATCCAGGTCAAAGGCATGAGTTTCCAGG AGATTATTCATCGTGACTAGAGGATGACTGTTGACTAGATTTATTCCACAG GTATGGAAGGAAAAGTCTTGGTACATTTTTTGCAGCATTTCCTCCTCCC ATATAGACTGTTCTCATTCTGCAGGGCTGGGGTTCACCCAGTATTCAACT CCAAGCCCTTCACATAGTAAAAGAAGTAAGGGGAGCCAGGCATGGTGGC TGAGCTCAGGAGTTCGACCCCAACCTGGGCAACATGGTGAAACCCTGTC TCTACTAAAAATACAAAAATTAGCTGGGTGTGGTGGTGCATGCCTGTGGT CCCAGCTACTCTGGAGGCTGAGGTGGTAGGATTGCTTGAGCCCACATGT GTGAGGCTGCAGTGAGCTGTGATCACACCACTGCTCTCCAGCCTGGGTG ACAGAGTGAGAGACCCTGTCCCCCCAACCACCCCCCCAACAAAAAA AAAAAAA

Interaction probabilities

Prediction using RF classifier	0.65
Prediction using SVM classifier	0.89

Notes: The sequence of Inc-CCNL1-3:1 (CCNL) was obtained from the RACE assay. Interaction

probabilities generated by RPISeq range from 0 to 1. In performance evaluation experiments, predictions with probabilities > 0.5 were considered "positive," indicating that the corresponding RNA and protein are likely to interact.

Figure S1. Basic information for Lnc-CCNL1-3:1 from the NONCODE database (Transcript ID:

NONHSAT092887.2).

				U	CSC Gen	ome Bro	owser on Human Dec. 2013 (GRCh38/hg38) Assembly	
					chr3:157,	131,726-157,	,132,376 651 bp. enter position, gene symbol, HGVS or search terms	
		chr3	(q25.3	1)	3p24.3	21.31	1 14x214.1 (11)12.0	
Phy locsF+1	Scale chr3	*	1	157,131,800	157, 131, 850	157, 131, 900	200 bases bp30 157,131,964 157,132,464 157,132,464 157,132,264 157,151,964 157,152,464 157,152,264 157,152,264 PhytoCSP Candidate Coding Regions (PCCEs) (25 assamble) Not in CERCODE V34 Gene Set 157,152,264 157,152,264 Sacotron PhytoCSP Candidate Coding Regions (PCCEs) (25 assamble) Control Cercode V34 Gene Set 157,152,264 157,152,264	157, 132, 350
bu locsE40	-15		11				Smoothed PhyloCSF (58 mammals) Strand + Frame 2	
wincsF+3	-15 15		T				Smoothed Phylocar (58 manualis) Strand + Prate 3	
N IOCSE-1	-15 15		T				Skootned PhyloCSF (56 manals) Strand - Prese 1	
w 1005F-2	-15 15	-					Smootned PrylocSF (58 manuals) Strand - Prese 2	
WIOCSE-3	-15 15						Encothed Pry ICCF (58 mmants) Etrand - Press 6	
rg rovar=3	-15	-					ويجرينا والمتقادي والفرادية ويوبيه التلاط والمتحال والمتحاد والمتحد والمتحد والمتكار	

Figure S2. The PhyloCSF score indicating that lnc-CCNL1-3:1 is more likely to be a non-coding

RNA

Figure S3. 5'and 3'rapid amplification of cDNA ends (RACE) assays in KGN cells to detect the whole sequence of CCNL. A: a gelelectrophoresis image of PCR products from the 5'RACE assays. B: a gelelectrophoresis image of PCR products from the 3'RACE assays.

Figure S4. The validation of CCNL sequence using Sequencher (Gene Codes Corporation, Michigan, USA). Lnc-CCNL 1-3:1 sequence was obtained from the NONCODE database (Transcript ID: NONHSAT092887.2) and consistent with our results from RACE experiment. A: The part of CCNL sequence from PCR products compared with Lnc-CCNL 1-3:1 sequence. B, C: The CCNL sequence from 5'RACE PCR products compared with Lnc-CCNL 1-3:1 sequence. D: The CCNL sequence from 3'RACE PCR products compared with Lnc-CCNL 1-3:1 sequence.

Figure S5. Androgen excess induces Lnc-CCNL1-3:1 expression. A: The correlation between the expression level of *CCNL* in the serum concentration of testosterone in patients with PCOS (n = 43). The expression level was detected via qRT-PCR and normalized against β -actin. B: Androgen excess induces *CCNL* expression in KGN cells. KGN cell lines were preincubated with 1 or 10mM double hydrogen testosterone (DHT) medium for 24 hours then subjected to qRT-PCR analysis and normalized against β -actin to measure *CCNL* expression. Error bars represent SDs of at least 3 independent experiments. ***: p < 0.001, **: p < 0.01, *: p < 0.05 correspond to two–tailed Student's tests.

Figure S6. Western blotting analysis to measure relative protein expression (P-Rb: Phospho-Rb, Rb, P-CDK2: Phospho-CDK2, CDK2, P21: CDKN1A) from KGN and hlGCs cells (n=3) after transfected with vectors for 72 h.***: Error bars represent SDs of at least 3 independent experiments. p < 0.001, **: p < 0.01, *: p < 0.05 correspond to two-tailed Student's tests.

Figure S7. Western blotting analysis to measure relative p-FOXO1 expression (p-FOXO1: Phospho- FOXO1) from KGN and hlGCs cells after transfected with vectors for 72 h.***: Error bars represent SDs of at least 3 independent experiments. p < 0.001, **: p < 0.01, *: p < 0.05 correspond to two-tailed Student's tests. FOXO1: forkhead box protein O1.

Figure S8. QPCR analysis to measure relative expression (TRAIL, Bim and GADD45 α) from KGN cells after transfected with vectors for 72 h.***: Error bars represent SDs of at least 3 independent experiments. p < 0.001, **: p < 0.01, *: p < 0.05 correspond to two-tailed Student's tests. GADD45 α : Growth arrest and DNA damage inducible protein 45 α ; TRAIL: TNF related apoptosis inducing ligand; Bim: Bcl-2 interacting mediator of cell death.

Figure S9. Vector backbone for transfection and luciferase reporter assays. A: Vector backbone for CCNL transfection. B-D: Vector backbone for luciferase reporter assays. B:

pcDNA3.1-CCNL. C: pcDNA3.1-FOXO1. D: pcDNA3.1-FOXO1-mut. FOXO1: forkhead box protein O1.

Figure S10. After co-transfection of pcDNA3.1-FOXO1, or pcDNA3.1-FOXO1-mut with pcDNA3.1, pcDNA3.1-CCNL into 293T cells. Results are shown as the relative ratio of firefly luciferase activity to Renilla luciferase activity. FOXO1: forkhead box protein O1.