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This supplementary material contains supporting evidence, figures and tables for the 
article “Explaining the emergence of complex networks through log-normal fitness in 
a Euclidean node similarity space”. The contents are as follows: 

 
• Section I describes additional model experiments carried out to understand 

what to expect from the topology of our model and modelling algorithm 
• Section II provides supporting results from the modelling of real-world network 

topologies in the main article 
• Section III provides details regarding the optimisation of surface inversion factor 

using skewness of the inverted link weight distribution 
• Section IV provides details of the complementary surface inversion analysis of 

an fMRI weighted network 
• Section V provides the tables of nearest neighbours discovered in the global 

city network experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Section I: Model experiments 
This section details exploratory analysis of surface-depth models. In part A we look at 
topological properties of the networks using common network metrics. Particularly, we 
are interested in how the model behaves by increasing the number of dimensions of 
the depth factor and whether the topological properties exhibited match general 
expectations of the topology of real-world networks. In part B, we go on to analyse the 
typical degree distributions of the model at different densities. We are particularly 
interested in how the model behaves with varying the shape parameter, 𝜎, of the 
surface factor. Using statistical tests, we check to what extent the degree distributions 
of the model resemble power-laws and log-normal distributions at different densities. 
Part C describes a validation of the algorithm for modelling real-world networks using 
the surface-depth model by subjecting the algorithm to surface-depth models 
themselves and comparing the true parameters with those estimated by the algorithm. 
 
A. Topology of surface-depth models 
Here, we explore the topology of surface-depth models using common network 
metrics. We generated realisations of 𝐺#$%(𝑞, 0.1), with 𝑞	 = 	1,2,3,… ,100, for networks 
of size 256 and binarised these networks at 10% density. Here, binarisation refers to 
the process of selecting the edges with the largest T% weights as existent edges in 
the network and the rest as non-existent. We did the same analysis for random 
geometric graphs with 𝑞 dimensions. For each 𝑞, 50 realisations of surface-depth 
models and random geometric graphs were generated and their topologies 
characterised by 𝐶, 𝐸, 𝑉, 𝑄 and 𝑟 (see Methods & Materials of the main article for 
details of metrics). Figure A shows the mean results over these realisations. By adding 
the log-normal surface factor to random geometric graphs, we see that the global 
clustering and degree variance are increased. 𝐶 doubles in size while degree variance 
shows an even greater appreciation with the addition of the surface factor. These two 
characteristics jointly help to describe the creation of a rich-club which is determined 
by the nodes with the largest values of the surface factor distribution. The expected 
value 𝑑89(𝑠8 + 𝑠9) is large when 𝑠8 and 𝑠9 are both large. Generalising this, the	𝑘 largest 
nodes will have the largest 𝑘(𝑘 − 1) values coming from the surface factor (𝑠8 + 𝑠9).   
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Figure A. Comparison of network index values (see legend) of random geometric graphs and surface-depth models over 
varying dimension. Topologies appear to be asymptotic with respect to dimension. Abbreviations: n- network size, d- 
network density, 𝜎- surface factor parameter, C- clustering coefficient, E- global efficiency, V- normalized degree variance, 
Q- modularity, r- assortativity. 



On the other hand 𝑟 is pushed down, going from just below zero to a large negative 
value closer to -0.4, for large 𝑞. This appears very symmetric with the behaviour of 𝑉 
and is explained by the fact that, alongside high degree nodes prominently connecting 
to other high degree nodes, the large number of small degree nodes are also more 
likely to connect to high degree nodes. Since there are generally far larger numbers 
of small degree nodes, node-node degree correlations would, on average, be 
negative. Interestingly, 𝐸 and 𝑄 maintain similar values after applying the surface 
factor, although 𝑄 is increased for small values of 𝑞. This tells us, in this particular 
experiment, that the network efficiency and tendency to form communities is similar 
between random geometric graphs and surface-depth models. These are all positive 
signs for our theory. Non-bipartite complex networks are generally found to have large 
clustering [1], high degree heterogeneity [2] and disassortativity [3]. 
 
B. Degree distributions of surface-depth models 
Next, we demonstrate that surface-depth models exhibit power-law distributions at 
sparse densities and log-normal distributions in larger densities. Denoting 𝑃(𝑘) as the 
fraction of nodes of degree 𝑘, power-laws were fitted by doing a linear regression using 
least squares on 𝑙𝑛(𝑃(𝑘)) against 𝑙𝑛(𝑘). The best-fit 𝛾 was then recovered by 
𝑒𝑥𝑝(1/𝑏G) where 𝑏G is the coefficient of the first power of 𝑙𝑛(𝑘) in the linear regression. 
The regression was done on the largest range of 𝑃(𝑘) found without any 0s (as 𝑙𝑛(0) 
is undefined). Once the line-of-best-fit was found, these were compared against the 
actual log-log-distribution using Kolmogorov-Smirnov (KS) two sample tests. These 
same tests were used in [4]. Notably, Voitalov, et al. [5] criticized KS tests for being 
parametric and for relying on p-values. However, two-sample KS tests are not 
parametric and are very useful for comparing the shapes of two distributions. 
Moreover, if the power-law is anywhere near a good fit, it should definitely have a non-
significant p-value. 
 

Figure B. Left shows goodness-of-fit of power-laws to the degree distributions of surface-depth models (n=1000, q=4). Right 
shows goodness-of-fit of log-normal distributions to the degree distributions of surface-depth models. In both, network 
density is plotted against models with different surface factor shape parameter, 𝜎. Blacked out elements of the matrices 
indicate that the null hypothesis— that the two distributions are the same— was rejected at the 𝛼 = 0.05 level. Brighter 
elements indicate more confidence in the similarity of the distributions. Results are the median over 100 iterations. 



Log-normality was tested by assessing whether the distribution of the log of degrees, 
𝑙𝑛(𝑘), could be distinguished from a normal distribution. Note, estimates of the 𝜇 and 
𝜎 parameters of a best-fit log-normal distribution can be taken as the mean and 
standard deviation of 𝑙𝑛(𝑘), since this is precisely how 𝜇 and 𝜎 of the log-normal 
distribution are defined (i.e. as the mean and standard deviation of a normal 
distribution). Testing the log-normality of a distribution is equivalent to testing normality 
of the log of the distribution, so one could use a test for normality such as the powerful 
Shapiro-Wilk’s test. However, the degree distribution is discrete, taking integer values, 
so comparing against a similarly discretized log-normal distribution is more 
meaningful. Therefore, 1000 random samples of the log-normal distribution with 𝜇	 =

	< 𝑙𝑛(𝒌) > and 𝜎	 = N𝑣𝑎𝑟Q𝑙𝑛(𝒌)R were generated. To discretise this in line with degree 
distributions, these were then rounded to the nearest integer and a two sample KS 
test was conducted between the degree distribution of the model and the randomly 
sampled and discretized log-normal data. 
 
Both sets of tests were done on surface-depth models with 1000 nodes and 𝑞	 = 	4 
depth factor dimensions. The surface factor parameter 𝜎 varied from 0.05 up to 0.5 in 
steps of 0.05 to assess the effect of the right-skew of the surface factor on the degree 
distribution. Network densities were selected at 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 
0.3, 0.04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99, allowing more analysis at more sparse 
densities to better cover sparse network power-laws. For each model and each 
density, one hundred iterations were run and median p-values reported in Figure B, 
with examples of the degree distribution at each density for a model with 𝜎	 = 	0.2 in 
Figure C. The null hypothesis, that the two observed samples come from the same 
underlying distribution, was not rejected if the p-value was greater than 0.05. From 
this, we can see that degree distributions could not be distinguished from power-laws 
at densities of up to 0.04. Beyond this, distributions appeared log-normal from around 
0.04 up to 0.4. Degree distributions for densities larger than 0.9 again tended to be 
indistinguishable from power-laws, but with positive exponents. 
 
C. Validation of Algorithm 1 

Figure C. Example of degree distributions obtained from surface-depth models (n = 1000, 𝜎 = 0.2, q = 4) binarised at 
different densities, d. A * in the title indicates that the null hypothesis of the KS test for power-law fit was not rejected (i.e. 
the distribution cannot be said to be different from a power-law), while + indicates that the null hypothesis of the KS test for 
log-normal fit was not rejected, as per Figure B. All axes are as described in the bottom left plot—degree, k, against number 
of nodes with that degree. 



Here, we describe an experiment run to assess the accuracy of algorithm 1 which 
models networks with surface-depth models. This was done by running algorithm 1 
against randomly generated surface-depth models themselves. In this way, the 
accuracy of parameters of the surface depth model returned by the algorithm could be 
determined by the error from the true parameters of the randomly generated model. 
To efficiently incorporate a wide range of network sizes and densities and parameters 
of the model, 1000 randomly parameterised 𝐺#$% models were generated with size 
𝑛 ∼ 𝑈(⟦25,500⟧) (i.e. uniformly among the integers from 25 to 500), density 𝑃 ∼
𝑈([0.001,0.3]), depth factor 𝑞 ∼ 𝑈(⟦1,10⟧) and surface factor 𝜎 ∼ 𝑈({0.02,0.04,… ,0.4}) 
(i.e. uniformly on the among the set of numbers {0.02,0.04,… ,0.4}). The algorithm is 
the same as algorithm 1 except that the averaging over 20 iterations was removed so 
that a large number of different models could be analysed at speed. The results 
showed that the interquartile range (i.e. 50%) of the distribution of the error of the 
algorithm was within 1 dimension of the true dimension for the depth factor and within 
0.02 of 𝜎 of the surface factor, as shown in the text inset in Figure D (a) and (c). 
Furthermore, the errors for both factors were seen to improve with increasing average 
degree of the networks. This is unsurprising since large average degree implies larger 
number of nodes, larger number of links or both, hence indicating more information. 
 
Spearman correlations between the true parameters and the errors of the algorithm 
show notable positive correlations. The correlation for 𝑞	was 0.3085 with a 𝑝-value of 
1.73 × 10$^_. This means that if the model estimates a large number of dimensions in 
the depth factor it is more likely to have greater error. The same tendency was true 
with 𝜎. The Spearman correlation between the estimated 𝜎 and the error from the true 
value is 0.4004 with a 𝑝-value of 8.54 × 10$ab.  This implies that a larger 𝜎 from the 
algorithm is more likely to have a greater error from the true value. This is likely 
because the tail of the log-normal distribution plays a significant role in determining 
the variance of the distribution, while being less likely to be accurately represented in 
a finite random sample. 

Figure D. Statistics of algorithm validity: a) The distribution of errors of the estimated depth factor, 𝑞c#d, from the true 
depth factor, 𝑞defc. b) The error in 𝑞c#d improves in models with greater average degree. c) The distribution of errors of the 
estimated surface factor, 𝜎c#d, from the true surface factor, 𝜎defc. d) The error in 𝜎c#d improves in models with greater 
average degree. 



Section II: Approximating real-world networks 
The comparisons of indices of 10 of the networks from the network repository are 
shown in Figure E. It is clear that the index values attained vary quite widely across 
real world networks, yet the model clearly adapts appropriately to each topology. 
Further, these are compared with topologies of the geometric random graph with the 
same number of dimensions as the best-fit surface-depth model (yellow markers) and 
networks made up solely from the surface factor of the best-fit model applied to Erdös-
Rényi random graphs (green markers). Therefore, it is clear that the adaptation of the 
model to each topology cannot be explained by bias in network indices to number of 
nodes and edges. 
 
Complementing Fig 3 in the main article, Fig F here shows the degree distributions of 
all ICON networks and their best-fit models. Most degree distributions are well 
approximated by the model. Particularly badly fitting model degree distributions are 
seen in the genetic and digital circuit networks as well as a minority of protein 
interaction networks. We conjecture that better modelling of the depth factor in these 
networks, with detailed considerations of the nature of latent variables, would provide 
better fits for these networks. For example, we may suppose that some of the variables 
are categorical, rather than continuous. Some variables are also more likely to take 
on other distributions than uniform, such as normal or, indeed, log-normal. 
Furthermore, certain factors are likely to be more important than others, which could 
be accounted for by providing weight coefficients in the distance function.  
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Figure E. Network index values of real-world networks and surface-depth models. Also plotted are the networks stemming 
from depth and surface factors separately. 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F. Comparison of degree distributions of real-world networks (blue) and single realisations of their best-fit surface-
depth models (red), with titles indicating network class. Axes are as in bottom left panel (x-axis is degree, k; y-axis is 
frequency of those degrees in the network). The general shapes of distributions are well approximated in most instances. 
Only some large disparities are visible, particularly in the genetic networks and the sports network. 



Section III: Skewness of distances in 𝒒-dimensional Euclidean space 
Here we demonstrate the distributions (with skewness) of randomly selected distances 
in Euclidean space using a large number of simulated observations. Five hundred 
thousand Euclidean distances between pairs of randomly selected samples of 2D, 3D, 
5D and 20D Euclidean space were computed and the skewness of the distributions, 
𝛾G, were analysed, Fig G. The skewness of these distributions is negligible for 𝑞 > 2, 
while the value for 𝑞 = 2 is still fairly small. Analytically, the limit of these distributions 
as 𝑞 → ∞ is the normal distribution, as discussed in the main article. 
 
We analysed the validity of this approach by studying the correlations of weights 
between true and estimated depth factors from our model. This was done using a 
surface-depth model with n = 256, a 4D Euclidean depth factor (i.e. 𝑞 = 4) and log-
normal surface parameter 𝜎 varying from 0.01 up to 0.25 in steps of 0.01. 100 
iterations of the model for each surface parameter value were generated. Surface 
inversion attempts were then implemented on these generated models using all 
possible surface parameter values again from 0.01 up to 0.25 in steps of 0.01. The 
weights of the estimated depth factors were then analysed to see if smaller values of 
skewness matched up with higher correlations between estimated and true depth 
factors, taking averages over each set of 100 iterations. The results are shown in Fig 
H, showing a clear inverse relationship between correlation of true and estimated 
depth factors and skewness of estimated depth factor. All in all, this substantiates the 
minimisation of skewness of the estimated depth factor as a meaningful optimisation 
argument for surface factor estimation. 

Figure G. Distributions of distances in Euclidean spaces. Mean values are shown by the bold coloured lines, while the 
skewness is written above each distribution 

Figure H. The higher the correlation between true and estimated depth factor weights (left), the smaller the skewness of 
those estimated depth factor weights tends to be 



 
Section IV: Weighted fMRI network analyses 
For the surface inversion efforts on the fMRI network, first, 1000 iterations of the 
optimal log-normal surface factor (following algorithm 2 in the main article) were 
computed for the fMRI network. Then, 5NN binary networks were constructed for both 
the original network and the 1000 estimated depth factors. The 5NN binary network 
contains unweighted links between each node and their five nearest neighbours. 
Alongside this, the 5NN brain geometry graph was constructed using the Euclidean 
distances between brain region co-ordinates. The geometric overlap, GO, was then 
computed for the original network and the model realisations as the proportion of links 
in the 5NN networks which also existed in the 5NN brain geometry graph. That is, for 
two network adjacency matrices A and B with entries Aij and Bij, respectively, and 𝑚 
links: 
 

𝐺𝑂(𝑨,𝑩) =
1
2𝑚 n 𝑚𝑎𝑡𝑐ℎ(𝐴89 +	𝐵89)

t

8,9uG

 

Where 
𝑚𝑎𝑡𝑐ℎ(𝑥) = v 1		𝑖𝑓	𝑥 = 2

			0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
Louvain’s modularity algorithm was then used to determine network modules. Since 
this does not necessarily result in the same modules, this was done 1000 times over 
the real network. Examples of the community detection on brain regions, as per their 
locations on the brain surface, are shown in Figure I. For the modules, three metrics 
were devised for assessing their geometric qualities. Firstly, we used the Normalised 
Mutual Information (NMI) [6] 

𝑁𝑀𝐼 = 	
𝐼(𝑋; 𝑌)

�𝐻(𝑋)𝐻(𝑌)
 

 
For discrete random variables 𝑋 and 𝑌, where 
 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
 
is the mutual information between 𝑋 and 𝑌 are random discrete variables, 𝐻(𝑋) is the 
entropy of 𝑋 and 𝐻(𝑋|𝑌) is the conditional entropy of 𝑋 given 𝑌. NMI was computed 
between the modules detected in the estimated depth-factor and the geometric graph 
as well as between the modules detected in the fMRI network and the modules from 
the geometric graph for comparison. Then, we computed the largest distance between 
any two nodes in the same module and same hemisphere and averaged this over all 
modules and both hemispheres, i.e. for weighted adjacency matrix W with N modules 
𝑐G, 𝑐^, … , 𝑐�, where 𝑐G�, 𝑐^�,… , 𝑐��  are the corresponding members of those modules in 
the left hemisphere and 𝑐G�, 𝑐^�,… , 𝑐�� in the right hemisphere, we obtain the metric 
 

𝐿𝐷 =
1
2
�
1
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Lastly, module symmetry was computed as the fraction of regions for which their 
hemispherically symmetric counterpart was in the same module.	The results are 
plotted in Fig J. The estimated depth factor showed a very strong and clear increase 
in geometric overlap from the original network where every single estimation showed 
greater overlap than the original. NMI and module symmetry were both significantly 
greater in the depth factor (Wilcoxon rank sum tests 𝑝 = 8.01 × 10$^_, 𝑝	 =
	9.83 × 10$^�, respectively, with Cohen’s d = 0.4485, d = 0.4304, respectively) while 
average largest distance within modules was significantly less (Wilcoxon rank sum 
test  p	 = 	1.89 × 10$Ga, Cohen’s d = -0.3162). All of these confirm our expectation that 
the depth factor consists of similarities between nodes once the node fitness 
tendencies of the surface factor are removed/dampened. 
 

 
 
 
 
 
 
 
 

Figure I. Examples of modules obtained from the original fMRI network and the estimated depth factor. Each circle is a 
node and the circles overlap to aid in illustrating where these regions are located on the surface of the brain. The different 
colours are arbitrary and relate to the different communities detected using the community detection algorithm. The 
depth factor shows significantly greater symmetry between hemispheres and a greater overlap with the geometric graph 
based on the coordinates of brain regions. 

Figure J. Metrics of geometric consistency of the fMRI network and its estimated depth factor over 1000 iterations of depth 
factor realisation and module partitioning 



Section V: Tables of nearest neighbours in the World City Network 
Here presented in Tables A, B and C are the tables of the five nearest neighbours for 
each city in the world city network (described in the main document in the Real-world 
Network Data subsection of the Methods and Materials section) and it’s estimated 
depth factors using both a tuned log-normal distribution and the weighted degree 
distribution. Each table is followed by some summary statistics relating to the 
appearance of the top five cities with largest weighted degree and the number of 
proximal relations found between each city and these top five largest degree cities. 
The following categories describe the groups of proximal cities: 
 
North America: Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, Mexico City, 
Miami, Minneapolis, Montreal, New York, San Francisco, Toronto, Washington D.C. 
 
South America: Buenos Aires, Caracas, Santiago, Sao Paulo 
 
Europe: Amsterdam, Barcelona, Berlin, Brussels, Budapest, Copenhagen, Dusseldorf, 
Frankfurt, Geneva, Hamburg, Istanbul, London, Madrid, Milan, Moscow, Munich, Paris, 
Prague, Rome, Stockholm, Warsaw, Zurich 
 
East Asia and Oceania: Tokyo, Hong Kong, Sydney, Singapore, Taipei, Melbourne, 
Jakarta, Seoul, Bangkok, Manila, Kuala Lumpur, Beijing, Shanghai, Osaka 
 
Mexico City and Miami were also considered proximal to South America 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table A. Five Nearest Neighbours (NN) for each node from the reconstructed depth factor after 
surface inversion using a tuned log-normal distribution (Green indicates globally proximal neighbour) 

City NN1 NN2 NN3 NN4 NN5 
London New York Paris Hong Kong Los Angeles Tokyo 
New York Los Angeles Hong Kong  Washington Tokyo Paris 
Paris Brussels Frankfurt Hong Kong Los Angeles Madrid 
Tokyo Hong Kong Frankfurt Singapore New York  Zurich 
Hong Kong Singapore Los Angeles Taipei Frankfurt New York 
Sydney Hong Kong Taipei Melbourne Toronto Seoul 
Singapore Hong Kong Taipei Zurich Bangkok Frankfurt 
Milan Madrid Frankfurt  Zurich Sao Paulo Toronto 
Frankfurt Zurich Milan Hong Kong  Madrid Paris 
Toronto Amsterdam Melbourne Madrid Dusseldorf Zurich 
Madrid Milan Barcelona  Santiago Sao Paulo Frankfurt 
Brussels Washington  Madrid Amsterdam  Paris Milan 
San Francisco Washington Los Angeles Chicago Boston Hong Kong 
Los Angeles Washington San Francisco New York Hong Kong Chicago 
Zurich Frankfurt Santiago  Milan Madrid Mexico City 
Mexico City Zurich Sao Paulo Frankfurt Buenos Aires Santiago 
Chicago Washington Dallas Los Angeles San Francisco Frankfurt 
Sao Paulo Santiago Madrid Zurich Milan Caracas  
Amsterdam Barcelona Melbourne  Dusseldorf  Stockholm Toronto 
Taipei Bangkok Seoul Shanghai Jakarta Kuala Lumpur 
Melbourne Amsterdam  Dusseldorf Stockholm Bangkok Toronto 
Jakarta Taipei Bangkok Seoul Manila Miami 
Seoul Shanghai Taipei Kuala Lumpur Jakarta Bangkok 
Washington Los Angeles San Francisco Dallas Chicago Boston 
Dusseldorf Hamburg Copenhagen Boston Amsterdam Melbourne  
Moscow Warsaw Washington Prague Miami Buenos Aires 
Stockholm Copenhagen Amsterdam Warsaw Hamburg Dusseldorf 
Bangkok Shanghai Beijing Kuala Lumpur Taipei Manila 
Santiago Caracas Buenos Aires Barcelona  Sao Paulo Zurich 
Buenos Aires Santiago Caracas Zurich Miami Manila 
Johannesburg Copenhagen Seoul  Shanghai Montreal Stockholm 
Barcelona Amsterdam  Santiago Madrid  Rome Bangkok 
Dallas Washington  Atlanta Chicago Montreal Boston 
Montreal Boston Copenhagen Dusseldorf  Hamburg Dallas 
Manila Bangkok Taipei Jakarta Shanghai Beijing 
Warsaw Prague Moscow Budapest Stockholm  Istanbul 
Kuala Lumpur Shanghai Bangkok  Seoul Taipei Manila 
Prague Warsaw Istanbul Budapest Stockholm Moscow 
Caracas Santiago  Miami Buenos Aires Sao Paulo Zurich 
Budapest Prague Warsaw Istanbul Miami Stockholm 
Beijing Bangkok  Shanghai Taipei  Seoul Manila 
Geneva Taipei Santiago Seoul Manila Zurich 
Miami Washington  Caracas Jakarta Santiago Buenos Aires 
Boston Dusseldorf Houston Washington Montreal Istanbul 
Istanbul Prague Copenhagen Boston Budapest Stockholm 
Copenhagen Hamburg Stockholm Dusseldorf Istanbul Johannesburg 
Hamburg Copenhagen  Munich Dusseldorf Berlin Atlanta 
Rome Munich Barcelona  Osaka Dallas Berlin 
Munich Hamburg Berlin Copenhagen  Rome Dusseldorf 
Houston Boston Washington Dallas  Johannesburg Geneva 
Shanghai Kuala Lumpur Bangkok  Seoul  Taipei Beijing  
Berlin Munich Hamburg Atlanta Rome Washington 
Atlanta Dallas Hamburg  Washington Osaka Copenhagen 
Osaka Atlanta Hamburg Munich Rome  Berlin 
Minneapolis Atlanta Hamburg Copenhagen Washington  Berlin 

Appearances of top 5 weighted nodes as five nearest neighbours: London- 0 (0); New York- 4 (1); 
Paris- 4 (3); Tokyo- 2 (0); Hong Kong- 9 (3). In total, this makes 10.56% of the entire closest five 
relations (expected: 9.27%). 
Proximal relations: 180— 3.89% of which are due to the top 5.  
All cities except London, Sydney and Minneapolis appear as nearest-neighbours. 
 
 
 



Table B. Five Nearest Neighbours (NN) for each node from the reconstructed depth factor after 
surface inversion using weighted degree distribution (Green indicates globally proximal neighbour) 

City NN1 NN2 NN3 NN4 NN5 
London New York  Paris Los Angeles Hong Kong Tokyo 
New York London Los Angeles Hong Kong Tokyo Paris 
Paris London New York Hong Kong Tokyo Brussels 
Tokyo New York London Hong Kong Paris Singapore 
Hong Kong New York London Singapore Tokyo Paris 
Sydney London New York Hong Kong Paris Singapore 
Singapore London New York Hong Kong Tokyo Paris 
Milan New York London Madrid Tokyo Paris 
Frankfurt New York London Paris Tokyo Hong Kong 
Toronto London Sydney New York Paris Madrid 
Madrid London Milan Paris New York Tokyo 
Brussels Paris London New York Madrid Milan 
San Francisco New York London Washington Los Angeles Hong Kong 
Los Angeles New York London Washington San Francisco Hong Kong 
Zurich London New York Frankfurt Tokyo Singapore 
Mexico City Tokyo New York London Hong Kong Zurich 
Chicago New York Washington London Los Angeles San Francisco 
Sao Paulo Madrid Tokyo London Milan New York 
Amsterdam Toronto Sydney Paris Madrid Brussels 
Taipei Hong Kong Singapore New York London Sydney 
Melbourne Sydney London Toronto Amsterdam New York 
Jakarta Paris London Sydney New York Taipei 
Seoul Sydney London Singapore Taipei New York 
Washington New York Los Angeles San Francisco London Chicago 
Dusseldorf Sydney Toronto Amsterdam Paris Melbourne 
Moscow London New York Paris Tokyo Hong Kong 
Stockholm Amsterdam Toronto Copenhagen Dusseldorf Brussels 
Bangkok Singapore London New York Sydney Hong Kong 
Santiago Madrid Milan Tokyo Zurich Sao Paulo 
Buenos Aires London Tokyo New York Zurich Madrid 
Johannesburg London New York Hong Kong Tokyo Sydney 
Barcelona Madrid Amsterdam Paris Brussels Toronto 
Dallas Chicago Washington San Francisco Toronto New York 
Montreal Toronto Dusseldorf London Sydney Zurich 
Manila Sydney Singapore Taipei London Bangkok 
Warsaw Prague London Paris Moscow Singapore 
Kuala Lumpur Hong Kong Singapore Taipei Sydney London 
Prague Warsaw London New York Istanbul Singapore 
Caracas Tokyo Sao Paulo Zurich Madrid Milan 
Budapest Paris Singapore London Tokyo New York 
Beijing London Sydney Singapore New York Paris 
Geneva Frankfurt Hong Kong Tokyo Singapore New York 
Miami New York Tokyo London Los Angeles Mexico City 
Boston San Francisco Dusseldorf Los Angeles London Washington 
Istanbul Prague London Paris New York Dusseldorf 
Copenhagen Stockholm Dusseldorf Hamburg Toronto Amsterdam 
Hamburg Dusseldorf Copenhagen Munich Toronto Stockholm 
Rome Milan Tokyo Madrid Toronto Frankfurt 
Munich Hamburg Dusseldorf Toronto Berlin Sydney 
Houston Chicago San Francisco Washington New York Hong Kong 
Shanghai Seoul Taipei Kuala Lumpur Bangkok Singapore 
Berlin Munich Washington Hamburg Dusseldorf Toronto 
Atlanta Dallas Chicago Washington Hamburg Los Angeles 
Osaka Atlanta Dusseldorf Hamburg Chicago Munich 
Minneapolis Atlanta Washington Hamburg Copenhagen Dusseldorf 

Appearances of top 5 weighted degree nodes as five nearest neighbours: London- 36 (11); New York- 
34 (9); Paris- 20 (12); Tokyo- 20 (2); Hong Kong- 17 (6). In total, this makes 46.18% of the entire 
closest five relations. 
Proximal relations: 139— 28.78% of which are due to top 5 weighted degree cities. 38 cities appear 
as nearest neighbours. 
 
 
 



Table C. Five Nearest Neighbours (NN) for each node of the original World city network (Green 
indicates globally proximal neighbour) 

City NN1 NN2 NN3 NN4 NN5 
London New York Paris Hong Kong Tokyo Singapore 
New York London Hong Kong Paris Los Angeles Tokyo 
Paris London New York Tokyo Hong Kong Sydney 
Tokyo New York London Paris Hong Kong Singapore 
Hong Kong New York London Paris Tokyo Singapore 
Sydney London New York Paris Hong Kong Singapore 
Singapore London New York Hong Kong Tokyo Paris 
Milan New York London Paris Tokyo Madrid 
Frankfurt New York London Paris  Tokyo Hong Kong 
Toronto London New York Paris Sydney Milan 
Madrid London New York Paris  Milan Tokyo 
Brussels London New York Paris Madrid Milan 
San Francisco New York London Hong Kong Los Angeles Paris 
Los Angeles New York London Paris Hong Kong Washington 
Zurich London New York Tokyo Paris Frankfurt 
Mexico City London New York Tokyo Paris  Hong Kong 
Chicago New York London Paris Tokyo Hong Kong 
Sao Paulo London New York Tokyo Paris Milan 
Amsterdam London New York Paris Sydney Toronto 
Taipei New York London Hong Kong Paris Sydney 
Melbourne London New York Sydney Paris Toronto 
Jakarta London New York Paris Sydney Tokyo 
Seoul London New York Paris Sydney Hong Kong 
Washington New York London Los Angeles Paris San Francisco 
Dusseldorf London Paris New York Sydney Toronto 
Moscow London New York Paris Tokyo Hong Kong 
Stockholm London New York Paris Sydney Toronto 
Bangkok London New York Hong Kong Singapore Paris 
Santiago London New York Tokyo Paris Madrid 
Buenos Aires London New York Tokyo Paris Hong Kong 
Johannesburg London New York Tokyo Hong Kong Sydney 
Barcelona London Paris New York Madrid Milan 
Dallas New York London Paris Chicago Toronto 
Montreal London New York Paris Sydney Toronto 
Manila London New York Sydney Paris Singapore 
Warsaw London New York Paris Tokyo Singapore 
Kuala Lumpur London New York Hong Kong Sydney Singapore 
Prague London New York Paris Tokyo Singapore 
Caracas New York London Tokyo Paris Milan 
Budapest London New York Paris Tokyo Hong Kong 
Beijing London New York Paris Sydney Singapore 
Geneva New York London Paris Tokyo Hong Kong 
Miami New York London Tokyo Paris Hong Kong 
Boston London New York Paris Sydney San Francisco 
Istanbul London New York Paris Sydney Hong Kong 
Copenhagen London New York Toronto Sydney Paris 
Hamburg London New York Toronto Paris Sydney 
Rome London New York Paris Tokyo Milan 
Munich London New York Paris Sydney Toronto 
Houston New York London Hong Kong Tokyo Paris 
Shanghai London New York Singapore Hong Kong Sydney 
Berlin London New York Paris Tokyo Sydney 
Atlanta New York London Paris Chicago Washington 
Osaka London New York Tokyo Paris Toronto 
Minneapolis New York London Washington Toronto Paris 

Appearances of top 5 weighted degree nodes as five nearest neighbours: London- 54 (21); New York- 
54 (14); Paris- 51 (20); Tokyo- 27 (4); Hong Kong- 24 (8). In total, this makes 76.64% of the entire 
closest five relations. 
Proximal relations: 104—64.4% of which are due to top 5 weighted degree cities. Only 15 cities 
appear, including the top 11, with the rest made of Los Angeles, San Francisco, Chicago and 
Washington (all US). 
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