
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The study by Koelsche et al presents a DNA methylasion-based classifier of soft tissues and bone 

tumors. The `sarcoma classifier´ was trained on methylation profiles from 1,077 tumor samples from 

a reference sarcoma cohort. Methylation profiling was done using the EPIC and 450k Illumina arrays. 

Unsupervised hierarchical clustering and t-SNE analysis revealed 62 tumor-methylation classes 

belonging to 54 histological types. Using this dataset and a Random Forest maschine learning 

classification, the authors developed the sarcoma classifier similarly to what they have done previously 

for tumors of the central nervous system (Capper et al., 2018). The classifier was validated on a set of 

428 addional tumor samples coming mostly from relapsed/refractory tumors. Finally the authors used 

the DNA methylation profiles for detecting copy number alterations in the corresponding tumor 

samples. 

 

Given that the authors have published a number of papers with similar focus previously (Capper et al., 

Nature, 2018; Koelsche et al., Clin Sarcoma Res, 2019; Koelsche et al., Journal of Clin Res and Clin 

Onc, 2019; Koelsche et al., Modern Pathology, 2018) – with the current manuscript having an almost 

identical figure lay out as the Capper et al paper – the added value of the work presented herein 

should be furhter emphasised. 

What is the highlight of the presented work? 

- New, better classifier? 

- Identification of novel sarcoma types/subtypes? 

- New diagnostic tool that could complement/replace current tumor-type specific molecular testing? 

 

The potential of the presented sarcoma classifier as a diagnositic tools may be the most 

interesting/relevant aspect. Also, given that currrently a lot of diagnostic centers perform RNA-seq for 

all newly diagnosed sarcomas, it would be interesting to assess how these two approaches perform in 

comparison. 

 

Specific comments: 

 

1. Line 199: `recognised´ may not me so precise. Replace with `classified´ 

2. Method section corresponding to the analysis for Fig 1 is incomplete. The description of hieriachical 

clustering is missing. What do the authors mean by `iteratively analysed´? How was the cluster 

number chosen? Why a minimum of seven cases was used (why not more or less)? How was the 

perplexity chosen? 

3. Lines 386 – 391: This paragraph is difficult to read – not correct English. Please 

rephrase/restructure. 

4. Figure 1b – Legend with sarcoma type abbreviations is really hard to read. Perhpas presnet this 

information as a table/figure. Or at least tumor types can be listed in alphabetical order. 

5.Line 382: We aimed at a tumor cell content of >70%. However, according to Extended Figure 2f the 

predicted tumor purity for most samples is much lower. 

6. Line 241/242 (Exteded data Figure 2) – it is not clear what it is meant that potential confounding 

factors were excluded? Which factors? 

7. Figure 1. The authors could explain a bit better what they mean by the four WHO categories. Do 

they mean the types of sarcomas based on WHO classification? 

8. The task of the classifier is to split samples in methylation classes that were defined by 

unsupervised learning on the same dataset. For every sample that is tested in the cross-validation 

step of the Random Forest, the algorithm predicts to which of the 65 classes it belongs. However, 

these 65 classes have been defined using methylation profiles of all samples, including the profile of 

the tested sample. It should therefore be not surprising that the performance is high (0.999), as in a 

way, what is tested is the capability of the RF classifier to reproduce what the unsupervised learning 

did using the same data. It should be discussed if and how this biases the performance metrics, and if 



and why this is still a reasonable comparison. This does not apply to the validation set, which is 

independent. Also, the methylation classes are biologically meaningful, as seen by the large overlap to 

WHO classification, but this issue should at least be discusses regardless. 

9. Extended Figure 1a: λ Youden is shown as a line (not red dot) 

10. Validation cohort: Are all classes evenly included in the validation cohort (an overview statement 

would be informative). Also, reference set is mostly based on diagnostic samples, whereas validation 

cohort is mostly relapsed tumors. Is there any overlap between diagnostic and relapsed tumors 

(coming from the same patient)? 

11. Line 296: Typo mistake – 26/59? What does `remain open´ mean? 

12. Figure 3 is not easy to follow. The 428 samples are relapsed/refractory samples. Why the top bar 

says Diagnostic samples? Where the 59 samples discussed in line 294 fit best in the figure? 

13. It would be interesting to get an idea of the classification performance also on the samples that do 

not reach the 90% certainty threshold. This information is perhaps provided in Extended figure 3 but it 

is not discussed. 

14. How is the performance for cases in which the classifier is very sure? E.g. at 99% certainty? What 

is the distribution of certainties in cases that the classifier did and did not agree with the diagnosis? 

15. Given that CNAs have diagnostic relevance (as indicated in line 311) why CAN data are not 

included in the classifier? It may be interesting to compare its performance with vs without CNAs. 

16. Lines 348-349: ‘portion of the unrecognized cases` - it is not clear which cases the authors mean. 

17. Lines 339-340: The illumina methylation arrays do not only cover promoter regions. The authors 

comment that their study focuses on CpG sites localized on promoter regions. Have they tested which 

of the CpG sites are the most informative for their classifier? They could add an additional analysis to 

test this. They could group the CpGs based on those found on core promoters, extended promoters, 

DNase I sites, gene bodies, regulatory elements etc and run the classifier using only a set of the CpGs 

and compare it to the performance of the classifier when they use all CpGs. This analysis may 

contribute to biological understanding for different sarcoma types. 

18. How does the classification performance change with tumor impurity? This is important to assess 

and seems relevant for the end user. e.g. split the validation data in a few bins, based on the 

impurity, and assess performance there. If this cannot be done, at least significance should be 

assessed in Fig 5b. Also, there seem to be correlations between tumor type and impurity (Extended 

Figure 2); does this affect the classifier? 

19. Discussion: What is the advantage of methylation based analysis (in addition to or instead of 

pathological assessment) in the end? Why should the end user consider doing methylation assays on 

top? It could uncover misclassifications, potentially altering treatment? However, at the moment it 

seems unsure if we could trust methylation enough to re-classify the tumor without additional genetic 

evidence for the new classification. So why not just do genetic classification on top of pathology, and 

save the time/money of methylation? How about RNA-seq that is currently used in clinics (at least for 

fusion driven sarcomas)? What are next steps to establish this in the clinic? 

20. Classifier score calibration: REF 15 says linear SVMs in combination with MR worked best. Why not 

use that here? 

21. Lines 446-448: does this mean that only samples which reach a threshold of 0.9 are taken into 

account for calculating the Youden index? Where do the 500 samples come from? Training or test set? 

22. Classifier score calibration (page 18): a scheme should be provided, and the text structured in a 

way that makes it is easier to follow. The scheme should include the complete CV scheme, and a 

visualization of the resampling and definition of the binary classes "classifiable" and "unclassifiable". 

23. Figure 4. Color code should match Figure 3. Also, lines are hard to follow. 

24. Figure 5. Most of the unclassified cases are located in the center of the plot. Is there an 

explanation for this? 

25. Extended Figure 1b: it needs better labeling - x and y coordinates / iterations are not shown. 

 

 

 

Reviewer #2: 

Remarks to the Author: 



Summary 

 

The authors present a classification model that classifies soft tissue and bone sarcomas from 65 

methylation groups. They used tSNE to identify classes that share methylation patterns. A random 

forests model was created to classify the 65 methylation groups using methylation data. The raw 

score obtained from the random forest model was then calibrated using a logistic regression model 

with L2 norm to obtain scores that were comparable between classes. Some of the methylation groups 

did not classify well, but seemed to be related to other methylation groups that also did not classify 

well. Similar methylation groups that did not classify well were combined into methylation class 

families and the the classifier was able to correctly classify cases belonging to these families to the 

family, if not to the specific methylation group. The classification model was developed using the same 

methodology as in the paper “DNA methylation-based classification of central nervous system 

tumours” (Capper et al. 2018). 

 

The authors verified the model using cross-validation and were able to achieve an error rate of less 

than 1% once all of their adjustments were made. They also verified their model using a validation 

data set. The error rate for this validation set was far greater. Twenty-five percent of the validation 

samples were not able to be classified by the model using the classification criterion. Of those that 

were classified, 61% were classified correctly. The authors investigated the cases that were not 

assigned a class and those that were classified incorrectly. Those that were not classified correctly 

were examined for subtype alterations and the additional information allowed them to correctly 

classify for about half of the misclassified cases. The cases that were not given a classification by the 

model did not cluster tightly within a methylation class in the tSNE analysis. 

 

The authors also examined copy number variations (CNVs) and provided a table with the CNVs 

alterations for each methylation group, but that table was not included in the copy that I reviewed so I 

cannot comment on how helpful the CNV is for the overall tumor classification process. 

 

 

Main concerns 

 

The details of the classifier should be tightened up. It seems that the authors used the same method 

as the paper, “DNA methylation-based classification of central nervous system tumours” (I refer to 

this as the CNS paper below), but some of the important details are not clarified in your paper. The 

paper woudl improve if the following are clarified or if it is clarified which methodology on the CNS 

paper was followed exactly: 

Where the number of probes that were used for the classifier trimemed? The CNS paper used variable 

importance to trim the number of probes down to 10,000. 

Was down-sampling used to address unequal class sizes in the reference data set? It is mentioned 

that down-sampling was used, but did not indicate that it was used to address unequal class size as it 

was in the CNS paper. 

What measure was used for the random forest score? The CNS paper defines the score as the 

proportion of times that a sample is classified as a certain methylation group in the 10,000 trees. The 

score can also refer to the F1 score, which is an entirely different metric. It is important that the 

reader is clear on how the raw score was calculated for your model. 

<ore detail is needed in the description of the random forest scores used as the explanatory variables 

for the calibration model (logistic regression with L2 norm).In the CNS paper, it seems that the scores 

for a particular case are the random forest score for each methylation class. If the same method was 

used, there are 65 scores for each case, most of which will be 0. (I recognize that it may be less than 

65 when the methylation families are taken into account). 

Provide some additional discussion on why 0.9 was selected as a threshold for classification. 

The paper notes that the samples in the reference dataset comprised at least 70% tumor cells, but 

this was not the case in the validation dataset. A table or figure that includes the information about 

the purity of the samples in the validation dataset, the raw and calibrated scores, and whether or not 



the tumor was misclassified or not classified would be helpful and more clearly illustrate the effect the 

tumor purity may be having on the classifier. Figure 5b shows a graph of the purity of each of the 

samples, but does not provide the additional information needed to clearly determine the effect of the 

tumor purity on classification. 

The discussion on the validation dataset states, “molecular data were screened for subtype specific 

alterations” and that the authors were able to correctly classify about half of the previously 

misclassified points using that information. Can this process be incorporated into the classifier? That 

is, if a tumor is misclassified, it would not be known in real life. How would the person making the 

diagnosis know that they should look for the subtype alterations and use that information to adjust 

the classifier assigned by the model? Using the numbers provided in the “Classifier performance 

validated in a clinical cohort” section, the model was only able to correctly classify about 46% of the 

validation cases (428 * 0.75 * 0.61 = 195, 195/428 = 0.4575). If other information can be used in 

conjunction with the classifier to get to a correct diagnosis, it should be more clearly stated. 

The calibration model: there are many other possible ways to normalize your model besides an L2 

norm. It is not clear that other norms, such as the L1 norm or a combination of L1 and L2, would yield 

a higher classification rate, but it may be worth investigating other normalization methods to see if the 

non-classification and mis-classification rates can be decreased. 

Please expand on how the copy number profiling data contributes to diagnosis in the context of the 

analysis done in this paper. Did it shed some light on some of the cases that were not classified or 

were not classified correctly? Illustrate a case or pattern that shows the merit of this additional 

information. I was not able to see Extended Data Figure 4 or Supplementary Table 2 because they 

were not included in my review copy so such examples may be present in those resources. However, 

even if that information is illustrated in the table and/or figure, pointing it out with a sentence or two 

in your text would illustrate the value of using the CNV information in conjunction with your classifier 

to diagnose a tumor. 

Figure 2: This figure shows that the classifier is classifying very well, but because it is performing well, 

the figure is not providing very helpful information. The misclassified areas are difficult to identify 

because the color is so light. The numbers would be more helpful than the heat map in this situation. 

You may want to summarize this information in a table. A table can show each methylation group and 

the misclassification rates within each group for each classification stage (raw scores and calibrated 

scores) and indicate how closely related the misclassified point is to the predicted methylation class. 

The heat map may be very informative for the validation data. This is where you have many non-

classification and misclassification errors. This type of heatmap may shed some light on the nature of 

these errors in that context. A table would also be helpful for the validation data. Figure 3 does 

provide additional information in regard to what is misclassified and a table would provide more 

detailed information. 

Figure 4: This graph contains a lot of good information, but is hard to digest. If possible, it would be 

nice if the labels on the right lined up with the labels on the left. This allows the reader to quickly 

observe overall patterns, in particular when cases are correctly classified or erroneously classified to a 

methylation class that is closely related to the true methylation class. It would also be helpful to group 

the labels together in the same way they are in Figure 1 rather than in alphabetical order. That is, 

have tumor types from the same WHO category grouped together and incorporate the same color 

structure used in Figures 1 and 2 to further illustrate methylation classes that are closely related to 

each other. 

Figure 5: This figure is an important illustration of the data, but it is a little hard to interpret all of the 

relationships it is trying to show. The dark color scheme with the red and gray dots was hard to 

visually interpret. I also would like to see the points that were misclassified in the validation dataset 

on the tSNE plot. The graphic may be more clear if you have four plots that show the same tSNE 

clusters for the reference dataset that are grayed out, and only add one color to each plot to highlight 

a single feature. The first plot can show the points that were misclassified in the reference dataset 

with one color, the second plot can highlight the points that were misclassified in the validation 

dataset in another color, the third plot can highlight the points that failed to be classified in the 

validation set with a third color, and the fourth plot can be the points that were classified correctly in 

the validation set with a fourth color. If these plots are gridded together, the relationships should be 



easier to identify. 

 

 

Minore comments 

 

Line 221: Add a comma after “On this basis” 

 

Line 225: Add a comma after “With this study” 

 

Line 296: I believe it should be 26/59 cases 

 

Line 318: Consider a comma after profiles 

 

 

 

Reviewer #3: 

Remarks to the Author: 

This paper provides a more detailed DNA methylation profiling to classify sarcomas. Unlike previous 

work published by this group (Koelsche C, Clinical Cancer Research 2019 and Koelsche C, Mod 

Pathology 2018) this classifier was created by a much larger group of diverse sarcoma tumor types. 

They also had a smaller but still very large set for validation. The field of DNA methylation 

classification is very new in sarcomas compared to the more developed data in brain tumors where it 

is proving to be very clinically useful. The current literature and the current manuscript suggest the 

classifier works well for well-classifiable tumors, but it is challenging in new tumor types that are not 

well characterized. Rare and not well characterized sarcomas are a clinical challenge and approaches 

aimed at improving our understanding of these tumors and potential therapeutic approaches is much 

needed and valuable. The current manuscript uses a random forest machine learning classification 

algorithm similar to S. Peter Wu et al in “DNA Methylation based classifier for accurate molecular 

diagnosis of bone sarcomas.” JCO Precision Oncology 2017. It seems the advantage of this approach 

is that it handles high dimensional data well, fast to train and prediction speed is fast. The biggest 

challenges with this approach can be with the tendency to overfit and therefore the number of 

samples they are analyzing is a strength to test the algorithm as previously much smaller datasets 

were used. It seems to be one of the largest datasets classified to date. I think this is a big strength of 

the current manuscript. However, it is not clear how methylation array adds compared to approaches 

focused on novel fusion discovery or other epigenetic investigations beyond methylation. 

The methods used are detailed but would benefit by independent computational review. 

An additional potential drawback of the algorithm is the lack of interpretability to the model. It is 

useful to be able to classify these highly diverse but not well characterized subset of sarcomas. 

However, based on this classification it seems further information would be useful in order to develop 

a deeper understanding of these tumor types, their potential cell of origin and any clinically relevant 

information. We are not yet using this approach clinically on all patients but in times of diagnostic 

uncertainty it would seem to be ideally implemented but in those cases in the less well characterized 

categories the ability to thoughtfully parse these rarest of different tumor types and feel confident in 

assigning a new diagnosis and treating accordingly is not clear. How do the authors propose to make 

this classifier more useful in the clinically relevant rare sarcomas is not clear. 

 

It seems if this challenge could be improved, it could be a useful addition to other approaches to 

classify sarcomas including fusion search and identification of novel fusions. 

In terms of the clinical annotation when there was a change in diagnosis little detail is provided on 

what other measures were used to validate the change in diagnosis and when a diagnosis was not 

changed as mentioned in the text lines 296-298 why was this the case. There were more cases 26/29 

that although the classifier reclassified the diagnosis remained “open” and this is a current limitation 

as the algorithm provides classification potentially, but it seems not further interpretable data that 

would help add utility in managing and understanding these tumors. If this is not the case, more detail 



on how this classification would make managing and understanding these tumors better would be 

great to be included and if the methylation data is more useful or more readily available than other 

epigenetic analyses. 

 

Greater insights into sarcomas provided by this classifier would be good to highlight. Despite the 

seemingly herculean effort to perform this analysis on this broad a scale it is still not clear how 

estimated diagnosis gets you closer to identifying and characterizing specific rare sarcoma subtypes 

and most importantly managing these tumors. However, in brain tumors the classifier data seems to 

be further developed and may be clinically more useful so perhaps this large dataset will contribute to 

the development of this as a clinically useful tool. It would be beneficial at least at this stage to better 

understand how this tool could advance the understanding of these tumors and would new therapeutic 

approaches be generated based on these analyses. More details into this aspect would be very helpful 

especially in the subsets that are reclassified and are not well characterized. 



Reviewer #1 (Remarks to the Author): Expert in sarcoma 
 
The study by Koelsche et al presents a DNA methylasion-based classifier of soft tissues and 
bone tumors. The `sarcoma classifier´ was trained on methylation profiles from 1,077 tumor 
samples from a reference sarcoma cohort. Methylation profiling was done using the EPIC and 
450k Illumina arrays. Unsupervised hierarchical clustering and t-SNE analysis revealed 62 
tumor-methylation classes belonging to 54 histological types. Using this dataset and a 
Random Forest maschine learning classification, the authors developed the sarcoma classifier 
similarly to what they have done previously for tumors of the central nervous system (Capper 
et al., 2018). The classifier was validated on a set of 428 addional tumor samples coming 
mostly from relapsed/refractory tumors. Finally the authors used the DNA methylation 
profiles for detecting copy number alterations in the corresponding tumor samples. 
 
Given that the authors have published a number of papers with similar focus previously 
(Capper et al., Nature, 2018; Koelsche et al., Clin Sarcoma Res, 2019; Koelsche et al., Journal 
of Clin Res and Clin Onc, 2019; Koelsche et al., Modern Pathology, 2018) – with the current 
manuscript having an almost identical figure lay out as the Capper et al paper – the added 
value of the work presented herein should be furhter emphasised. 
 
What is the highlight of the presented work? 
- New, better classifier? 
- Identification of novel sarcoma types/subtypes? 
- New diagnostic tool that could complement/replace current tumor-type specific molecular 
testing? 
 
We thank reviewer #1 for the critical comment on the aim of our study. The sarcoma classifier 
is a completely new classifier, which has no overlap with the brain tumor classifier except for 
the conceptual background of the classifier algorithm. With this classifier now sarcomas can 
be diagnostically addressed. Given the estimated rate of missed sarcoma diagnoses 
approximating 20% this is of great interest and potential clinical impact. The DNA-
methylation based sarcoma classifier represents an entirely novel approach of diagnosing 
these tumors and will complement current diagnostic procedures.  
 
 
The potential of the presented sarcoma classifier as a diagnositic tools may be the most 
interesting/relevant aspect. Also, given that currrently a lot of diagnostic centers perform 
RNA-seq for all newly diagnosed sarcomas, it would be interesting to assess how these two 
approaches perform in comparison. 
 
We fully agree with reviewer #1 that the aim of this study was to develop a tool for sarcoma 
diagnostics. 
 
 
Specific comments: 
 
1. Line 199: `recognised´ may not me so precise. Replace with `classified´ 
 
We replaced it as suggested. 
 
 



2. Method section corresponding to the analysis for Fig 1 is incomplete. The description of 
hieriachical clustering is missing. What do the authors mean by `iteratively analysed´? How 
was the cluster number chosen? Why a minimum of seven cases was used (why not more or 
less)? How was the perplexity chosen? 
 
Unfortunately, we did not point out clearly the section in the Methods referring to t-SNE 
generation for Figure 1. This has been corrected. We pointed towards the methods for t-SNA 
analysis and we inserted: 
“Hierarchical clustering: Unsupervised hierarchical clustering was performed using the 
20,000 most variably methylated CpG sites across the dataset according to median absolute 
deviation, Euclidean distance and Ward’s linkage method.” 
 
We agree, that the phrase “iteratively” was confusing and, therefore, deleted it throughout 
the manuscript. 
 
We clarified on the number of seven cases by adding: 
“[…] seven cases were required for defining a methylation class, which empirically proved 
sufficient for training a classifier and allowed prediction 14,15. Unsupervised clustering, 
respecting the minimal number of seven cases per group, led to the designation of […]” 
 
 
3. Lines 386 – 391: This paragraph is difficult to read – not correct English. Please 
rephrase/restructure. 
 
We added a preposition relevant for understanding this sentence and bracketed some of the 
supplementary information.  
 
 
4. Figure 1b – Legend with sarcoma type abbreviations is really hard to read. Perhpas presnet 
this information as a table/figure. Or at least tumor types can be listed in alphabetical order. 
 
We agree with reviewer #1 that this information is relevant for the paper. The information is 
given in Supplementary Table 2. The designations are sorted according to the WHO book 
(2013) on soft tissue and bone tumours. 
 
 
5.Line 382: We aimed at a tumor cell content of >70%. However, according to Extended 
Figure 2f the predicted tumor purity for most samples is much lower. 
 
We thank reviewer #1 for bringing up this important point. To point towards this discrepancy, 
we added the following sentence to the “Sample selection and quality control” paragraph in 
the methods section: 
" However, determining tumour cell content by random forest regression demonstrated that 
this goal was not reached for many samples 41. " 
 
 
6. Line 241/242 (Exteded data Figure 2) – it is not clear what it is meant that potential 
confounding factors were excluded? Which factors? 
 
We specified “potential confound factors”. The sentence now reads: 



"[...] and potential confounding factors such as sex, patients’ age, type of material, type of 
array and tumour purity were excluded […]" 
 
 
7. Figure 1. The authors could explain a bit better what they mean by the four WHO 
categories. Do they mean the types of sarcomas based on WHO classification? 
 
We agree with reviewer #1, the four categories were not explained in the main text. The 
passage now explains the four categories and reads as following: 
“Category 1 represents methylation classes equaling a WHO entity. Category 2 represents 
methylation classes corresponding to a subgroup of a WHO entity. Category 3 represents 
methylation classes that combine WHO entities. Category 4 represents methylation classes 
of novel entities which are not yet defined by the WHO classification (Figure 1a).” 
 
 
8. The task of the classifier is to split samples in methylation classes that were defined by 
unsupervised learning on the same dataset. For every sample that is tested in the cross-
validation step of the Random Forest, the algorithm predicts to which of the 65 classes it 
belongs. However, these 65 classes have been defined using methylation profiles of all 
samples, including the profile of the tested sample. It should therefore be not surprising that 
the performance is high (0.999), as in a way, what is tested is the capability of the RF 
classifier to reproduce what the unsupervised learning did using the same data. It should be 
discussed if and how this biases the performance metrics, and if and why this is still a 
reasonable comparison. This does not apply to the validation set, which is independent. Also, 
the methylation classes are biologically meaningful, as seen by the large overlap to WHO 
classification, but this issue should at least be discusses regardless. 
 
We agree that for the establishment of some methylation classes the t-SNE analysis played an 
important role. For these cases the same methylation data that was used for the unsupervised 
analysis was also used to train the supervised classification model on. This can be regarded 
as 'data leakage' and may theoretically result in overly optimistic performance metrics 
estimated by the cross-validation. However, not all methylation classes have been solely 
defined by an unsupervised analysis and for most cases also other clinical parameters played 
an important role, which is also reflected by the strong overlap with WHO classes. For these 
classes the t-SNE just confirmed that they are molecular distinct to other entities. That is why 
we think that the potential 'data leakage' bias is relatively small and the performance metrics 
estimates resulting from the cross-validation are still valid estimates. Moreover, as stated by 
the reviewer, the performance has also been assessed in an independent test data set.  
For clarification we expanded to:  
“Cross-validation, an internal performance metric 15, of the sarcoma classifier […]” 
 
 
9. Extended Figure 1a: λ Youden is shown as a line (not red dot) 
 
This was adjusted accordingly (in Extended Data Figure 3a).  



 
 
10. Validation cohort: Are all classes evenly included in the validation cohort (an overview 
statement would be informative). Also, reference set is mostly based on diagnostic samples, 
whereas validation cohort is mostly relapsed tumors. Is there any overlap between diagnostic 
and relapsed tumors (coming from the same patient)? 
 
Done as suggested. We added to the “Sample selection” paragraph in the methods section: 
“The validation set included sarcomas enrolled in the INFORM, NCT-MASTER, PPT and 
MNP2.0 studies 28-30. Rare sarcoma entities have not been over-represented. However, 
availability determined inclusion resulting in overrepresentation of high-grade sarcomas in 
the validation set.” 
 
Genotype checks (genotype information read out on the methylation array) were performed to 
rule out any patient overlap either within or between the cohorts. Each sample used in our 
study belongs to a different patient. We added the following sentence to the Sample selection 
paragraph under the Methods section at the beginning: 
“All samples of the reference and validation set are from individual/different patients.” 
 
 
11. Line 296: Typo mistake – 26/59? What does `remain open´ mean? 
 
Thanks, we corrected this typo accordingly to 26/59.  
 
We clarified and replaced the phrase “remained open”: 
“ In 26/59 cases the discrepancy between histological diagnosis and classifier prediction 
could not be resolved due to lack of entity specific mutations.” 
 
 
12. Figure 3 is not easy to follow. The 428 samples are relapsed/refractory samples. Why the 
top bar says Diagnostic samples? Where the 59 samples discussed in line 294 fit best in the 
figure? 
 
We remodeled Figure 3 for a more intuitive understanding. “Diagnostic samples” was 
replaced by “Validation cohort”, the fields where the 59 discussed samples assigned to are 
now indicated accordingly.  



 
 
 
13. It would be interesting to get an idea of the classification performance also on the samples 
that do not reach the 90% certainty threshold. This information is perhaps provided in 
Extended figure 3 but it is not discussed. 
 
We agree with this notion. Calibrated classifier scores between 0.6 and 0.9 may often indicate 
correct prediction. However, in order to minimize false predictions, we adopted a stringent 
cutoff at 0.9. Readers of the paper can derive this information from Supplementary Table 3.  
 
 
14. How is the performance for cases in which the classifier is very sure? E.g. at 99% 
certainty? What is the distribution of certainties in cases that the classifier did and did not 
agree with the diagnosis?  
 
Calibrated prediction scores do not correspond to percentages. This can be seen in Extended 
Data Figure 3c and 3b. 3c depicts the rare scores, which always have a certain percentage of 
false predictions, which also is reflected in the calibrated score. 
In the validation set the mean calibrated score for concordant prediction was 0.992, for 
discrepant prediction 0.998 and for misleading prediction (n=4) 0.964. We do not consider 
this information relevant and, therefore, did not amend the manuscript.  
 
 
15. Given that CNAs have diagnostic relevance (as indicated in line 311) why CNA data are 
not included in the classifier? It may be interesting to compare its performance with vs 
without CNAs. 
 
Reviewer #1 raises an important point. The classifier is based on tissue differentiation 
reflected by DNA methylation. The different data structure of CNV is not compatible with our 
algorithms. Furthermore, independence from CNV probably is important. A methylation 
signature, which is composed of thousands of CpG values, is more specific. CN hallmark 
alterations for pathognomic for, but not specific to certain entities, e.g. a chromosomal 
amplification region 12q13-15 covering MDM2, might otherwise strongly bias to diagnoses 
with such alteration, in this example well/dedifferentiated liposarcoma or intimal sarcomas, 
among others. Therefore, the DNA methylation-based classifiers (CNS tumours and 
Sarcomas) are independent from copy number alterations. However, as mentioned in the 
manuscript, we consider copy number profiles as valuable information, that’s why we provide 
the CN profile in the molecular report (Extended Data Fig. 6). The most common copy 
number alterations encountered in the methylation classes are pointed out in the methylation 
class summary (Supplementary Table 2).  



 
 
16. Lines 348-349: ‘portion of the unrecognized cases` - it is not clear which cases the authors 
mean. 
 
We specified: 
"This does account for a portion of the 106/428 unrecognized cases exhibiting a calibrated 
score < 0.9." 
 
 
17. Lines 339-340: The illumina methylation arrays do not only cover promoter regions. The 
authors comment that their study focuses on CpG sites localized on promoter regions. Have 
they tested which of the CpG sites are the most informative for their classifier? They could 
add an additional analysis to test this. They could group the CpGs based on those found on 
core promoters, extended promoters, DNase I sites, gene bodies, regulatory elements etc and 
run the classifier using only a set of the CpGs and compare it to the performance of the 
classifier when they use all CpGs. This analysis may contribute to biological understanding 
for different sarcoma types. 
 
As described in reference 14 (Capper et al., doi:10.1038/nature26000) the 10.000 most 
informative CpGs were selected by applying first a RF for feature selection to calculate the 
RF permutation variable importance measure. Then, the second final RF was trained using 
only the 10.000 CpGs with highest variable importance. The permutation variable importance 
measure of the RF is a quite popular metric used to screen high-dimensional data sets, which 
is why the RF is also often applied in GWAS studies to screen for disease associated SNPs. 
We believe that this data driven feature selection will probably lead to the best possible 
prediction performance of our classifier, which in our opinion is more important than 
biological interpretability.  
 
We removed the sentence:  
“However, in our study the focus is on CpG sites localizing to the promoter regions.” 
 
We also removed 'promoter' in  
“Employing DNA-methylation based categorization offers highly attractive features.”  
 
 
18. How does the classification performance change with tumor impurity? This is important 
to assess and seems relevant for the end user. e.g. split the validation data in a few bins, based 
on the impurity, and assess performance there. If this cannot be done, at least significance 
should be assessed in Fig 5b. Also, there seem to be correlations between tumor type and 
impurity (Extended Figure 2); does this affect the classifier? 
 
We thank the reviewer for bringing up this important point. Purity is relevant for DNA-
methylation based classification and its effect might differ on tumour subtypes. Unfortunately, 
the case numbers of the different subtypes in the validation cohort are too low for testing this 
hypothesis. However, we plotted tumour purity against the classifier performance for 
conventional osteosarcomas, which we suspected as purity dependent subtype, and don’t see 
any correlation. This plot is now shown in Figure 5c. We also added means to Figure 5b and 
modified the discussion to emphasize that future studies are required to elucidate the effect of 
tumour purity on classifier performance. We added under results: 
 



“[…] were contaminated with a higher amount of non-neoplastic cells than estimated by 
histological examination, although the mean value for tumour cell purity of 47,4% in non-
classifiable cases was only slightly lower compared to 51,3% in classifiable cases (Figure 5).” 
 
We restructured the according discussion part, which now reads: 
“This circumstance might have contributed to classifier output scores lower than the cut off 
score of 0.9, consequently prompting the tumour evaluation as unclassifiable. The effect of 
tumour cell purity on the classifier performance is likely to be dependent on the sarcoma 
subtype (Figure 5). Future studies with larger case numbers are required to elucidate the 
effect of tumour purity on classifier performance.” 
 
 

 
 
 
19. Discussion: What is the advantage of methylation based analysis (in addition to or instead 
of pathological assessment) in the end? Why should the end user consider doing methylation 
assays on top? It could uncover misclassifications, potentially altering treatment? However, at 
the moment it seems unsure if we could trust methylation enough to re-classify the tumor 
without additional genetic evidence for the new classification. So why not just do genetic 
classification on top of pathology, and save the time/money of methylation? How about RNA-
seq that is currently used in clinics (at least for fusion driven sarcomas)? What are next steps 
to establish this in the clinic? 
 
We agree with reviewer #1 that molecular tumour classification will significantly contribute 
to a more precise tumour definition, which is necessary to reduce the relatively high 
misclassification rate of sarcomas. The advantage of DNA methylation profiling is its 
independence from genetics, meaning that a sarcoma with a specific epigenetic signature 
does not necessarily carry a specific genetic alteration.  



We are convinced of the tremendous power of methylation-based classification. In the brain 
tumor field methylation-based classification is introduced in WHO grading and is essential 
for some and desirable for many entities. We expect similar impact on the sarcoma field.  
 
 
20. Classifier score calibration: REF 15 says linear SVMs in combination with MR worked 
best. Why not use that here? 
 
We thank reviewer #1 for bringing up this is an interesting point. In our opinion a similar 
benchmark study like the one presented in reference 15 (Maros et al., 10.1038/s41596-019-
0251-6) should be performed when planning to train future versions of the presented sarcoma 
classifier. However, we already started to work on the classifier presented here using the RF 
(reference 14 (Capper et al., doi:10.1038/nature26000)) workflow before the reference 15 
was finalized. Also, the differences in performances between the Top 10 ML workflows 
presented in reference 15 are quite low, they all perform well and are in our opinion more or 
less exchangeable. Moreover, if they would be benchmarked on a different data set, like this 
one, the ranking of the workflows will likely change. 
 
21. Lines 446-448: does this mean that only samples which reach a threshold of 0.9 are taken 
into account for calculating the Youden index? Where do the 500 samples come from? 
Training or test set?  
 
We agree that this description is unclear. We restructured the complete paragraph separating 
the cross-validation from the parameter tuning of the calibration model and added Extended 
Data Figure 6 which shows the CV scheme in more detail (also see comment 22).  
For each of the 500 iteration of this resampling approach 30% of the training data was used 
to calculate the Youden index at a threshold of 0.9.  
The 500 samples are 500 random samples (data sets) of raw scores sampled without 
replacement.  
The calibration models are always fitted on training data raw scores to calibrate test data 
raw scores.  
 
 
22. Classifier score calibration (page 18): a scheme should be provided, and the text 
structured in a way that makes it is easier to follow. The scheme should include the complete 
CV scheme, and a visualization of the resampling and definition of the binary classes 
"classifiable" and "unclassifiable". 
 
We added Extended Data Figure 7, which shows the CV scheme in detail.  
 



 
 
We also rephrased the “Classifier score calibration” paragraph in the methods section, 
which is now provided in two paragraphs (“Classifier calibration” and “Calibration model 
parameter tuning”).  
 
 
23. Figure 4. Color code should match Figure 3. Also, lines are hard to follow. 
 
We checked that the colour codes of Figure 3 and Figure 4 match. For better visibility we 
enhanced some of the connecting lines in Figure 4.  
 



 
 
 
24. Figure 5. Most of the unclassified cases are located in the center of the plot. Is there an 
explanation for this? 
 



In our experience this is typical for a t-SNE and indicates that there are no other similar 
samples in the data set, leaving these samples in the middle of the plot, which is the starting 
position in the first iteration of the t-SNE. For methylation profiles this also often indicates a 
bad QC, due to low DNA content, bad bisulfite conversion, contamination, low tumor purity 
or other reasons.  
 
 
25. Extended Figure 1b: it needs better labeling - x and y coordinates / iterations are not 
shown. 
 
This figure refers to t-SNE stability and shows pairwise correlation. X and y axes refer to the 
methylation classes. Accordingly, correlation correlates to colour code. We remodeled this 
Figure in order to clarify.  
 

 
 
 
Reviewer #2 (Remarks to the Author): Expert in machine learning and methylation 
 
Summary 
 
The authors present a classification model that classifies soft tissue and bone sarcomas from 
65 methylation groups. They used tSNE to identify classes that share methylation patterns. A 
random forests model was created to classify the 65 methylation groups using methylation 
data. The raw score obtained from the random forest model was then calibrated using a 
logistic regression model with L2 norm to obtain scores that were comparable between 
classes. Some of the methylation groups did not classify well, but seemed to be related to 
other methylation groups that also did not classify well. Similar methylation groups that did 
not classify well were combined into methylation class families and the the classifier was able 
to correctly classify cases belonging to these families to the family, if not to the specific 
methylation group. The classification model was developed using the same methodology as in 
the paper “DNA methylation-based classification of central nervous system 
tumours” (Capper et al. 2018). 
 
The authors verified the model using cross-validation and were able to achieve an error rate of 
less than 1% once all of their adjustments were made. They also verified their model using a 



validation data set. The error rate for this validation set was far greater. Twenty-five percent 
of the validation samples were not able to be classified by the model using the classification 
criterion. Of those that were classified, 61% were classified correctly. The authors 
investigated the cases that were not assigned a class and those that were classified incorrectly. 
Those that were not classified correctly were examined for subtype alterations and the 
additional information allowed them to correctly classify for about half of the misclassified 
cases. The cases that were not given a classification by the model did not cluster tightly 
within a methylation class in the tSNE analysis. 
 
The authors also examined copy number variations (CNVs) and provided a table with the 
CNVs alterations for each methylation group, but that table was not included in the copy that 
I reviewed so I cannot comment on how helpful the CNV is for the overall tumor 
classification process. 
 
 
Main concerns 
 
The details of the classifier should be tightened up. It seems that the authors used the same 
method as the paper, “DNA methylation-based classification of central nervous system 
tumours” (I refer to this as the CNS paper below), but some of the important details are not 
clarified in your paper. The paper woudl improve if the following are clarified or if it is 
clarified which methodology on the CNS paper was followed exactly: 
 
Where the number of probes that were used for the classifier trimemed? The CNS paper used 
variable importance to trim the number of probes down to 10,000. 
 
Yes. As described in reference 14 (Capper et al., doi:10.1038/nature26000) the 10.000 most 
informative CpGs were selected by applying first a RF for feature selection to calculate the 
RF permutation variable importance measure. Then the second final RF was trained using 
only the 10.000 CpGs with highest variable importance. The permutation variable importance 
measure of the RF is a quite popular metric used to screen high-dimensional data sets, which 
is why the RF is also often applied in GWAS studies to screen for disease associated SNPs.  
The following sentence was added to the ”Classifier development“ section:  
“We used the 10.000 CpGs with highest variable importance. In addition, to address unequal 
class size we performed downsampling as previously described 14.”  
 
 
Was down-sampling used to address unequal class sizes in the reference data set? It is 
mentioned that down-sampling was used, but did not indicate that it was used to address 
unequal class size as it was in the CNS paper. 
 
Yes, down-sampling was performed like in Capper et al. 2018. We added: 
“In addition, to address unequal class size we performed downsampling as previously 
described 14.” 
 
 
What measure was used for the random forest score? The CNS paper defines the score as the 
proportion of times that a sample is classified as a certain methylation group in the 10,000 
trees. The score can also refer to the F1 score, which is an entirely different metric. It is 
important that the reader is clear on how the raw score was calculated for your model. 
 



In both manuscripts it is the proportion of times a forest votes for a class, the default score 
output of a Random Forest classification model, i.e. randomForest function when the 
argument 'type' is set to 'prob'.  
 
 
More detail is needed in the description of the random forest scores used as the explanatory 
variables for the calibration model (logistic regression with L2 norm). In the CNS paper, it 
seems that the scores for a particular case are the random forest score for each methylation 
class. If the same method was used, there are 65 scores for each case, most of which will be 0. 
(I recognize that it may be less than 65 when the methylation families are taken into account). 
Provide some additional discussion on why 0.9 was selected as a threshold for classification. 
 
 
The threshold of 0.9 was originally established for the brain tumor classifier. Here we 
decided that 0.9 is an easy to communicate threshold that lays between the maximum 
specificity threshold at 0.958 and the maximum Youden (specificity + sensitivity -1) index at 
0.836. In our opinion, as the output of both classifiers is 'well calibrated' class probability 
estimates, an additional threshold is kind of unnecessary. The educated clinician/user should 
be able to judge from the class probability score alone how much he trusts a classifier 
prediction. However, we realized that many users still ask for a threshold and 0.9 is now kind 
of accepted by the community. To guarantee that this threshold of 0.9 works comparable 
between different classifier versions that were trained on different data sets, we established 
the new calibration model parameter tuning step, which tries to find penalization parameter, 
so that the calibrated scores perform best (maximum Youden) at a threshold of 0.9. So instead 
of finding for each classifier an optimal threshold we hold the threshold fix and optimize the 
amount of calibration w.r.t. this threshold. We deleted the last sentence of the Classifier 
development paragraph (“We propose 0.9 as the threshold value for the prediction of a 
matching class to diagnostic samples”). We inserted a new paragraph “Calibration model 
parameter tuning” explaining the approach to the cutoff score of 0.9. 
 
 
The paper notes that the samples in the reference dataset comprised at least 70% tumor cells, 
but this was not the case in the validation dataset. A table or figure that includes the 
information about the purity of the samples in the validation dataset, the raw and calibrated 
scores, and whether or not the tumor was misclassified or not classified would be helpful and 
more clearly illustrate the effect the tumor purity may be having on the classifier. Figure 5b 
shows a graph of the purity of each of the samples, but does not provide the additional 
information needed to clearly determine the effect of the tumor purity on classification. 
 
This topic was also brought up by reviewer #1, please see point 18. Of note, tumour cell 
purity and classifier calibrated score of each case of the validation set is indicated in 
Supplementary Table 3.  
 
 
The discussion on the validation dataset states, “molecular data were screened for subtype 
specific alterations” and that the authors were able to correctly classify about half of the 
previously misclassified points using that information. Can this process be incorporated into 
the classifier? That is, if a tumor is misclassified, it would not be known in real life. How 
would the person making the diagnosis know that they should look for the subtype alterations 
and use that information to adjust the classifier assigned by the model? Using the numbers 
provided in the “Classifier performance validated in a clinical cohort” section, the model was 



only able to correctly classify about 46% of the validation cases (428 * 0.75 * 0.61 = 195, 
195/428 = 0.4575). If other information can be used in conjunction with the classifier to get to 
a correct diagnosis, it should be more clearly stated. 
 
We agree with reviewer #2 that the user should be noticed about subtype specific alterations, 
depending on the classifier result. Accordingly, Supplementary Table 2 provides the 
description for each methylation class. This description includes information about specific 
genetic alterations (if present) for validation, which summarized copy number alterations 
frequently encountered in the respective subtype and also includes clinical information like 
gender and age distribution etc.. This description is provided in the molecular report, the 
output file of the classifier (Extended Data Fig. 6). We have added the following sentence at 
the end of “Results”. 
 
“Molecular and clinical characteristics of the predicted methylation class are provided in a 
molecular classifier report (Extended Data Figure 6).” 
 
Regarding the 46% correctly classifier samples: There may be a misunderstanding. We have 
428 sarcomas in the validation set, 322 sarcomas have a score >=0.9 (75%), 263 of 428 do 
match (61%) 
 
 
The calibration model: there are many other possible ways to normalize your model besides 
an L2 norm. It is not clear that other norms, such as the L1 norm or a combination of L1 and 
L2, would yield a higher classification rate, but it may be worth investigating other 
normalization methods to see if the non-classification and mis-classification rates can be 
decreased. 
 
Yes, especially the R-package glmnet that we used to fit the calibration model also offers a L1 
penalization as well as a combination of L1 and L2, which is known as the elastic net 
penalization. One problem with logistic calibration models is that the RF scores, which are 
the explanatory variables, often already perfectly separate classes and this leads to inflated 
coefficient estimates. A possible way to deal with this so called 'complete or quasi-complete 
separation problem' is to introduce penalization terms, and in fact this is the original reason 
some of the penalized regression models have been developed (for example Firth's logistic 
regression). Here we just wanted to make use of this property of penalization terms that is to 
stabilize estimation in situation in which classes are perfectly separable. In addition, we think 
that the calibrated scores should be a function of the raw scores of all considered methylation 
classes and this is why we do not use the L1 penalization or elastic net here, as unlike the L2 
they would perform a variable selection. But we agree with reviewer #2, in principle this 
could be further investigated and might also lead to an improved prediction performance.  
 
 
Please expand on how the copy number profiling data contributes to diagnosis in the context 
of the analysis done in this paper. Did it shed some light on some of the cases that were not 
classified or were not classified correctly? Illustrate a case or pattern that shows the merit of 
this additional information. I was not able to see Extended Data Figure 4 or Supplementary 
Table 2 because they were not included in my review copy so such examples may be present 
in those resources. However, even if that information is illustrated in the table and/or figure, 
pointing it out with a sentence or two in your text would illustrate the value of using the CNV 
information in conjunction with your classifier to diagnose a tumor. 
 



The implementation of CNV to the validation set is described in the results section “Copy 
number profiling of sarcomas”, where we elucidate the value of CNV in sarcoma diagnostics 
by 3 examples: “Frequently encountered alterations include MDM2 amplification for well-/ 
dedifferentiated liposarcomas, MYC amplification for radiation induced angiosarcoma or 
segmental chromosomal deletions on chromosome 22q encompassing SMARCB1 for 
rhabdoid tumours“ Extended Data Figure 4 (now 5) provides information on entity specific 
CNVs. Supplementary Table 2 contains the information used in the validation of individual 
tumors. In our validation series we do not have misclassified cases with CNV providing a 
solution.  
 
 
Figure 2: This figure shows that the classifier is classifying very well, but because it is 
performing well, the figure is not providing very helpful information. The misclassified areas 
are difficult to identify because the color is so light. The numbers would be more helpful than 
the heat map in this situation. You may want to summarize this information in a table. A table 
can show each methylation group and the misclassification rates within each group for each 
classification stage (raw scores and calibrated scores) and indicate how closely related the 
misclassified point is to the predicted methylation class. The heat map may be very 
informative for the validation data. This is where you have many non-classification and 
misclassification errors. This type of heatmap may shed some light on the nature of these 
errors in that context. A table would also be helpful for the validation data. Figure 3 does 
provide additional information in regard to what is misclassified and a table would provide 
more detailed information. 
 
As suggested, we summarized the numbers belonging to Figure 2 into an additional table 
(Supplementary Table 4). We created a heatmap for the validation data (new Extended Data 
Fig 4). Numbers of previous Extended Data Fig. Fig. 4-6 shift by one position, accordingly. 
Detailed information on all samples in the validation cohort including initial diagnoses and 
classifier predictions is shown in Supplementary Table 3.  
 

 
 
 
Figure 4: This graph contains a lot of good information, but is hard to digest. If possible, it 
would be nice if the labels on the right lined up with the labels on the left. This allows the 
reader to quickly observe overall patterns, in particular when cases are correctly classified or 
erroneously classified to a methylation class that is closely related to the true methylation 
class. It would also be helpful to group the labels together in the same way they are in Figure 
1 rather than in alphabetical order. That is, have tumor types from the same WHO category 



grouped together and incorporate the same color structure used in Figures 1 and 2 to further 
illustrate methylation classes that are closely related to each other. 
 
We thank reviewer #2 for his suggestion on designing Figure 4. However, we already 
implemented changes on Figure 4 based on suggestions of reviewer #1. We hope the 
reviewers are satisfied with the updated appearance. 
 
 
Figure 5: This figure is an important illustration of the data, but it is a little hard to interpret 
all of the relationships it is trying to show. The dark color scheme with the red and gray dots 
was hard to visually interpret. I also would like to see the points that were misclassified in the 
validation dataset on the tSNE plot. The graphic may be more clear if you have four plots that 
show the same tSNE clusters for the reference dataset that are grayed out, and only add one 
color to each plot to highlight a single feature. The first plot can show the points that were 
misclassified in the reference dataset with one color, the second plot can highlight the points 
that were misclassified in the validation dataset in another color, the third plot can highlight 
the points that failed to be classified in the validation set with a third color, and the fourth plot 
can be the points that were classified correctly in the validation set with a fourth color. If 
these plots are gridded together, the relationships should be easier to identify. 
 
We modified the color scheme to make the figure more intuitive for the reader. The 
misclassified cases are now indicated in red. We do not wish to expand to four plots.  
 
 
Minore comments 
 
Line 221: Add a comma after “On this basis”  
Line 225: Add a comma after “With this study” 
Line 318: Consider a comma after profiles 
 
We added it as suggested.  
 
Line 296: I believe it should be 26/59 cases 
 
We have corrected this typo (see Reviewer #1).  
 
 
Reviewer #3 (Remarks to the Author): Expert in sarcoma 
 
Reviewer #3 (Remarks to the Author): Expert in sarcoma 
 
This paper provides a more detailed DNA methylation profiling to classify sarcomas. Unlike 
previous work published by this group (Koelsche C, Clinical Cancer Research 2019 and 
Koelsche C, Mod Pathology 2018) this classifier was created by a much larger group of 
diverse sarcoma tumor types. They also had a smaller but still very large set for validation. 
The field of DNA methylation classification is very new in sarcomas compared to the more 
developed data in brain tumors where it is proving to be very clinically useful. The current 
literature and the current manuscript suggest the classifier works well for well-classifiable 
tumors, but it is challenging in new tumor types that are not well characterized. Rare and not 
well characterized sarcomas are a clinical challenge and approaches aimed at improving our 
understanding of these tumors and potential therapeutic approaches is much needed and 



valuable. The current manuscript uses a random forest machine learning classification 
algorithm similar to S. Peter Wu et al in “DNA Methylation based classifier for accurate 
molecular diagnosis of bone sarcomas.” JCO Precision Oncology 2017.  
 
It seems the advantage of this approach is that it handles high dimensional data well, fast to 
train and prediction speed is fast. The biggest challenges with this approach can be with the 
tendency to overfit and therefore the number of samples they are analyzing is a strength to test 
the algorithm as previously much smaller datasets were used. It seems to be one of the largest 
datasets classified to date. I think this is a big strength of the current manuscript. However, it 
is not clear how methylation array adds compared to approaches focused on novel fusion 
discovery or other epigenetic investigations beyond methylation. The methods used are 
detailed but would benefit by independent computational review. 
 
We thank reviewer #3 for his very positive feedback. While the identification of fusions in 
sarcomas may be highly diagnostic, it is clear that currently only half of the sarcoma entities 
harbor recurrent fusions. In contrast, the methylation profile is very specific for all the 
sarcoma entities tested in our study.  
The suggestion of an independent computational review has been taken up by the editors: 
reviewer 2 is an Expert in machine learning and methylation. 
 
 
An additional potential drawback of the algorithm is the lack of interpretability to the model. 
It is useful to be able to classify these highly diverse but not well characterized subset of 
sarcomas. However, based on this classification it seems further information would be useful 
in order to develop a deeper understanding of these tumor types, their potential cell of origin 
and any clinically relevant information. We are not yet using this approach clinically on all 
patients but in times of diagnostic uncertainty it would seem to be ideally implemented but in 
those cases in the less well characterized categories the ability to thoughtfully parse these 
rarest of different tumor types and feel confident in assigning a new diagnosis and treating 
accordingly is not clear. How do the authors propose to make this classifier more useful in 
the clinically relevant rare sarcomas is not clear. It seems if this challenge could be 
improved, it could be a useful addition to other approaches to classify sarcomas including 
fusion search and identification of novel fusions.  
 
We agree with the reviewer the addition information may strengthen the diagnostic power of 
our approach. This indeed is a task for many of the next years to come (In fact, a multicenter 
study to integrate mutations and epigenetic data has just been proposed in frame of the 
Horizon 2020 Call: H2020-SC1-BHC-2018-2020; Applicants in the sarcoma section of the 
call include sarcoma pathologists with a very strong focus on fusion based tumor diagnosis 
and also our team). 
 
 
In terms of the clinical annotation when there was a change in diagnosis little detail is 
provided on what other measures were used to validate the change in diagnosis and when a 
diagnosis was not changed as mentioned in the text lines 296-298 why was this the case. 
There were more cases 26/29 that although the classifier reclassified the diagnosis remained 
“open” and this is a current limitation as the algorithm provides classification potentially, but 
it seems not further interpretable data that would help add utility in managing and 
understanding these tumors. If this is not the case, more detail on how this classification 
would make managing and understanding these tumors better would be great to be included 



and if the methylation data is more useful or more readily available than other epigenetic 
analyses. 
 
We provided an encompassing set of data to the reasoning for reclassification in the 
supplementary table 3. We agree that not all of the cases with a discrepancy between the 
classical approach and methylation could be verified. There are two reasons for this:  1) lack 
of additional material for in depth morphological and immunohistochemical analyses and 2) 
lack of specific molecular alterations these tumors could have been tested for (only about half 
of the sarcoma entities carry specific molecular actions). We think that we have discussed this 
sufficiently in the manuscript. 
 
 
Greater insights into sarcomas provided by this classifier would be good to highlight. Despite 
the seemingly herculean effort to perform this analysis on this broad a scale it is still not clear 
how estimated diagnosis gets you closer to identifying and characterizing specific rare 
sarcoma subtypes and most importantly managing these tumors. However, in brain tumors the 
classifier data seems to be further developed and may be clinically more useful so perhaps 
this large dataset will contribute to the development of this as a clinically useful tool. It would 
be beneficial at least at this stage to better understand how this tool could advance the 
understanding of these tumors and would new therapeutic approaches be generated based on 
these analyses. More details into this aspect would be very helpful especially in the subsets 
that are reclassified and are not well characterized. 
 
Aim of this work is not as much as providing novel insights into sarcomas rather than 
presenting a tool which might be useful for the diagnostician. We expect that further 
expansion along this way will help identifying additional rare entities or subsets of sarcomas 
which evade current diagnostic approaches. 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have not made a substantial effort addressing all concerns raised by the reviewers. Most 

importantly the way they respond to several comments is not ideal. 

 

Few examples of specific comments that the authors could have put a bit more effort addressing 

them: 

 

Reviewer 1#, comment 17: The authors instead of performing the simple analysis suggested by the 

reviewer, they rather removed the corresponding sentence from the discussion. 

 

Reviewer 2#, comment on Figure 4. The authors preferred to modify the figure based on a comment 

by reviewer 1#, hoping that reviewer 2# will be satisfied. 

 

Reviewer 2#, comment on Figure 5. The authors did not wish to expand the figure as suggested by 

the reviewer. 

 

Reviewer 3#, last comment. The authors did not address the comment because they prefer to 

emphasize on their classifier as a diagnostic tool and hence did not go into potential novel biological 

insights that could be inferred by further analyzing their data. 

 

However, at the same time they did not make an effort adding few lines in the discussion about their 

classifier as a diagnostic tool in comparison to other currently used approaches such as RNA-seq 

(although this was a comment by all three reviewers). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The author has addressed concerns. 



REVIEWER COMMENTS 
 
We thank the reviewers for their constructive comments on the manuscript. We once again 
carefully revised the manuscript according to their suggestions. These changes were marked 
in blue, former changes were kept in red.  
 
 
Reviewer #1 (Remarks to the Author): Expert in sarcoma 
 
#1 Please group the labels together in the same way they are in Figure 1 rather than in 
alphabetical order to Figure 4. 
 
We changed the order as suggested.  
 

 
 



#2 Please add four plots that show the same tSNE clusters for the reference dataset that are 
grayed out, and only add one colour to each plot to highlight the single feature fore Figure 5. 
 
We changed Figure 5 as suggested. 
 

 
 
 
 



#3 Please clarify if the CpG sites are the most informative for your classifier and perform 
additional analysis if necessary.  
 
Yes, the classifier is trained on the most informative CpGs across the reference dataset. In 
this context, most informative means most discriminating/variable CpGs. This information 
was already added to the manuscript with the previous revision (under methods). We 
performed additional analysis to specify the distribution of these CpGs within the gene region 
and their regulatory feature group provided by the manifest file of the Illumina array. This 
information is now shown in Extended Data Figure 7. 
 
“We used the 10.000 CpGs with highest variable importance. In addition, to address unequal 

class size we performed downsampling as previously described 14. The distribution of these 

CpGs position within the gene region and their regulatory feature group are indicated 

(Extended Data Figure 7).” 

 

 
 
Please discuss about the use of your classifier for rare sarcomas, as this was a common 
request across all reviewers.  
 
We specified in the discussion: 
“While the current version of the sarcoma classifier already includes some very rare entities, 
we acknowledge not to cover the entire spectrum. Analysis of additional sarcoma samples 



including uploaded data, subject to permission, will further improve this tool by refining 
established and adding novel methylation classes. " 


