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Summary
Colocalization analysis has emerged as a powerful tool to uncover the overlapping of causal variants responsible for both molecular and

complex disease phenotypes. The findings from colocalization analysis yield insights into the molecular pathways of complex diseases.

In this paper, we conduct an in-depth investigation of the promise and limitations of the available colocalization analysis approaches.

Focusing on variant-level colocalization approaches, we first establish the connections between various existingmethods.We proceed to

discuss the impacts of various controllable analytical factors and uncontrollable practical factors on outcomes of colocalization analysis

through realistic simulations and real data examples. We identify a single analytical factor, the specification of prior enrichment levels,

which can lead to severe inflation of false-positive colocalization findings. Meanwhile, the combination of many other analytical and

practical factors all lead to diminished power. Consequently, we recommend the following strategies for the best practice of colocaliza-

tion analysis: (1) estimating prior enrichment level from the observed data and (2) separating fine-mapping and colocalization analysis.

Our analysis of 4,091 complex traits and the multi-tissue expression quantitative trait loci (eQTL) data from the GTEx (v.8) suggests that

colocalizations of molecular QTLs and causal complex trait associations are widespread. However, only a small proportion can be confi-

dently identified from currently available data due to a lack of power. Our findings set a benchmark for current and future integrative

genetic association analysis applications.
Introduction

The advancements in genetic association analysis of com-

plex andmolecular traits have uncovered a large volume of

putative causal genetic variants. Subsequently, utilizing ge-

netic association discoveries to explore the molecular

mechanisms of complex disease etiology has become a

standard practice in human genetics research. Various

types of analytical approaches designed for the integrative

analysis of data from expression quantitative trait loci

(eQTL) mapping and genome-wide association studies

(GWASs) of complex traits have shown promise in impli-

cating molecular pathways connecting genetic variations,

molecular phenotype changes, and complex diseases.1–6

Colocalization analysis is an integrative analysis tech-

nique that aims to identify genetic variants introducing

simultaneous phenotypic changes in multiple molecular

and/or complex traits. Although colocalization analysis is

not constrained by the types of phenotypes investigated,

we focus our discussions in this paper on a single complex

trait and one type of molecular trait, e.g., gene expressions.

The discoveries from this class of analyses have resulted in

molecular insights of complex diseases, e.g., atheroscle-

rosis,7 the age of onset of menarche and menopause,8

and cardiovascular disease.9

There are two broad types of colocalization analysis ap-

proaches in the current literature. The first kind, repre-
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sented by regulatory trait concordance (RTC)2 and joint

likelihood mapping (JLIM),10 makes claims that causal

GWAS hits and eQTL signals co-exist within a genomic re-

gion consisting of tightly linked genetic variants. We refer

to this type as locus-level colocalization analysis. The sec-

ond kind, illustrated by coloc,11 eCAVIAR,12 and ENLOC/

fastENLOC,6,13 attempts to uncover colocalization signals

at the single SNP/variant resolution using probabilistic

quantifications. We refer to this type as SNP-level colocali-

zation analysis. The common obstacle for both types of co-

localization analysis is linkage disequilibrium (LD) among

candidate SNPs. Hypothetically, with complete linkage

equilibrium, colocalization analysis becomes relatively

trivial, and various approaches from both types converge.

With the presence of LD, a SNP-level colocalization may

not be identifiable. That is, multiple competing scenarios

may be indistinguishable based solely on the observed as-

sociation data. (See the example of two perfectly linked

SNPs illustrated in Wen et al.13) Thus, the quantification

of SNP-level colocalization evidence should acknowledge

such uncertainty explicitly. Furthermore, relevant addi-

tional information, e.g., enrichment level of eQTLs in

GWAS hits, should be incorporated to aid in the identifica-

tion of more likely scenarios. Based on the above consider-

ations, probabilistic analysis in the Bayesian framework be-

comes a natural choice for SNP-level colocalization

analysis; all aforementioned SNP-level colocalization
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methods utilize Bayesian probabilistic modeling ap-

proaches. (In this paper, we use the terms ‘‘SNP-level coloc-

alization analysis’’ and ‘‘probabilistic colocalization anal-

ysis’’ interchangeably.)

Probabilistic colocalization analysis at the variant level

faces many challenges, both analytically and practically.

Analytical factors—for example, prior specifications and

model assumptions required for likelihood computation

(e.g., consideration of allelic heterogeneity)—are known

to have drastic impacts on analysis outcomes. Practically,

even when the ideal analytical strategies are applied, the

power of colocalization analysis can still be limited by

the underlying association data, e.g., the power of mar-

ginal association analysis. In this paper, we take a divide-

and-conquer strategy to systematically investigate various

analytical and practical factors in probabilistic colocaliza-

tion analyses. We attempt to isolate each factor through

analytical derivation and numerical experiments and to

quantify its effects on potential false positive and false

negative findings. We seek to identify a set of best analyt-

ical strategies that enable robust and powerful probabilistic

colocalization analysis. Also, we hope to practically illus-

trate the natural limitations of colocalization analysis

based on the currently available data and establish a base-

line for future development in integrative genetic research.
Material and methods

For probabilistic colocalization analysis, we focus our discussion

on three representative methods: coloc,11 eCAVIAR,12 and EN-

LOC/fastENLOC.6,13 A comprehensive overview of the three

methods and additional approaches is provided in Section 1 of

the supplemental material and methods.
Statistical framework of probabilistic colocalization

analysis
Let the binary indicators g and d denote the latent causal associa-

tion status of a given variant with respect to the complex and gene

expression traits of interest, respectively. The probabilistic quanti-

fication of colocalization for the variant is essentially to evaluate

the conditional probability,

Prðg¼1; d¼1jeQTL data;GWAS dataÞ: (Equation 1)

All known probabilistic colocalization approaches aim to

compute Equation 1, which is carried out by applying the Bayes

rule, i.e.,

Pr g ¼ 1; d ¼ 1jeQTL data;GWAS datað Þ (Equation 2)

fPr g ¼ 1; d ¼ 1ð ÞP eQTL data;GWAS data j d ¼ 1;g ¼ 1ð Þ;

where eQTL data and GWAS data represent the genotype and

phenotype data collected for eQTL mapping and GWAS analysis,

respectively. Noticeably, the computation requires an explicit

specification of the prior probability Prðg¼ 1; d¼ 1Þ and the likeli-

hood function P eQTL data;GWAS data j d ¼ 1;g ¼ 1ð Þ.
The prior quantity, Prðg¼ 1;d¼ 1Þ, reflects the frequency of co-

localization sites in all interrogated variants and can be equiva-
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lently specified by the product of pd :¼ Prðd¼ 1Þ and

Prðg¼ 1jd¼ 1Þ, i.e.,

Prðg¼1; d¼1Þ¼Prðg¼1jd¼1ÞPrðd¼1Þ: (Equation 3)

In ENLOC/fastENLOC, a set of parameters (a0, a1), referred to as

‘‘enrichment parameters,’’ are introduced to parameterize

Prðg¼ 1jdÞ, i.e.,

logit½Prðg¼1jdÞ� ¼a0 þ a1d; (Equation 4)

where a1 is the log odds ratio quantifying the enrichment level of

molecular QTLs in GWAS hits. Note that, with the specification of

a0, a1 and the frequency of causal eQTLs, pd, the frequency of the

causal GWAS hits, pg :¼ Prðg¼ 1Þ, is induced.
In the implementation of coloc, the priors are defined by

p1 :¼ Prðg¼ 0; d¼ 1Þ, p2 :¼ Prðg¼ 1; d¼ 0Þ, and p12 :¼ Prðg¼ 1;

d¼ 1Þ. The equivalent parametrization by (pd, a0, a1) is given by

pd ¼ p1 þ p12

a0 ¼ log

�
p1

1� p1 � p2 � p12

�

a1 ¼ log

�
p12ð1� p1 � p2 � p12Þ

p1p2

�
The third approach, eCAVIAR, makes a simplifying assumption

that the causal status of g and d are a priori independent. In the

ENLOC parameterization, this independence assumption implies

that there is no enrichment of eQTLs in GWAS hits, i.e., 
pd ;a0 ¼ log

"
pg

1� pg

#
;a1 h0

!
:

Or equivalently,

Prðg¼1; d¼1Þ¼Prðg¼1ÞPrðd¼1Þ ¼ pg$pd :

Given the equivalence of different formulations in all methods,

our subsequent discussion in the results section will focus on the

ENLOC/fastENLOC parameterization because of its convenient

interpretation.
Results

Analytical strategies in colocalization analysis

We consider two aspects of the analytical strategy in prob-

abilistic colocalization approaches:the prior specification

and the likelihood computation.
Specification of enrichment prior

We perform a series of numerical experiments to evaluate

the sensitivity of colocalization analysis outcomes with

respect to the enrichment parameter specification. In these

experiments, we fix the frequencies of causal eQTLs and

GWAS hits, pd and pg, and consider a1 the only free param-

eter. To isolate the effect of prior specification, we only

consider computing the colocalization probability for a

single SNP assumed to be in complete linkage equilibrium

with other candidate variants. Particularly, we consider

weak, modest, and strong association evidence from
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Figure 1. The impact of pre-defined enrichment level (a1) on
the SNP-level colocalization probability
The different curves represent different combined levels of mar-
ginal association evidence for a particular SNP from the eQTL
and GWASs. Informed by our real data analysis of 4,091 GWAS
traits and the eQTL data from the GTEx project, we consider a1˛
½0;5� a meaningful range for practical colocalization analysis.
Within this range, all categories show different levels of sensitivity
to the specification of the enrichment parameter.
respective eQTL or GWAS analysis for the variant and

examine the effect of varying enrichment levels on the

magnitude of resulting SNP-level colocalization probabili-

ties. The details on the design of the numerical experiment

are provided in Section 3 of the supplemental material and

methods.

The results are summarized in Figure 1. Based on our

real data analysis of 4,091 GWAS traits and the eQTL

data from the GTEx project (Figure 5), we consider a1˛
½0;5� a meaningful range in practical colocalization anal-

ysis. Within this range, SNP-level colocalization probabil-

ities are generally sensitive to the enrichment prior spec-

ification. However, depending on the combination of

strength of evidence from individual association studies,

different combination categories are differentially

impacted. Specifically, when the eQTL and GWAS associ-

ation evidence are both strong or weak, the resulting co-

localization probabilities are relatively stable with respect

to the changes of the enrichment prior. This phenome-

non can be intuitively explained: when the marginal as-

sociation evidence is highly informative (including the

case that association evidence is weak, i.e., the evidence

for no association is strong), the likelihood for colocaliza-

tion is overwhelming, and the prior impact is diminished.

On the other hand, SNPs with modest association evi-

dence from either GWAS or eQTL analysis are most sensi-

tive to the prior specification, as a strong enrichment

assumption can significantly increase the corresponding

probability of colocalization.
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The sensitive nature of probabilistic colocalization anal-

ysis should caution practitioners. Because colocalization

analysis is often treated as a discovery process similar to a

hypothesis testing procedure, false positives, i.e., type I er-

rors, should be carefully guarded against. From the numer-

ical experiment, we observe that aggressively setting a high

enrichment value tends to flag many more colocalization

sites than setting a conservative value. However, this is

also dangerous for inflating false-positive colocalization

findings. Thus, we conclude that a conservative enrich-

ment prior is, in principle, acceptable and may be prefer-

able. Nevertheless, simply setting a1 ¼ 0 in all circum-

stances can be too conservative and lead to a severe loss

of power.

Given the observations from the above experiments,

great care is warranted in prior specifications. For an ideal

Bayesian analysis, the required prior information should

be derived from historical analyses of similar types. In

the case that such historical information is unavailable,

we recommend to estimate required hyper-parameters

from the observed data. One of the established estimation

procedures is implemented in ENLOC/fastENLOC, where

pd, a0, and a1 are estimated by jointly analyzing the

eQTL and GWAS data via a multiple imputation proced-

ure13 (a summary of the procedure is provided in Section

2 of the supplemental material and methods). This estima-

tion procedure, designed specifically for dealing with the

latent association status in both eQTLs and GWAS hits,

has shown the ability to provide robust and reliable enrich-

ment estimates in our simulation studies (see results).

Recently, Wallace et al.14 proposes to perform a sensitivity

analysis of the priors for identified colocalization signals.

While we completely agree that understanding prior sensi-

tivity is critical for practitioners, it should be noted that

sensitivity analysis alone does not justify selecting a spe-

cific set of priors.
Likelihood computation and accounting for allelic

heterogeneity

The likelihood computation in probabilistic colocalization

analysis refers to the evaluation of P eQTL data;ð
GWAS data j d;gÞ in Equation 2. In the current practice,

eQTL and GWAS data are typically obtained from non-over-

lapping cohorts, and all methods compute the likelihood by

P eQTL data;GWAS data j d;gð Þ
¼ P eQTL data j dð ÞP GWAS data j gð Þ: (Equation 5)

There are two different strategies for evaluating likeli-

hood. The first strategy, adopted by eCAVIAR and

fastENLOC, recovers the required likelihood information

from multi-SNP fine-mapping analyses of eQTL and

GWAS data. The second strategy, used by coloc, directly

computes each trait’s marginal likelihood from summary

statistics under a simplifying assumption of no allelic

heterogeneity. Allelic heterogeneity (AH) refers to the

phenomenon of distinct genetic variants at a locus
erican Journal of Human Genetics 108, 25–35, January 7, 2021 27



Table 1. The impact of modeling consideration of AH on FDR and
power in colocalization analysis

AH modeling

Dataset

scenarios (1,2,3) scenarios (1,2,4)

FDR power FDR power

Yes 0.047 0.997 0.041 0.971

No 0.039 0.937 0.044 0.411

fastENLOC and coloc are selected to represent the approaches with and
without explicit AH modeling, respectively. Both approaches maintain the
proper false discovery rate levels in all settings. However, the power difference
is quite large when AH is indeed present in the molecular QTL data (i.e., sce-
narios (1,2,4)).
simultaneously affecting the same phenotype. Under the

assumption of no AH, there is, at most, one causal SNP

within a locus for a given trait. Henceforth, we refer to

such an assumption as the ‘‘one causal variant’’ (OCV)

assumption. The primary rationale for the OCV assump-

tion is computational (rather than biological): if the

assumption holds, the LD information within the locus

of interest becomes obsolete for likelihood evaluation,

and the computation can be carried out analytically based

on single-variant association test statistics.15–17

In colocalization analysis of eQTLs and GWAS hits, a lo-

cus is typically defined as the cis region of a target gene,

e.g., a 2 Mb window centered around the transcription

start site.18 At such a scale, AH is a widespread phenome-

non in gene regulations based on overwhelming evidence

from recent large-scale eQTL studies.18,19 While it may

work reasonably well for some complex traits, the OCV

assumption is likely often violated in the analysis of molec-

ular traits. Here, we are interested in exploring its implica-

tions on both false-positive and false-negative findings in

colocalization analysis.

We first conduct simulation studies using real genetic

data from the GTEx project and simulate gene expression

and complex trait data based on linear regression models.

To isolate the effect of AH, we focus on simulating strong

genetic effects for all eQTLs and GWAS hits. (As shown

in the previous section, these signals are robust to the mis-

specification of enrichment parameters.) Furthermore,

both expression and complex trait data are independently

generated from the same genotype data, which ensures LD

mismatch is not a factor in the analysis. Our simulation

considers the following scenarios for each gene-trait pair

within a genomic locus:

1 single causal variants in both eQTL and GWAS data,

no colocalization

2 AH in eQTL data (two causal eQTLs per gene), a single

causal variant in GWAS data, no colocalization

3 single causal variants in both eQTL and GWAS data,

single colocalization event

4 AH in eQTL data (two causal eQTLs per gene), a single

causal variant in GWAS data, single colocalization

event
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The first two scenarios are designed to investigate poten-

tial false-positive findings, and the last two are for false-

negative findings. The assembled data for analysis consist

of different mixtures of the four scenarios, such that we

could evaluate both the type I and the type II errors. The

simulation details are provided in the Section 4 of the sup-

plemental material and methods.

We use two different methods to analyze the simulated

data. Particularly, we apply the default coloc method to

represent methods making the OCV assumption and

without explicit modeling of AH. We apply fastENLOC to

represent methods that explicitly model potential AH.

We provide the true priors for coloc analysis, and the fas-

tENLOC analysis estimates the enrichment prior directly

from the data. The results of our simulations are in Table

1. In all of our simulated scenarios, we find that both types

of approaches control the false discovery rate (FDR). How-

ever, when AH is presented, the power of coloc is approx-

imately half of the power of fastENLOC. The relative ratio

of power between the two types of approaches is expected.

When two independent eQTL signals co-exist, coloc iden-

tifies one signal with a stronger signal-to-noise ratio as the

sole casual eQTL, which leads to a false-negative finding

when the unselected eQTL overlaps the causal GWAS hit.

Even though the simulation study does not indicate

apparent inflation of FDR, there are some theoretical con-

cerns on potential false positives related to the OCV

assumption. First, some implementations of the assump-

tion, e.g., coloc, enumerate all possible causal association

configurations from both traits to compute the normal-

izing constants and desired colocalization probabilities.

Under the simplifying assumption of OCV, there are (p þ
1)2 possibilities precisely (where p represents the number

of SNPs in the locus). If the assumption is violated, many

more necessary scenarios are uncounted (the total possibil-

ities without constraints are 2p). This factor can lead to un-

der-estimating the normalizing constants and over-esti-

mating the colocalization probabilities. Second, false

positives can be carried over from single-SNP analysis in

the marginal studies. It is known that some non-causal

SNPs that are in partial LD with multiple causal SNPs can

generate the most significant single-SNP association evi-

dence.19 Such false-positive findings based on single-SNP

association evidence are maintained and carried over

into the colocalization analysis under the OCV assump-

tion. Consequently, it becomes a source of false-positive

colocalization findings. In contrast, methods that explic-

itly perform multi-SNP fine-mapping analysis can effec-

tively dissect different scenarios by accounting for LD.

Hence, they are unlikely to suffer from such false-positive

findings. In summary, we conclude that the OCV assump-

tion can, in theory, lead to anti-conservative quantifica-

tions of colocalization probabilities. Although the extent

of the anti-conservativeness may not lead to observable in-

flations of FDR within our simulations, its effect can be

observed in the numerical experiments examining the

calibration of the reported colocalization probabilities
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Table 2. Realized false discovery rates and power of
colocalization analysis in simulated data

Method
Number of
discoveries

Realized
FDR Power

fastENLOC (estimated
prior)

406 0.034 0.186

fastENLOC (true prior) 458 0.046 0.208

coloc (default prior) 472 0.258 0.175

coloc (true prior) 200 0.045 0.095

The table shows an overall assessment of power and realized FDR (controlled at
5% level) for various colocalization approaches. Only coloc with its default sub-
jective prior shows severely inflated type I errors. The enrichment priors are
justified for the remaining approaches, and they properly control the FDR.
The power (for methods properly controlling FDR) is overall quite low in this
setting that resembles realistic applications.
(Section 5.1 of the supplemental material and methods

and Figure S1).

It is worth emphasizing that the OCV assumption may

not be invalid in all scenarios, but it is inappropriate at

the scale of genomic regions commonly used inmolecular

QTL studies for molecular QTL mapping analysis. More

generally, our recommendation for dealing with likeli-

hood computation in colocalization analysis is to apply

specialized multi-SNP association techniques. We note

that state-of-the-art of fine-mapping approaches8,17,20

all have the ability to account for AH without making

the OCV assumption. It is also intuitive that colocaliza-

tion analysis should be based on the best possible fine-

mapping results. This is because the inaccuracy from

poor likelihood computation will inevitably translate

into inaccuracy in subsequent probabilistic quantifica-

tion of colocalization. The emergence of fast and accurate

Bayesian multi-SNP association analysis methods, e.g., FI-

NEMAP,21 DAP-G,17 and SuSIE,8 make it feasible to practi-

cally separate fine-mapping and colocalization analyses

with affordable computational costs. The current imple-

mentation of fastENLOC can take the fine-mapping re-

sults from any of those Bayesianmethods and perform co-

localization analysis.
Practical factors in colocalization analysis

There are many practical factors in colocalization analysis

that analysts have little control over. Nevertheless, their

impacts on the outcomes are profound. Having established

the fundamental inference principles, we proceed to assess

the empirical performance of probabilistic colocalization

analysis and investigate the other performance-impacting

factors using realistically simulated eQTL and GWAS data.
Empirical assessment of probabilistic colocalization

analysis

To construct a simulated dataset that resembles real appli-

cations of colocalization analysis, we simulate 20,000 non-

overlapping genes with 1,500 SNPs within each cis-region.

The scale of the simulated datasets resembles real applica-
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tions of genome-wide colocalization analysis. We use the

real genetic data from 400 participants of the GTEx project.

In order to circumvent the issue of LD mismatch in this

particular experiment, we use the same set of genotype

data to simulate both the expression and complex trait

phenotypes. Within each cis region, the causal eQTLs are

randomly selected from a series of independent Bernoulli

trials, such that on average there are three causal eQTLs

per gene (i.e., pd ¼ 2 3 10�3). Similarly, we sample causal

GWAS SNPs conditional on the simulated eQTL status us-

ing the probability model (Equation 1) with a true a1 value

of 4. As a result, the simulated dataset consists of 2,103 co-

localized association signals distributed in 2,001 unique

genes. Given the truly causal SNPs for each gene, we inde-

pendently generate the molecular and complex trait data

for the 400 individuals based on standard multiple linear

regression models. Specifically, each causal variant-trait

pair’s genetic effects are independently drawn from the dis-

tribution N(0,1). The residual errors for each trait and each

individual are also independently generated from the stan-

dard normal distribution. Additional simulation details are

provided in Section 5 of the supplemental material and

methods.

To analyze the simulated dataset, we first perform sepa-

rate Bayesian fine-mapping analyses for the simulated

eQTL and GWAS datasets using the software package

DAP-G.17 Utilizing the resulting probabilistic annotations,

we apply fastENLOC to estimate the enrichment parame-

ters with the default shrinkage setting. As expected, the

estimated enrichment parameter a1 is slightly under-esti-

mated, but reasonably close to the true value (ba1 ¼ 3:644

with the standard error 0.039). We then perform colocali-

zation analysis using fastENLOC using the estimated and

true enrichment parameters, respectively. For comparison,

we also run coloc with its default prior model parameters

and the true parameters, respectively. Note that the differ-

ences between coloc and fastENLOC results based on the

true enrichment parameters should reflect the difference

in fine-mapping analysis, including the consideration

of AH.

We first examine the false positive rate and the power at

5% FDR level for different analysis settings (Table 2). We

find that severe inflation of type I errors only occurs at

the coloc run with its default model priors (which signifi-

cantly exceeds the true enrichment parameter). All other

analysis settings, including the coloc run with the true

enrichment parameters, show proper control of the desired

false discovery rate. For the methods that control the type I

errors, the power seems low across the board (Table 2). The

under-estimation of the enrichment parameter (a1) due to

shrinkage only explains a small fraction of the power loss.

Although the power and type I error analysis only focus on

high colocalization probability values, our conclusion ex-

tends to the full probability spectrum. Additional inspec-

tion of the calibration of the regional colocalization prob-

abilities (RCPs) also confirms that various methods yield

conservative colocalization results when supplied with
erican Journal of Human Genetics 108, 25–35, January 7, 2021 29



Figure 2. Classification of all colocalized SNPs
All truly colocalized variants from our realistic simulations, classi-
fied as either a class I false negative, class II false negative, or suc-
cessfully detected by fastENLOC.We see the expected pattern that
most points near one of the axes are class I false negatives, while
points far away from both tend to be detected by fastENLOC.
the true enrichment prior (Figure S1 and Section 5.1 of the

supplemental material and methods).

We identify two primary sources of false-negative errors

by an in-depth examination of the simulated data and the

corresponding analysis results. We refer to these two sour-

ces as class I and class II false-negative errors in colocaliza-

tion analysis. Specifically, we define

1. Class I false negatives: lack of power in association

analysis of individual traits

2. Class II false negatives: inaccurate quantification of

association evidence at SNP level for individual traits

The class I false negatives (FNs) represent the cases of fail-

ure in detecting at least one type of association signals

(eQTL or GWAS) in genetic association analysis. The class

II FNs represent the scenarios where both types of associa-

tion signals are correctly uncovered at locus level, but the

inaccurate SNP-level quantifications imply that the causal

variants for the two types of traits are unlikely overlapping.

In our simulation studies, 59.0% (1,240) and 22.0% (463)

of the true colocalization signals fall into the class I and

II false negatives categories, respectively. To better visualize

the two FN classes, we plot the true eQTL and GWAS effects

of the colocalized signals with their corresponding labeled

categories based on the fastENLOC results in Figure 2. Most

points representing class I FNs (gray) are closely located

around the axes, indicating at least one of the genetic ef-

fects (eQTL or GWAS) is too small to be detected by the cor-

responding association analysis. Marginally, at the 5% FDR

level, the power for GWAS and eQTL is 44% and 62%,

respectively. In comparison, most points representing class
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II FNs (cyan) and detected signals (red) are scattered

around the two diagonals.

The impacts of class I FNs are easy to understand and

well expected. As neither eQTL mapping nor genetic asso-

ciation analysis of complex traits achieves high power in

practice, this class of FNs remains a primary source for fail-

ures in identifying colocalization sites.

A proportion of class II false negatives can be explained

by a ‘‘threshold’’ effect. For example, some modest eQTL

signals barely clear the bar to qualify for significant eQTL

findings, but the underlying evidence is not strong enough

to ensure a significant colocalization discovery. Addition-

ally, the class II FNs can occur even when the association

signals for both GWAS and eQTL can be narrowed down

into the same genomic locus with high confidence. This

is because, at the SNP level, it remains difficult to pinpoint

the causal variants for both traits due to the combination

of LD and insufficient sample size. The phenomenon of

class II FNs is also closely related to a well-known fact in

fine-mapping analysis: the lead (i.e., the most significant)

SNPs that emerge from association analysis may not be

the true causal SNPs.22,23 Incidental correlation between

the genotypes of non-causal SNPs (in LD with the true

causal variant) and residual errors from the outcome vari-

able could lead to stronger empirical correlation, especially

with limited samples. There is generally a higher level of

mismatching between lead and causal SNPs when the un-

derlying studies are underpowered. In any association

analysis, Bayesian or frequentist, the lead SNPs are

always regarded as the most plausible causal SNPs from

the data. When the mismatch of lead and causal SNPs oc-

curs in at least one trait, all algorithms are led to believe

there is a lack of evidence for SNP-level colocalization,

even though the signal clusters for both traits are correctly

identified.

To provide a visualization, we compute a ratio of poste-

rior inclusion probabilities (PIPs) for the causal SNP versus

the lead SNP (causal-versus-lead PIP ratio) in each signal

cluster harboring a true colocalized signal for both simu-

lated eQTL and GWAS data. The PIPs for a SNP,

Prðg¼ 1jGWAS dataÞ and Prðd¼ 1jeQTL dataÞ, quantify

the strength of association evidence in the GWAS and

eQTL data, respectively. The PIP ratio ¼ 1 indicates that

the lead SNP is indeed the causal SNP (or they are in perfect

LD). We further compute a combined ratio by multiplying

the two trait-specific causal-versus-lead PIP ratios for each

signal cluster. Note that the combined ratio ¼ 1 suggests

the causal SNPs are identified as lead SNPs in both traits,

whereas the combined ratio < 1 indicates that in at least

one trait, the lead SNP and the causal SNP do not match.

The comparison of various PIP ratios between detected

and class II false-negative signals is shown in the histo-

grams of Figure 3. The overall patterns in Figure 3 indicates

that in detected colocalization signals, the vast majority of

causal SNPs are indeed lead SNPs in both traits; many mis-

matches between causal and lead SNPs lead to false nega-

tives in identifying the colocalized signals.
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Figure 3. PIP ratios for all signal clusters
The first column of histograms represents
the ratio of causal SNP PIP to lead SNP PIP
for all class II false negatives from the
eQTL simulated dataset, the GWAS dataset,
then both combined. The second column
represents the same ratio, but among all suc-
cessfully detected colocalizations from the
respective datasets.
Both classes of false-negative errors are intrinsic to ge-

netic association analysis and are well known. However,

it is somewhat surprising to observe that the combined ef-

fects from these factors have such a drastic effect on the po-

wer of colocalization analysis—even when the association

analysis for individual traits is considered relatively well

powered.

In practice, when the truth is unknown, we can still

assess the relative power of the colocalization analysis

based on the estimates of pd; pg, and a1. The expected

number of colocalization sites based on the enrichment

analysis can be computed by Mpg= 1þ pd
1�pd

exp �a1ð Þ
� �

,

where M represents the total number of genetic variants.

In this simulation, the fastENLOC estimates

bpg ¼ 1:3310�3; bpd ¼ 5:4310�4; ba1 ¼ 3:644;

and the expected number of the colocalization sites is

�800, which represents a lower bound estimate of true co-

localization sites (due to the conservative estimate of a1

and the class I FNs). The number of detected sites at the

5% FDR level is roughly half of the expected sites. Hence-

forth, we refer to this proportion as the rejection-to-expec-

tation (rej-to-exp) ratio, representing an upper-bound esti-

mate of the empirical power of the colocalization analysis.
Mismatching LD structures

Most existing colocalization analysis approaches are built

on the experimental scheme known as the two-sample

design, where the eQTL and GWAS data do not share com-

mon samples. While this design allows for using valuable
The American Journal of Huma
eQTL resources, e.g., GTEx data, for

analyzing a wide range of GWAS data

collected from many different cohorts,

it raises some practical concerns. To

our knowledge, all existing methods

implicitly assume that the LD struc-

tures between the two association sam-

ples are identical, which is at best ques-

tionable when the two sets of

association data are collected from

different cohorts. In general, there is a

lack of empirical evaluation of how

different levels of mismatching be-

tween LD structures affect colocaliza-

tion analysis outcomes. To address
this issue, we design a simulation experiment utilizing

multi-population genetic data to quantify the effects of

mismatching LD patterns on colocalization analysis with

two-sample designs.

We take the genetic data from the GEUVADIS project,

which consists of samples from four European popula-

tions—CEPH (CEU), Toscani (TSI), British (GBR), and

Finnish (FIN)—and one African population, Yoruban

(YRI) (Figure 4).24 We select the SNPs located within a

200 kb cis-region from 6,977 protein-coding and lincRNA

genes, each of which contains at least 500 candidate

SNPs. For each gene, we first sample the causal eQTL and

GWAS SNPs from its candidate cis-SNPs. We then simulate

a single eQTL dataset using the FIN data. We subsequently

generate 5 GWAS datasets using the genotype data and pre-

determined GWAS association status for all 5 population

groups. Note that the LD patterns are perfectly matched

for the Finnish population for GWAS and eQTL analysis,

which forms a baseline for evaluating the effects of LDmis-

matching. Additional simulation details are provided in

Section 6 of the supplemental material and methods.

We analyze the five pairs of eQTL-GWAS data using fas-

tENLOC. Our comparisons focus on the enrichment esti-

mates, false-positive colocalization findings, and power.

The results are summarized in Table 3. In all cases, we do

not observe any inflation of false-positive colocalization

findings—the false discovery rates are properly controlled

in all datasets. The impact of LD mismatch is reflected by

the under-estimation of the enrichment parameters and

the diminished power, especially in noting that the power

of GWAS discovery (which is perfectly correlated with esti-

mated pg) is not substantially different in all populations.
n Genetics 108, 25–35, January 7, 2021 31



Table 3. LD mismatch impact on enrichment estimation, FDR, and power

Datasets ba1 bpg Realized FDR Power

FIN versus FIN 4.076 1.25 3 10�3 0.029 (0.036) 0.129 (0.129)

FIN versus GBR 3.964 1.23 3 10�3 0.023 (0.027) 0.102 (0.103)

FIN versus TSI 3.935 1.27 3 10�3 0.023 (0.028) 0.101 (0.099)

FIN versus CEU 3.842 1.10 3 10�3 0.030 (0.047) 0.075 (0.077)

FIN versus YRI 3.438 1.19 3 10�3 0.001 (0.006) 0.065 (0.067)

The enrichment estimates ðba1Þ and from all combinations of eQTL and GWAS datasets we used for this analysis. The estimated frequency of GWAS hits ðbpgÞ reflects
the GWAS power of each GWAS dataset. (Note that true pg ¼ 1:92310�3.) The quantities in parentheses show the realized FDR and power when using the true
enrichment parameter in the colocalization analysis.
In the extreme case of mismatch, i.e., the analysis of YRI

GWAS data and FIN eQTL data, we find that the enrich-

ment parameter a1 is most severely underestimated, and

the resulting power is reduced to 50% of the perfectly

matching association data (i.e., FIN GWAS and FIN

eQTL). We also note that the underestimation of the

enrichment parameter only explains a small proportion

of the loss: even when the true enrichment parameter is

used, the power of colocalization analysis from analyzing

the YRI GWAS data remains significantly lower than the

other European datasets. Within the European popula-

tions, the effects of LD mismatch on colocalization anal-

ysis are also noticeable. The comparison within the Euro-

pean populations may also be complicated by differences

in sample sizes, where TSI and CEU have the largest (n ¼
92) and smallest (n ¼ 78) sample sizes, respectively. The

sample size difference is directly linked to the power of

GWAS discovery.

Overall, in relative terms, our observation suggests that

the power loss suffered from the LD mismatching is quali-

tatively less severe than from the imperfect power of indi-

vidual association analysis—as long as the eQTL and the

GWAS samples are from reasonably close populations. In

addition, the power loss caused by LD mismatching may

be compensated by increased power in single-trait associa-

tion analysis.
Colocalization analysis of 4,091 GWAS datasets and

GTEx eQTL data

To provide a comprehensive summary of colocalization

analysis using the current available GWAS and eQTL

data, we analyze 4,091 complex trait datasets and the final

release of the GTEx data (v.8) from 49 tissues.6,18 In total,

we perform colocalization analysis on 200,459 trait-tissue

pairs using fastENLOC. The biological implications from

the colocalization analysis, coupled with PrediXcan anal-

ysis,4 have been reported and discussed in Pividori et al.6

In this section, we focus on the technical aspect of the co-

localization analysis and provide a high-level summary of

the colocalization results for a wide range of complex traits

with currently available GWAS and eQTL datasets. The fas-

tENLOC output for all trait-tissue combinations can be

downloaded using the URLs in Table S1. Additional details
32 The American Journal of Human Genetics 108, 25–35, January 7, 2
of data processing and analysis are given in Section 7 of the

supplemental material and methods.

We first examine the empirical distribution of the

enrichment estimates, ba1, over the 200,459 trait-tissue

pairs. The histogram in Figure 5 shows the empirical distri-

bution of the enrichment estimates. We observe a clear bi-

modal distribution: the estimates from the vast majority of

the trait-tissue pairs are close to 0, and there is also a notice-

able peak centered around a1 ¼ 4. Upon close inspections,

we find the vast majority of complex traits with near

0 eQTL enrichment have few significant GWAS hits, which

may be attributed to the lack of power in the correspond-

ing studies.

Next, we inspect the significant findings from the anal-

ysis of each individual trait-tissue pair. Based on the enrich-

ment analysis results, we compute the expected number of

colocalization sites for each trait-tissue pair. Additionally,

we identify high-confidence colocalization sites at the

5% FDR level based on the output of RCP values using

the Bayesian FDR control procedure. In total, 15,975 sites

pass this type I error control threshold in all trait-tissue

pairs. We consider the trait-tissue pairs with more than

50 expected colocalization sites as ‘‘well powered.’’ For

this set of trait-tissue pairs, we compare the expected coloc-

alization sites and the identified high-confidence sites at

the 5% FDR level (Figure 6). The average rej-to-exp ratio

in this set is 10.7% (median ¼ 9.43%). This result indicates

that the current colocalization analysis is (severely) under-

powered for most trait-tissue pairs.
Discussion

In this paper, we have systematically explored both the

analytical and the practical factors that impact the perfor-

mance of probabilistic colocalization analysis for a molec-

ular and a complex trait. We identify a single analytical fac-

tor, i.e., the specification of prior enrichment levels, that

can lead to a significant inflation of false-positive findings,

and we recommend estimating the critical enrichment

parameters directly from the data. On the other hand,

we find that a combination of analytical and practical fac-

tors, including modeling considerations for AH, LD

mismatch, and imperfect power in association analyses,
021



Figure 4. Population structures repre-
sented by PCA plots in GEUVADIS data
The left panel show the PCA plots (PC1
versus PC2) with the samples from all popu-
lations. The right panel shows the PCA plots
using European samples only. Based on
these plots, we expect maximum LD
mismatch between YRI and any European
population.
could severely diminish the power of SNP-level colocaliza-

tion discoveries. As a result, current approaches often fail

to identify the majority of colocalization signals in prac-

tical applications, even when they are appropriately

applied. We argue that understanding the promise and

limitations of the current state-of-the-art is critical for the

practitioners to properly anticipate and correctly report

their findings. For colocalization analysis of currently

available molecular QTL and GWAS data, we may need to

embrace the noticeable discrepancy between ‘‘expected co-

localized signals’’ and the actual identified ‘‘significant co-

localization findings.’’

There are many ways in which we can improve the po-

wer of existing colocalization methods based on our find-

ings in this paper. For example, analytical strategies in

improving the enrichment estimation, applying better

fine-mapping methods, and explicitly modeling varying

LD patterns across datasets will most likely result in

enhanced power. Nevertheless, we suspect that improving

the quality of the GWAS and molecular QTL datasets

should have a more direct and visible impact. We note

that most existing molecular QTL studies are limited by

the high-throughput phenotyping cost and have modest

sample sizes and relatively high experimental noise. The

state-of-the-art eQTL annotations generated by the GTEx

project are derived from bulk tissues of <1,000 samples.

The current technology advancement, e.g., applying sin-

gle-cell technology for molecular QTLmapping, combined

with proven statistical strategies for data aggregation, e.g.,
Figure 5. Enrichment estimates from all tissue-trait pairs in the
phenomexcan analysis
The histogram displays a bimodal distribution, with a sharp peak
at a1 ¼ 0 and a wide peak centered around a1 ¼ 4.

The Am
a meta-analysis of molecular QTLs, could significantly

enhance colocalization discoveries.

Another promising direction for improving colocaliza-

tion analysis is to incorporate additional genomic

information. This can be achieved by expanding the

current prior model Prðg¼ 1; d¼ 1Þ to Pr g ¼ 1;ð
d ¼ 1j additional genomic annotationsÞ. The additional

genomic features can be obtained from other relevant mo-

lecular phenotype studies, e.g., studies of methylation,

chromatin accessibility, and histone modification. This

added information provides a more relevant ‘‘local’’

genomic context for each candidate locus, hence

improving both the sensitivity and specificity of the coloc-

alization analysis.

Although our discussions in this paper are exclusively

illustrated using two complex traits, the general principles

extend to the analysis of multiple traits.25,26 All of the

analytical and practical factors that we have discussed

impact SNP-level colocalization analysis for more than
Figure 6. The comparison of the calculated expected colocaliza-
tion sites and the detected high-confidence sites among well-
powered trait-tissue pairs
This apparent lack of power falls in line with our findings from our
simulations.
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two traits. If not adequately dealt with, the resulting

adverse effects can be even more severe. For example,

both classes of false-negative errors discussed in the section

of realistic power assessment increase with more traits

considered. Additionally, the existing enrichment estima-

tion procedure via multiple imputation does not scale

well regarding a large number of traits (i.e.,R5). Therefore,

extending the best practice of colocalization analysis from

two traits to multiple traits remains a critical challenge.

Colocalization analysis is also connected to other types of

integrative analysis approaches, e.g., transcriptome-wide as-

sociation studies (TWASs). In analyzing eQTL and GWAS

data, a TWAS utilizes the same input data sources as the co-

localization analysis. However, its results have some unique

causal implications provided that a set of assumptions is

met.27 Despite the difference in their theoretical origins,

positive findings from the two analyses can be driven by

similar signals. Recent studies6 find that integrating colocal-

ization analysis into a TWAS can improve its sensitivity and

specificity. More generally, the two prevailing types of inte-

grative analysis approaches can complement each other.

Thus, further exploration of their connections and distinc-

tions becomes an important future direction.
Data and Code Availability

The harmonized summary statistics from 4,091 complex

trait GWASs and the multi-tissue eQTL annotations

derived from the GTEx (v.8) data are made publicly avail-

able (see web resources). The source code and scripts for

data generation and data analysis in the numerical experi-

ments (fastENLOC) are available in the Github repository.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.11.012.
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Web resources

coloc, https://cran.r-project.org/web/packages/coloc/index.html

eCAVIAR, http://genetics.cs.ucla.edu/caviar/

fastENLOC, https://github.com/xqwen/fastenloc

fastENLOC analysis of 4,091 complex traits and GTEx v8 data

(detailed results), https://tinyurl.com/y6cx9ovm
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fastENLOC data generating and analysis scripts/code for the

numerical experiments, https://github.com/xqwen/fastenloc/

tree/master/promise_and_limitation_paper/

GEUVADIS data, https://www.internationalgenome.org/data-

portal/data-collection/geuvadis

GTEx, https://www.gtexportal.org/home/

Harmonized summary statistics for 4,091 complex-trait GWAS,

https://zenodo.org/record/3629742/files/harmonized_imputed_

gwas.tar

Multi-tissue eQTL annotations derived from the GTEx (v8) data,

https://tinyurl.com/yyfser9a

phenomeXcan, http://apps.hakyimlab.org/phenomexcan/

Summary results from fastENLOC analysis of 4,091 complex traits

and GTEx v8 data, https://doi.org/10.5281/zenodo.3530669
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Supplemental Figures



Figure S1: Calibration of reported regional colocalization probabilities The error bars repre-
sent 95% confidence intervals. The RCPs from the fastENLOC are conservative in comparison to the
corresponding frequencies. The conservativeness is partially explained by the conservative estimation
of the enrichment priors. In the case of coloc, the default prior leads to severely anti-conservative re-
sults. Even when the true priors are applied, the coloc results still show anti-conservativeness in some
frequency bins.



Figure S2: Enrichment estimates with and without shrinkage from all tissue-trait pairs in
the phenomexcan analysis



Supplemental Material and Methods

1 Overview of existing probabilistic colocalization approaches

coloc coloc is first proposed in [1]. It makes the “one causal variant” (OCV) assumption for each

trait in each candidate region. Under this specific assumption, it enumerates five possible distinct

models/hypotheses within a region. These models are: 1) there are no causal variants from either trait

(H0); 2) there is only a causal eQTL variant but no causal GWAS variant (H1); 3) there is only a causal

GWAS variant but no causal eQTL variant (H2); 4) there are distinct causal SNPs for both eQTL

and GWAS, (H3); and 5) there is a colocalized signal (H4). For each hypothesis, the corresponding

posterior probability is computed by considering all compatible latent association status configurations

from GWAS and eQTL data via Bayesian model averaging (BMA). The colocalization within each

region is quantified by the posterior probability of H4 (PPH4).

Under the OCV assumption, the likelihood functions for all possible association scenarios can be an-

alytically computed from the single-SNP association statistics, e.g., z-statistics, without the need of

explicit modeling of LD [2]. The implementation of coloc allows user-specified priors for SNP i, i.e.,

p1 = Pr(di = 1, γi = 0)

p2 = Pr(di = 0, γi = 1)

p12 = Pr(di = 1, γi = 1)

Recall that di = 1 indicates that SNP i is a causal eQTL and γi = 1 indicates that SNP i is a casual



GWAS variant. By default, p1 and p2 are set to 10−4, and p12 is set to 10−5, which corresponds to

pd = 1.1× 10−4

α0 = −9.23

α1 = 6.91

(1)

in the formulation of fastENLOC priors. From the observed data shown in Figure 5 of the main text,

α1 close to 7 represents a very high enrichment level and is rare in practice.

It is worth pointing out that coloc requires only summary-level statistics from single-SNP association

analysis as input and performs fine-mapping internally assuming OCV.

eCAVIAR eCAVIAR, proposed in [3], is built upon a sophisticated Bayesian multi-variate fine-

mapping algorithm, CAVIAR [4]. The CAVIAR algorithm enables computation of Pr(di = 1 | eQTL data)

and Pr(γi = 1 | GWAS data) based only on summary-level statistics from single-SNP association anal-

ysis and an LD matrix between candidate SNPs. Based on the marginal fine-mapping result, eCAVIAR

computes a SNP-level colocalization posterior probability, or CLPP, by

Pr(di = 1, γi = 1 | eQTL data, GWAS data)

= Pr(di = 1 | eQTL data) Pr(γi = 1 | GWAS data).

(2)

As we previously discussed, this equation corresponds to the special case that assumes α1 = 0, i.e.,

there is no enrichment of eQTL signals in causal GWAS hits. Based on the evidence observed from the

real data, this assumption can be overly conservative.

Notably, eCAVIAR only provides a colocalization quantification at the SNP level but not for a genomic

region. This is also a distinction between eCAVIAR and other approaches.

fastENLOC/ENLOC ENLOC is first proposed in [5]. An improved version, fastENLOC, with

accelerated computation and enhanced precision, is recently described in [6]. A distinct feature of

ENLOC/fastENLOC is its embedded function of estimating the enrichment level of eQTLs in GWAS



hits, i.e., (α0, α1), directly from the data. By treating the latent vectors of causal association status,

γ, and d, as missing data, ENLOC employs a multiple imputation strategy and an EM algorithm for

enrichment estimation. Given the enrichment estimates, ENLOC applies an empirical Bayes framework

to compute the SNP-level colocalization probability strictly based on the Bayes rule, in which Eqn. (2)

of eCAVIAR becomes a special case.

fastENLOC also takes advantage of the concept of credible sets of independent association signals

inferred from multi-variant fine-mapping analysis to compute a colocalization probability for each LD

region. A Bayesian credible set consists of a group SNPs in LD that represent the same underlying

association signal. By utilizing credible sets, fastENLOC ensures correct dependence structures in the

multiple imputation scheme’s sampling procedures for enrichment estimation. Additionally, the credible

sets naturally form regional LD units for regional-level colocalization analysis. This is because, even if

the exact colocalized variant is uncertain, we can evaluate the probability that one of the member SNPs

in the credible set is causal for both GWAS and expression traits by Bayesian model averaging.

Similar to eCAVIAR, fastENLOC requires a dedicated fine-mapping algorithm to generate required

probability quantifications of marginal association evidence. Currently, DAP [7], SuSiE [8] and FINEMAP

[9] are suitable methods for preparing fastENLOC input, because they can report signal clusters/credible

sets in addition to traditional SNP-level posterior inclusion probabilities (PIPs). Additionally, all three

work with summary-level statistics similar to CAVIAR (and eCAVIAR), which requires summary statis-

tics from single-SNP association testing and LD matrices.

Other approaches There are other available methods proposed for general colocalization analysis

between multiple complex traits. The majority of methods in this category deal with a slightly different

problem that does not require quantification of colocalization at the SNP-level. For example, both RTC

(Regulatory Trait Concordance) [10] and JLIM (Joint likelihood mapping) [11] use formal hypothesis

testing procedures to examine if a group of SNPs in LD contain both a causal eQTL and a causal GWAS

hit. However, within the SNPs that are tightly linked, they cannot distinguish if the two signals are

overlapping at a single SNP. That is, there is no stringent distinction between the H3 and the H4 models

in the formulation of coloc. Another approach, SMR [12], is built upon the framework of instrumental



variable analysis and identifies SNPs that are associated with both GWAS and expression traits. The

authors attempt to further distinguish colocalization (H4) from linkage (i.e., H3) by a hypothesis testing

procedure named HEIDI [13]. Although the idea is intuitive, the HEIDI procedure is set up to claim

colocalization by accepting the null hypothesis. As a result, rigorous quantification or proper control of

false-positive findings is lacking.

Finally, we want to emphasize that there is strong uniformity across all three probabilistic colocalization

approaches despite the difference in their implementations: they share the same mathematical founda-

tion and inference principles. Particularly, eCAVIAR can be viewed as a special case of fastENLOC

with a special set of pre-defined enrichment parameters; the coloc algorithm converges to fastENLOC

if the same enrichment parameters are supplied, and the OCV assumption is satisfied.

2 Overview of enrichment estimation in fastENLOC

The enrichment estimation procedure used in fastENLOC is detailed in [5, 6]. Here we give a summary

of the procedure, serving as a quick reference.

The fundamental difficulty in estimating enrichment of causal eQTLs in causal GWAS hits lies in the

fact that the true association status for each SNP i, γi and di, are not observed. If they are, α0 and α1

can be straightforwardly estimated by a 2 × 2 contingency table, or equivalently, by a simple logistic

regression. fastENLOC solves this problem by utilizing the posterior inclusion probabilities (PIPs) for

all p SNPs obtained from separate Bayesian association analysis of the complex and molecular traits,

respectively (i.e., {Pr(γi | GWAS data) : i = 1, . . . , p} and {Pr(di | eQTL data) : i = 1, . . . , p}.

[14, 7] propose an EM algorithm to estimate α0 and α1 when {di} is observed (e.g., di is treated as

an observed SNP-level binary annotation) and {Pr(γi | GWAS data)} is available. [5] extends this

idea, and propose sampling di from the corresponding posterior distributions, Pr(di | eQTL data), via

a multiple imputation scheme. Briefly, it first creates M sets of imputed {di} values and runs the EM

algorithm for each ({Pr(γi | GWAS data)}, {di}) pairs. The resulting estimates of (α0, α1) from M

imputed datasets are combined using the multiple imputation formula. Guided by the principles of



multiple imputation, M is set to 25 by default [5].

It may seem intuitive to simply sample γi from Pr(γi | GWAS data) and di from Pr(di | eQTL data)

independently, then fill in a 2 × 2 contingency table, and obtain the (α0, α1) estimate. But such a

procedure completely ignores the potential dependence relationship between γi and di (i.e., the sampling

processes for γi and di are independent), and it can lead to severe underestimation of α1.

In fastENLOC, the sampling process of {di} is sped up by taking advantage of the signal clusters

reported by the software DAP-G. The signal clusters enable more efficient and precise samplings of

independent causal associations. The credible sets output from methods SuSIE and FINEMAP can

also be used to achieve similar performance improvement. Additionally, fastENLOC applies a shrinkage

estimator that effectively reduces the variance of the estimate of α1. The details of this shrinkage

estimator are explained in Section 7.1 of this document.

3 Numerical experiment to examine sensitivity of prior impact

3.1 Constraints in prior model

In this numerical experiment, we fix the values of pγ , pd, and varying the value of α1. Here, we show

that α0 is determined by (pγ , pd, α1).

Note that

pγ = Pr(γ = 1 | d = 0) (1− pd) + Pr(γ = 1 | d = 1) pd

=
exp(α0)

1 + exp(α0)
(1− pd) +

exp(α0 + α1)

1 + exp(α0 + α1)
pd

(3)

Thus, α0 can be solved from the above equation given pγ , pd, and α1. Furthermore, an accurate ap-

proximation of α0 can be analytically computed by noting that, in practice, Pr(γ = 1 | d = 0)� 1 and

Pr(γ = 1 | d = 1)� 1 (i.e., GWAS hits for complex traits are sparse). It follows that

(1 + exp(α0)) pγ ≈ exp(α0) (1− pd) + exp(α0 + α1) pd (4)



and

α0 ≈ log

(
pγ

1 + pd exp(α1)− pd − pγ

)
(5)

3.2 Computing SNP-level Colocalization Probability

Here we derive the SNP-level colocalization probability (SCP) for an independent SNP given the pos-

terior association probabilities, qd := Pr(d = 1 | eQTL data) and qγ = Pr(γ = 1 | GWAS data) for

association analysis of individual traits. This result is used in the numerical experiment.

By the Bayes rule, the Bayes factor for eQTL association can be computed by

BFd =
Pr(eQTL data | d = 1)

Pr(eQTL data | d = 0)

= [qd/(1− qd)]
/

[pd/(1− pd)] .

Similarly, the Bayes factor for GWAS association at the target SNP is given by

BFγ = [qγ/(1− qγ)]
/

[pγ/(1− pγ)] .

Assuming a two-sample design, it follows that

Pr(GWAS data, eQTL data | d, γ)

= Pr(eQTL data | d) Pr(GWAS data | γ)

(6)

Applying the Bayes rule to compute SCP yields

Pr(d = 1, γ = 1 | eQTL data, GWAS data)

=
Pr(d = 1, γ = 1)BFdBFγ

Pr(d = 0, γ = 0) + Pr(d = 1, γ = 0)BFd + Pr(d = 0, γ = 1)BFγ + Pr(d = 1, γ = 1)BFdBFγ
,

(7)



where

Pr(d = 1, γ = 1) =
exp(α0 + α1)

1 + exp(α0 + α1)
pd

Pr(d = 0, γ = 0) =
1

1 + exp(α0)
(1− pd)

Pr(d = 1, γ = 0) =
1

1 + exp(α0 + α1)
pd

Pr(d = 0, γ = 1) =
exp(α0)

1 + exp(α0 + α1)
(1− pd)

(8)

3.3 Experiment details

To isolate the impact of prior specification on colocalization quantifications, we consider a single SNP

with various levels of association evidence from GWAS and eQTL analysis. In this experiment, we

assume that priors for GWAS and eQTL associations are pre-determined at pd = 10−3 and pγ = 5×10−5,

respectively. The values roughly reflect the prevalence of eQTL and GWAS hits in practice. Given pd

and pγ , the value of α0 is determined by α1 by Eqn. (5).

In this experiment, we consider only one independent genetic variant. We use the posterior inclusion

probabilities, qd and qγ , to characterize each trait’s association evidence. They are naturally scaled in

[0, 1] and convenient to represent different association evidence magnitudes. (In comparison, because

of the difference in the priors of marginal associations for different traits, the direct comparison of

Bayes factors is not as straightforward.) In this experiment, we consider the values of qd and qγ

= 0.90, 0.50, 0.05 to represent strong, modest, and weak evidence for association, respectively.

With pd, pγ , qd, qγ , and α1 all fully specified, the SNP-level colocalization probability (SCP) can analyt-

ically computed by Eqn. (7).

To inspect the sensitivity of SCP with respect to the enrichment value, we vary α1 over a wide range

covering all values typically seen in data, from -6 to 8, and compute the corresponding SCP values.



4 Simulation to inspect effect of allelic heterogeneity

To investigate the impact of allelic heterogeneity in colocalization analysis, we design a simulation

scheme with real genotype data obtained from the GTEx whole blood data. To isolate the impacting

factors and simplify interpretations, we use the same genotype data to simulate gene expressions and

complex traits. Thus, the LD patterns are perfectly matching between the two datasets. We use the

genotypes from 400 individuals from the GTEx whole blood samples for this simulation. We create 4

sets of combined GWAS and eQTL datasets, corresponding to the 4 different scenarios described in the

main text. These scenarios enable us to investigate potential false positive and false negative findings

by different AH assumptions. We simulate gene expressions for 1,000 genes for each scenario and the

corresponding complex trait data for 400 individuals using standard linear models. We particularly

fix all gene expression effect sizes to 2.5, and the complex trait effect sizes to 1.5. The residual error

variance is set to 1 for all simulations. Our consideration for this simulation setting is to ensure the

generated association signals are strong. Hence the subsequent colocalization analysis can be robust

to prior specifications (based on what we observe from the previous numerical experiment). We pool

the 4 simulated scenarios into 2 different datasets. The first dataset consists of scenarios 1, 2, and 3,

while the second dataset consists of scenarios 1, 2, and 4. Thus, each dataset has exactly 3,000 genes

for analysis.

For fastENLOC analysis, we first run a multi-SNP association analysis of simulated GWAS and eQTL

data using DAP-G for all simulated genes. The enrichment parameters are estimated from the data. For

coloc, we directly supply the true priors and the summary statistics from the corresponding single-SNP

analysis.

5 Simulation to benchmark power of practical colocalization analysis

To benchmark and investigate the performance of probabilistic colocalization analysis, we simulate

complex trait and gene expression data that resemble observed data in practice. For this experiment,

we use the real genotype data across 20,000 genes from 400 participants of the GTEx project. To



ensure the LD patterns in genotypes are perfectly matched in eQTL and GWAS data, we again use the

identical genotype data to independently simulate expression and complex traits.

For each candidate gene, we select a fixed number of 1,500 cis-SNPs whose minor allele frequencies

> 0.03. We use the following linear model to simulate the expression level of gene i for individual k,

yik = µi +
∑
j

βijgjk + eik, eik ∼ N(0, 1), (9)

where gjk and βij represent the genotype and the genetic effect for SNP j (j = 1, 2, ..., 1500). Particu-

larly, βij is independently drawn from a mixture distribution,

βij ∼ π0δ0 + (1− π0)N(0, 1). (10)

That is, with probability π0 = 1− 3/1500 = 0.998, the genetic effect of SNP j on expression is exactly

0; and with probability 0.002, the SNP has a non-zero random effect drawn from N(0, 1) distribution.

On average, the simulation scheme yields 3 causal eQTL SNPs per cis region.

To simulate the causal GWAS hits, we conduct an independent Bernoulli trial on each candidate SNP: if

a SNP is not an eQTL SNP, its probability of being a causal GWAS SNP is set to 1/1500; otherwise, the

corresponding probability increases to 0.035, or equivalently, α1 = 4 (which is similar to the enrichment

level of blood eQTLs in causal GWAS hits of lipids traits [5]). Subsequently, we again simulate the

complex trait using a multiple linear regression model. Specifically, the genetic effect of each causal

GWAS SNP is drawn from the distribution N(0, 1), and the residual error is also simulated from the

same distribution.

Overall, across 20,000 genes, this scheme generates 59,937 causal eQTL SNPs and 22,054 casual GWAS

hits. There are 2,103 instances that the causal variants for both traits are overlapped.



5.1 Calibration of Regional Colocalization Probabilities

In this simulation, we also examine the calibration of the regional colocalization probabilities (RCPs)

reported by both fastENLOC and coloc. The concept of calibration refers to where reported Bayesian

posterior probabilities represent the frequencies of events in multiple independent experiments, a fre-

quentist property. To this end, we sort all RCP values into evenly-divided probability bins (e.g.,

[0, 0.1), [0.1, 0.2), ..., [0.9, 1.0]). Within each probability bin, we then compute the fractions of reported

sites that truly harbor a colocalized signal. If the RCP values are calibrated, we expect that the mean

RCP from each pre-defined bin aligns with the corresponding fraction of true colocalized signals. Over-

all, we find that the calibration of the computed RCPs is overly conservative (Figure S1). Applying the

true enrichment parameters improves the overall calibration but does not completely resolve the issue of

conservativeness, especially for the RCPs in the low to the modest range. This is also in agreement with

our main conclusions from the power and type I errors of the colocalization analysis in Table 2 of the

main text. We also conduct a similar analysis for the gene-level posterior probability of colocalization

from the coloc analysis, which confirms that inaccurate prior information and/or ignoring potential AH

could lead to an anti-conservative assessment of colocalization probabilities.

6 Simulation to investigate effect of LD mismatch

We construct these simulations based on the design of the GEUVADIS project, which studies the eQTLs

across 5 different populations (FIN, CEU, GBR, TSI, and YRI). We use the real genotype data for the

five populations that are originally genotyped in the 1000 Genome project Phase I [15]. We select

6,977 genes from the GEUVADIS project that contain at least 500 SNPs in a 200 KB cis-region. Note

that we keep all SNPs in all studied populations, even though some are monomorphic or extremely

rare in specific population groups. We apply a similar scheme as the previous simulation (Section 5)

to sample the causal eQTL and GWAS SNPs based on independent Bernoulli trials and pre-specified

enrichment parameters. We adjust the enrichment parameter α1 from 4.0 to 4.5 to increase the instances

of colocalizations and compensate for reduced numbers of cis-SNPs.



Given the causal eQTL and GWAS status, we simulate a single set of eQTL data using the genotypes

from the FIN population. Next, we simulate 5 different sets of complex trait data for all populations.

The sample sizes for each population are 89 (FIN), 78 (CEU), 84 (GBR), 92 (TSI), and 77 (YRI),

respectively. The phenotype simulation is based on multiple linear regression models, and the residual

error variance for each corresponding linear model is also set to 1. To compensate for the reduced

sample size (compared to our previous simulations), we draw the genetic effects for both eQTLs and

GWAS hits from a random effect model with variance = 2. In total, the simulated datasets contain

20,987 eQTLs and 9,378 GWAS hits with 2,488 colocalized signals.

7 Colocalization analysis of 4,091 complex trait and GTEx eQTL

data

The eQTL data from 49 tissues are generated from the final version (v8) of the GTEx project. The

eQTL data are processed based on the protocols established by the GTEx consortium. The processing

pipeline and related software packages are provided in [16]. We collect the summary statistics in the

form of single-SNP testing z-scores from 4,091 GWAS of complex traits. These summary statistics are

harmonized to be compatible to be analyzed with the GTEx data. In particular, additional z-scores are

imputed according to LD patterns observed in the GTEx data using the software package LDpred [17].

The technical details on the pre-processing of the complex data are also documented in [16, 6].

The multi-SNP fine-mapping analysis of the eQTL in each tissue is performed using DAP-G [18], and

the resulting probabilistic annotations of eQTLs are available in the GTEx portal. Due to a lack of

individual-level data or precise LD information for the complex trait GWAS, we choose to employ

the fine-mapping algorithm similar to fgwas implemented in the software package TORUS [7]. Briefly,

TORUS segments the genome into 1 to 2 Mb wide LD blocks [19] and performs fine-mapping analysis

within each LD block assuming a single causal GWAS hit. Although the assumption is imperfect, we

are much less likely to observe multiple strong GWAS hits within a single LD block in practice.



7.1 Shrinkage estimation of enrichment parameter

We estimate the enrichment levels of eQTLs in the GWAS hits for each tissue-trait pair using fas-

tENLOC. Particularly, we experiment with two different strategies for estimation: with and without

applying shrinkage to enrichment estimates.

Our observation is that in many cases where strong evidence for colocalization events is lacking, the

direct estimates of α1 without shrinkage are often unstable. That is, the point estimates can be wildly

positive or negative, and they are always associated with substantially large variances. The corre-

sponding z scores, which measure the signal-to-noise ratio, are rarely statistically significant. In these

scenarios, direct use of the point estimates while ignoring the large standard errors is potentially dan-

gerous for downstream colocalization analysis. Hence, we conclude it is necessary to apply shrinkage to

the estimate of α1. Although it is known that the shrinkage estimates are biased toward 0, the tradeoff

to stabilize the estimates is necessary for this context.

Here, we detail the shrinkage estimation procedure. Let α̃1 and v1 denote the point estimate of α1 and

the corresponding variance directly obtained from the multiple imputation procedure of ENLOC. In the

case of a lack of strong evidence of colocalization events, α̃1 can be highly unstable, i.e., α̃1 can take

extreme positive or negative values, and v1 is also extremely large. The phenomenon is similar to the

enrichment estimation using a 2× 2 contingency table where at least one cell counts → 0. To stabilize

the estimate in the empirical Bayes framework, we consider a shrinkage prior, N(0, 1/λ), for α1. The

resulting shrinkage estimate of the α1 is given by

α̂1 =
α̃1

1 + λv1
, (11)

and the corresponding variance is

Var(α̂1) =
v1

1 + λv1
(12)

The shrinkage parameter λ1 defines the strength of the shrinkage. As λ1 → 0, it follows that α̂1 → α̃1

and Var(α̂1)→ v1, i.e., there is no effect of shrinkage. On the other extreme, as λ→∞, it follows that

α̂1 → 0 and Var(α̂1)→ 0. The default implementation of fastENLOC set λ = 1.



We observe that the shrinkage estimates of the enrichment parameter are effectively stabilized. The

comparison of α̃1 and α̂1 from analyzing 4,091 complex traits and GTEx eQTL data are shown in Figure

S2.
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