Supplementary Table 1. Summary of statistical comparisons between young adult and aged animals. Table shows tissue class and arterial territory assignments, as well as abbreviations for each area surveyed. Post-hoc comparisons between young adult and aged animals in vessel density, vessel tortuosity, mean vessel diameter, and cortical thickness are shown for each region, tissue class or perfusion territory.

Young-adult vs. Aged Comparisons				Density				Tortuosity				Diameter				Low Density Subsections				(Cortical) Thickness				
Abbreviation	Full name	Tissue	Arterial	Territory Reference	Adjusted P	t	DE	% Change (Young adult- aged)	Adjusted	+	DE	% Change (Young adult- aged)	Adjusted	+	DE	% Change (Young adult- aged)	Adjusted P	t	DE	% Change (Young adult- aged)	Adjusted	+	DE	% Change (Young adult-
Abbreviation	Tui name	White	Territory	Images from			51	ageu)		L.	DI	aged)			51	ageu)		·	51	ageu)			DI	ageuy
C. Callosum	Corpus Callosum	matter	ACA	(Endepols et al.,	<0.0001	7.194	48.8	-26.83	0.4899	2.071	47.31	-0.68552	0.9995	0.852	50.02	1.444328	0.0002	4.844	55.44	126.6047	0.5714	1.612	44.87	6.885645
Fimbria	Fimbria	White matter	ACA	(Thomas et al., 2011)	0.0826	2.874	55.59	-11.63	0.8631	1.563	51.68	-0.59473	0.0008	4.427	48.23	7.930941	0.9757	1.244	49.64	30.28617				
	Frontal Association	A 11 1		Images from (Endenois et al	0.0750																			
FrA	Cortex	Cortical	ACA	Images from	0.0759	2.907	54.82	-7.824	0.0432	3.131	48.9	0.600343	0.6291	1.889	56.83	2.54152	0.9999	0.763	53.11	-36.7971				
GI/DI	Insular Cortex	Cortical	MCA	(Rousselet et al.,	0.9087	1.47	53.4	-3.289	0.2569	2.409	51.41	0.512821	0.0019	4.131	53.39	5.590513	>0.9999	0.0999	53.96	3.795893	0.002	3.856	58.62	-5.72391
PRh/Ect	Perirhinal/Ectorhinal	Cortical	МСА	Images from (Rousselet et al.,	<0.0001	5.976	52 11	-16.04	0 7094	1 703	10	0.426621	0.0007	4 652	35.87	7 80759	0 591	1 944	47.09	53 73053	0.0014	3 078	58 5	-6.07073
T MI/Let	Primary/Secondary	contical	WICA	Images from	0.0001	5.570	52.11	10.04	0.7054	1.755	45	0.420021	0.0007	4.052	55.67	7.00735	0.551	1.544	47.05	55.75555	0.0014	3.570	56.5	0.07075
M1/M2	Motor Cortex	Cortical	ACA	(Endepols et al.,	<0.0001	5.967	54.77	-10.01	0.1429	2.669	49.99	0.599829	0.1572	2.638	45.92	3.51972	0.8716	1.55	46.39	80.94824	0.0078	3.429	58.4	-5.62891
S1FL	Somatosensory	Cortical	MCA	(Rousselet et al.,	0.0013	4.207	61.17	-7.214	0.0889	2.854	52.17	0.515907	0.0207	3.395	47.56	4.828974	0.1792	2.569	52.68	95.3304	0.0024	3.802	59.82	-6.17733
				Images from (Xiong																				
RS	Retrosplenial Cortex	Cortical	PCA	et al., 2017)	0.0089	3.659	51.35	-7.915	0.7957	1.674	49.98	0.429923	0.0003	4.781	42.62	8.438384	>0.9999	0.5952	44.66	-28.1231	0.0478	2.807	53.35	-4.02641
V1	Cortex	Cortical	PCA	(Pula & Yuen, 2017)	0.997	1.001	56.55	-2.144	0.0224	3.414	38.82	0.598802	>0.9999	0.3276	49.06	-0.41708	>0.9999	0.07711	46.38	-2.32558	0.0005	4.336	52.19	-5.51172
HPC	Dorsal Hinnocampus	Subcortical	PCA	(Erdem et al. 1993)	0.0007	4 4 2 1	56.5	-9.855	0.0264	3 369	36 72	0 599315	<0.0001	5 883	41 21	9 084084	0 9982	0 954	52.99	28 09917				
	Striatum	Subcorticut	. at	(Feekes & Cassell,	0.0007		50.5	5.055	0.0201	5.505	50.72	0.000010	1010001	5.005		5.001001	0.5502	0.554	52.55	20.05517				
STR	(Caudate/Putamen)	Subcortical	MCA	2006)	0.0582	3.002	56.56	-4.598	0.4014	2.19	45.83	0.427716	<0.0001	5.347	49.38	7.820513	0.9928	1.095	38.72	92.99641				
Thalamus	Thalamus	Subcortical	PCA	(Schmahmann, 2003)	0.2904	2.342	58.22	-4.266	0.5514	1.999	42.29	0.344828	<0.0001	6.603	46.72	10.07121	>0.9999	0.5395	43.47	38.53484				
Uunathalamus	Uunotholomus	Cubeertical	DCA	(Danial 1066)	0.0006	2 6 1 2	56.57	11.00	0.0505	2 100	40.70	0.694246	0.9606	1 552	40.67	2 725174	>0.0000	0.520	40 77	17 74222				
пуроспанатиз	нурошаатыз	Subcortical	PCA	(Daniel, 1966)	0.0096	5.015	50.57	-11.09	0.0505	5.100	40.79	0.084540	0.8696	1.552	49.07	2.735174	>0.9999	0.559	46.77	17.74222				
LA	Lateral Amygdala	Subcortical	MCA	(Merksz et al., 1978)	>0.9999	0.0201	41.76	-0.07518	0.0064	3.764	51.33	0.861326	0.9982	0.9538	52.4	1.921132	0.9996	0.8469	35.81	46.00688				
SNR	Substantia Nigra Pars Reticulata	Subcortical	MCA	(Sonne & Beato, 2019)	0.081	2.88	56.27	-7.34	0.0809	2.904	46.81	0.85034	0.9887	1.142	57.69	1.869631	0.001	4.535	34.42	169.4276				
	Anterior Cerebral																							
ACA	Artery Middle Cerebral				<0.0001	5.911	56.73	-12.8327									0.0228	2.769	54.9	56.45514				
MCA	Artery				0.0005	4.335	44.91	-7.73626									0.1087	2.134	51.46	43.79865				
PCA	Posterior Cerebral				0.0007	4 125	59.73	-6 6942									0 1097	2 128	53 63	41 56311				
	/usely				0.0007	4.125	55.75	0.0342									0.1057	2.120	55.05	41.50511				
WM	White Matter				<0.0001	6.614	50.76	-22.4813									0.0007	3.962	51.86	84.23272				
CGM	Cortical Gray Matter				<0.0001	5.33	54.07	-8.65645									0.998	0.1599	45.06	-4.41696				
	Subcortical Gray																							
SGM	Matter				0.0008	4.125	54.6	-5.83602									0.0401	2.56	50.02	52.99632				

Supplementary Table 2. Summary of previous research estimating vessel loss with aging. Review of existing literature on microvascular loss, excluding studies that focused on arterioles or larger vessels. Includes information on subject species, brain region, method of vascular labeling, age, measurement metric, and time-adjusted magnitude of change in vessel density. Negative values indicate vessel loss. Some values are approximations based on interpretations of figures.

								% change
								/ 12
Author	Animal	Area	Method	Age	months	metric	% change	months
(Hunziker et al., 1979) (Hunziker et al., 1979)	Human Human	Precentral gyrus Precentral gyrus	Alkaline phosphatase	19-94 y/o (group means approx 32-90) 19-94 y/o (group means approx 32-90)	696 696	length	-2	0
(Meier-Ruge et al., 1980)	Human	Putamen	Alkaline phosphatase	19-94 y/o (group means approx 32-90)	696	length	60	1
(Meier-Ruge et al., 1980)	Human	Putamen	Alkaline phosphatase	19-94 y/o (group means approx 32-90)	696	volume	84	1.5
(Meier-Ruge et al., 1980) (Meier-Ruge et al., 1980)	Human Human	Cortex	Alkaline phosphatase	19-94 y/o (group means approx 32-90) 19-94 y/o (group means approx 32-90)	696	volume	-4	-0.1
(Bell and Ball, 1981)	Human	Hippocampus	Alkaline phosphatase	38-74 y/o	432	length	-16	-0.4
(Mann et al., 1986)	Human	Frontal cortex	Alkaline phosphatase	26-96 y/o	840	length	-46	-0.7
(Mann et al., 1986) (Mann et al., 1986)	Human	Frontal cortex	Alkaline phosphatase	26-96 y/o	840 840	area	-35 No change	-0.5
(Mann et al., 1986)	Human	Temporal cortex	Alkaline phosphatase	26-96 y/o	840	area	No change	0
(Bell and Ball, 1990)	Human	Visual cortex	Alkaline phosphatase	31-79 y/o	576	length	-16	-0.3
(Abernethy et al., 1993)	Human	PVN hypothalamus	Alkaline phosphatase	30-85 y/o 30-85 y/o	660 660	length	-49 No change	-0.9
(Buée et al., 1993)	Human	Cortex	Vascular HSPG	49-79 y/o	360	area	-28	-0.9
(Farkas et al., 2006)	Human	White matter	Hematoxylin-eosin staining	40-90y/o	600	length	No change	0
(Brown et al., 2007b)	Human	White matter	Alkaline phosphatase	57-90 y/o	396	area	-64	-1.9
(Burns et al., 1981)	Macaque	Frontal cortex	Microfil	10-20y/o	120	area	-22.2	-2.2
(Burns et al., 1981)	Macaque	Frontal cortex	Microfil	4-20y/o	192	area	-27.8	-1.7
(Sturrock, 1977)	Mouse	Indusium griseum	CD21	7.22 m/a	10	longth	No change	14.5
(Murugesan et al., 2012) (Murugesan et al., 2012)	Mouse	White matter	CD31	7-23 m/o	16	length	-19.5	-14.5
(Murugesan et al., 2012)	Mouse	Hippocampus	CD31	7-23 m/o	16	length	-26.4	-19.8
(Moeini et al., 2018)	Mouse	S1 barrel cortex	Fluroescent plasma label	7.5-26 m/o	18.5	volume	-17	-11
(Keeson et al., 2018) (Klein and Michel. 1977)	Rat	S1 cortex Frontal and Occipital cortex	Evans Blue plasma label Windel's thionin	3.5-16.5 m/o 6-25 m/o	13	number	-8 -21	-7.4
(Bär, 1978)	Rat	Occipital cortex		6-30 m/o	24		19	9.5
(Knox and Oliveira, 1980)	Rat	Cortex	Toluidine blue	4-23 m/o	19	number	-7.9	-5
(Burns et al., 1981) (Wilkinson et al., 1981)	Rat	Cortex	Microfii Latex and luconvl blue perfusion	35-800 d/o 13-120 w/o	25.5	area number	39 10	18.4
(Hinds and McNelly, 1982)	Rat	Olfactory bulb	Toluidine blue	3-36 m/o	33	length	-15	-5.5
(Casey and Feldman, 1985)	Rat	Brainstem	Toluidine blue	3-33 m/o	30	volume	-27.4	-11
(Buchweitz-Milton and Weiss, 1987) (Hughes and Lantos, 1987)	Rat	Cortex	Alkaline phosphatase, FITC dextran	9-30.5 m/o 3-22 5 m/o	21.5	length	-29.5	-16.5
(Meier-Ruge and Schulz-Dazzi, 1987)	Rat	Parietal cortex	Alkaline phosphatase	12-36 m/o	24	volume	10	0.5
(Meier-Ruge and Schulz-Dazzi, 1987)	Rat	Parietal cortex	Alkaline phosphatase	12-36 m/o	24	length	-7.5	-3.8
(Black et al., 1989) (Jucker and Meier-Ruge, 1989; Jucker et al., 1990)	Rat	Visual cortex Hippocampus	Toluidine blue	12-22 m/o 18-27 5 m/o	9.5	number	No change -21	-26.5
(Jucker and Meier-Ruge, 1989; Jucker et al., 1990)	Rat	Parietal cortex	Alkaline phosphatase	18-27.5 m/o	9.5	number	-26	-32.8
(Amenta et al., 1995a)	Rat	Frontal cortex	Alkaline phosphatase	12-24 m/o	12	number	-41.8	-41.8
(Amenta et al., 1995a)	Rat	Frontal cortex	Alkaline phosphatase	12-24 m/o	12	length	-30.1	-30.1
(Amenta et al., 1995a)	Rat	Occipital cortex	Alkaline phosphatase	12-24 m/o	12	length	-5.6	-5.6
(Amenta et al., 1995a)	Rat	Hippocampus	Alkaline phosphatase	12-24 m/o	12	number	-48.7	-48.7
(Amenta et al., 1995a)	Rat	Hippocampus	Alkaline phosphatase	12-24 m/o	12	length	-25	-25
(Amenta et al., 1995b) (Amenta et al., 1995b)	Rat	Frontal cortex Frontal cortex	Alkaline phosphatase	12-27 m/o 12-27 m/o	15	length	-28.2	-22.6
(Amenta et al., 1995b)	Rat	Occipital cortex	Alkaline phosphatase	12-27 m/o	15	number	-17.8	-14.2
(Amenta et al., 1995b)	Rat	Occipital cortex	Alkaline phosphatase	12-27 m/o	15	length	-12.2	-9.7
(Amenta et al., 1995b) (Amenta et al., 1995b)	Rat	Ammons horn Ammons horn	Alkaline phosphatase	12-27 m/o	15	length	-26.5	-21.2
(Amenta et al., 1995b)	Rat	Dentate	Alkaline phosphatase	12-27 m/o	15	number	-19.4	-15.5
(Amenta et al., 1995b)	Rat	Dentate	Alkaline phosphatase	12-27 m/o	15	length	20.4	16.3
(Villena et al., 2003) (Villena et al., 2003)	Rat	LGN	Toluidine blue	3-28 m/o 3-28 m/o	25	number	69.3 19.4	9.3
(Villena et al., 2003)	Rat	LGN	Toluidine blue	3-28 m/o	25	volume	36.4	17.5
(Villena et al., 2003)	Rat	LGN	Toluidine blue	3-28 m/o	25	area	29	13.9
(villena et al., 2003) (Villena et al., 2003)	Rat Rat	LGN LGN	Toluidine blue	18-28 m/o 18-28 m/o	10	number	-3.1 -3.2	-3.7
(Villena et al., 2003)	Rat	LGN	Toluidine blue	18-28 m/o	10	volume	-6.3	-7.6
(Villena et al., 2003)	Rat	LGN	Toluidine blue	18-28 m/o	10	area	-4.7	-5.6
(Villar-cheda et al., 2009) (Villar-cheda et al., 2009)	Rat	Substantia Nigra	RECA1	4-14 m/o 4-24 m/o	10	number	-14 -21	-16.8
(Ndubuizu et al., 2000)	Rat	Cortex	GLUT-1	3-24 m/o	21	number	-10.3	-5.9
(Ndubuizu et al., 2010)	Rat	Corpus Callosum	GLUT-1	3-24 m/o	21	number	-2.6	-1.5
(Ndubuizu et al., 2010) (Ndubuizu et al., 2010)	Rat Rat	Striatum Hippocampus	GLUT-1 GLUT-1	3-24 m/o 3-24 m/o	21	number number	-10.3	-5.9
(Shao et al., 2010)	Rat	White matter	Collagen 4	7-27 m/o	20	length	-18.6	-11.2
(Shao et al., 2010)	Rat	White matter	Collagen 4	7-27 m/o	20	volume	-23.5	-14.1
(Zhang et al., 2012) (Desiardins et al., 2014)	Rat	Hippocampus S1 cortex	RECA1 Eluroescent plasma label	5-34 m/o 3-24 m/o	29	length	-40	-16.6
(Desjardins et al., 2014)	Rat	S1 cortex	Fluroescent plasma label	3-24 m/o	21	volume	-20.6	-11.8
(Tang et al., 2016)	Rat	Cortex & Striatum	Lectin	3-24 m/o	21	number	-3.5	-2
(Tang et al., 2016) (Schager & CE Brown, current)	Rat	Cortex & Striatum	GLUT-1 FITC Devtran Plasma Label	3-24 m/o	21	number length	-10.6	-6.1
(Schager & CE Brown, current)	Mouse	Fimbria	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-11.6	-8.7
(Schager & CE Brown, current)	Mouse	FrA	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-7.8	-5.9
(Schager & CE Brown, current)	Mouse	GI/DI PRh/Ect	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-3.3	-2.5
(Schager & CE Brown, current)	Mouse	M1/M2	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-10	-12
(Schager & CE Brown, current)	Mouse	\$1FL	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-7.2	-5.4
(Schager & CE Brown, current)	Mouse	RS	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-7.9	-5.9
(Schager & CE Brown, current)	Mouse	HPC	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-2.1	-1.0
(Schager & CE Brown, current)	Mouse	STR	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-4.6	-3.4
(Schager & CE Brown, current)	Mouse	Thalamus	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-4.3	-3.2
(Schager & CE Brown, current)	Mouse	LA	FITC Dextran Plasma Label	3.5-19.5 m/o 3.5-19.5 m/o	16	length	-11.1	-8.3
(Schager & CE Brown, current)	Mouse	SNR	FITC Dextran Plasma Label	3.5-19.5 m/o	16	length	-7.3	-5.5

Supplementary Figure 1. Visual guide of sampling areas. Figure describes stereotaxic levels and bounds of sampling locations for each brain area. These bounds guided ROI locations for each area in microsphere analysis and determined bounds and possible stereotaxic levels for confocal microscopy of vascular density.

Supplementary Data References

- 1. Abernethy WB, Bell MA, Morris M, et al. Microvascular Density of the Human Paraventricular Nucleus Decreases with Aging but Not Hypertension. *Experimental Neurology* 1993; 121: 270–274.
- 2. Bär T. Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging. *Adv Neurol* 1978; 20: 1–9.
- 3. Bell MA, Ball MJ. Morphometric comparison of hippocampal microvasculature in ageing and demented people: Diameters and densities. *Acta Neuropathol* 1981; 53: 299–318.
- 4. Bell MA, Ball MJ. Neuritic plaques and vessels of visual cortex in aging and Alzheimer's dementia. *Neurobiology of Aging* 1990; 11: 359–370.
- 5. Black JE, Polinsky M, Greenough WT. Progressive failure of cerebral angiogenesis supporting neural plasticity in aging rats. *Neurobiol Aging* 1989; 10: 353–358.
- 6. Brown WR, Moody DM, Thore CR, et al. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 2007; 257: 62–66.
- 7. Buchweitz-Milton E, Weiss HR. Perfused capillary morphometry in the senescent brain. Neurobiol Aging 1987; 8: 271–276.
- 8. Buée L, Hof PR, Bouras C, et al. Pathological alterations of the cerebral microvasculature in Alzheimer's disease and related dementing disorders. Acta Neuropathol 1994; 87: 469–480.
- 9. Burns EM, Kruckeberg TW, Gaetano PK. Changes with age in cerebral capillary morphology. Neurobiol Aging 1981; 2: 283–291.
- 10. Casey MA, Feldman ML. Aging in the rat medial nucleus of the trapezoid body. III. Alterations in capillaries. Neurobiol Aging 1985; 6: 39–46.
- 11. Daniel PM. The blood supply of the hypothalamus and pituitary gland. Br Med Bull 1966; 22: 202–208.
- 12. Desjardins M, Berti R, Lefebvre J, et al. Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiology of Aging 2014; 35: 1947–1955.
- 13. Endepols H, Mertgens H, Backes H, et al. Longitudinal assessment of infarct progression, brain metabolism and behavior following anterior cerebral artery occlusion in rats. Journal of Neuroscience Methods 2015; 253: 279–291.
- 14. Erdem A, Yaşargil G, Roth P. Microsurgical anatomy of the hippocampal arteries. J Neurosurg 1993; 79: 256–265.
- 15. Farkas E, de Vos RAI, Donka G, et al. Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol 2006; 111: 150–157.
- 16. Feekes JA, Cassell MD. The vascular supply of the functional compartments of the human striatum. Brain 2006; 129: 2189–2201.
- 17. Hinds JW, McNelly NA. Capillaries in aging rat olfactory bulb: a quantitative light and electron microscopic analysis. Neurobiol Aging 1982; 3: 197–207.

- 18. Hughes CCW, Lantos PL. A morphometric study of blood vessel, neuron and glial cell distribution in young and old rat brain. Journal of the Neurological Sciences 1987; 79: 101–110.
- 19. Hunziker O, Abdel'Al S, Schulz U. The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J Gerontol 1979; 34: 345–350.
- 20. Jucker M, Bättig K, Meier-Ruge W. Effects of aging and vincamine derivatives on pericapillary microenvironment: stereological characterization of the cerebral capillary network. Neurobiol Aging 1990; 11: 39–46.
- 21. Jucker M, Meier-Ruge W. Effects of brovincamine on stereological capillary parameters in adult and old Fischer-344 rats. Microvasc Res 1989; 37: 298–307.
- 22. Klein AW, Michel ME. A morphometric study of the neocortex of young adult and old mazedifferentiated rats. Mech Ageing Dev 1977; 6: 441–452.
- 23. Knox CA, Oliveira A. Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature. Acta Neuropathol 1980; 52: 17–25.
- 24. Mann DM, Eaves NR, Marcyniuk B, et al. Quantitative changes in cerebral cortical microvasculature in ageing and dementia. Neurobiol Aging 1986; 7: 321–330.
- 25. Meier-Ruge W, Hunziker O, Schulz U, et al. Stereological changes in the capillary network and nerve cells of the aging human brain. Mech Ageing Dev 1980; 14: 233–243.
- 26. Meier-Ruge W, Schulz-Dazzi U. Effects of brovincamine on the stereological parameters of corticocerebral capillaries. Life Sciences 1987; 40: 943–949.
- 27. Merksz M, Ambach G, Palkovits M. Blood supply of the rat amygdala. Acta Morphol Acad Sci Hung 1978; 26: 139–171.
- 28. Pula JH, Yuen CA. Eyes and stroke: the visual aspects of cerebrovascular disease. Stroke Vasc Neurol 2017; 2: 210–220.
- 29. Rousselet E, Kriz J, Seidah NG. Mouse Model of Intraluminal MCAO: Cerebral Infarct Evaluation by Cresyl Violet Staining. J Vis Exp 2012; e4038.
- 30. Schmahmann JD. Vascular syndromes of the thalamus. Stroke 2003; 34: 2264–2278.
- 31. Shao W-H, Li C, Chen L, et al. Stereological Investigation of Age-Related Changes of the Capillaries in White Matter. The Anatomical Record 2010; 293: 1400–1407.
- 32. Sonne J, Beato MR. Neuroanatomy, Substantia Nigra. In: StatPearls. Treasure Island, FL: StatPearls Publishing, 2019.
- 33. Sturrock RR. Quantitative and morphological changes in neurons and neuroglia in the indusium griseum of aging mice. J Gerontol 1977; 32: 647–658.
- 34. Tang Y, Wang L, Wang J, et al. Ischemia-induced Angiogenesis is Attenuated in Aged Rats. Aging and disease 2016; 7: 326–335.
- 35. Thomas AG, Koumellis P, Dineen RA. The Fornix in Health and Disease: An Imaging Review. RadioGraphics 2011; 31: 1107–1121.

- Villar-Cheda B, Sousa-Ribeiro D, Rodriguez-Pallares J, et al. Aging and Sedentarism Decrease Vascularization and VEGF Levels in the Rat Substantia Nigra. Implications for Parkinson's Disease. J Cereb Blood Flow Metab 2009; 29: 230–234.
- 37. Wilkinson JH, Hopewell JW, Reinhold HS. A quantitative study of age-related changes in the vascular architecture of the rat cerebral cortex. Neuropathol Appl Neurobiol 1981; 7: 451–462.
- 38. Zhang R, Kadar T, Sirimanne E, et al. Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behavioural Brain Research 2012; 235: 210–217.