
Biophysical Journal, Volume 120
Supplemental Information
Computational Tool for Ensemble Averaging of Single-Molecule Data

Thomas Blackwell, W. Tom Stump, Sarah R. Clippinger, and Michael J. Greenberg



  1

Supporting Materials 

Computational Tool for Ensemble Averaging of Single-Molecule Data 
 
Thomas Blackwell1, W. Tom Stump1, Sarah R. Clippinger1, Michael J. Greenberg1  
1Department of Biochemistry and Molecular Biophysics, Washington University School of 
Medicine, St. Louis, MO, 63110, USA 
 

Supplemental Materials and Methods 

 

Implementation of the computational tool 

The SPASM computational tool, which includes a graphical user interface, was 

written in MATLAB (MathWorks). The program uses the Signal Processing Toolbox and 

the Optimization Toolbox, but neither toolbox is required for analysis. The code was 

tested on MATLAB versions R2017b through R2020a for both Windows and macOS 

operating systems. Standalone versions of the program for both Windows and macOS 

were generated using the MATLAB Compiler.  

The SPASM computational tool can be found at: 

https://github.com/GreenbergLab/SPASM.  This repository includes the open source 

code for SPASM (SPASM.m), compiled versions for Windows (SPASM_Windows.exe) 

and macOS (SPASM_macOS.app.zip), a versions of the program which analyze only 

one trapped bead and uses variance thresholds rather than covariance thresholds 

(SPASM_one_bead.m, SPASM_one_bead_Windows.exe, 

SPASM_one_bead_macOS.app.zip), MATLAB code to generate simulated data 

(simulator.m), a user guide for the aforementioned components 

(SPASM_user_guide.pdf), and the simulated data sets analyzed in this paper (sets 1-

30). 
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Detection of binding interactions 

Binding interactions between a motor and its track in the optical trap can be 

identified using either a variance (1) or a covariance (2, 3) threshold, since the binding of 

a motor to its track causes a reduction in both the variance and covariance of the two 

beads (Fig. 2). The covariance between the beads at any time, t, is calculated by: 

Cov୲ሺA, Bሻ  ൌ  E୵ౙ,୲ሾA ∗ Bሿ – E୵ౙ,୲ሾAሿ ∗ E୵ౙ,୲ሾBሿ 

where A is the position of one bead (bead A), B is the position of the other bead (bead 

B), and E୵ౙ,୲ሾXሿ denotes the mean of X over a window of size wc centered at t. Before 

generating a histogram of covariance values, the covariance is smoothed using a second-

order Savitzky-Golay filter with window size ws to remove high-frequency noise. The 

values of wc and ws can be optimized using the computational tool. See the Supporting 

Materials for details. 

A histogram of the filtered covariance between the two beads shows two distinct 

populations corresponding to bound (B) and unbound (U) states (Fig. 2). This histogram 

can be used to determine covariance thresholds for detecting binding interactions (4). We 

use one of two methods to detect binding interactions from the covariance: (1) assigning 

a single threshold based on the minimum value between the covariance peaks or (2) 

using a peak-to-peak method which requires that the covariance extend between the 

bound peak and the unbound peak. The advantages and disadvantages of these methods 

are discussed in detail in the Results and Discussion. 

Once potential binding interactions have been identified, temporal thresholds can 

be applied to filter the interactions. Any observed reductions in the covariance which are 
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shorter than a user-defined minimum duration are ignored to lower the chance of 

mistakenly identifying random correlated noise as a binding interaction. Also, any two 

binding interactions which are separated in time by less than a user-defined minimum 

separation are ignored to lower the chance of mistakenly identifying random noise as 

premature detachment between the motor and the track. Note that this filtering takes 

place after the change points have been located. 

 

Binding interaction alignment using a change point algorithm and the generation of 

ensemble averages 

Constructing ensemble averages requires the synchronization of individual binding 

interactions at transitions between the bound and unbound states. Here, we implement a 

change point algorithm to identify transitions. This algorithm uses maximum likelihood 

estimation to locate the times, or change points, where changes in both the mean and 

variance of each bead’s position have most likely occurred. For each binding interaction 

identified using covariance thresholds, the algorithm searches for the change points 

within a window of data. For the kth binding interaction, this window spans from  

tଵ ൌ  t୩,ୱ୲ୟ୰୲ െ 0.49 ∗ min ൫t୩,ୣ୬ୢ െ t୩,ୱ୲ୟ୰୲, t୩,ୱ୲ୟ୰୲ െ t୩ିଵ,ୣ୬ୢ൯ 

to 

t୒ ൌ  t୩,ୣ୬ୢ ൅ 0.49 ∗ min ൫t୩,ୣ୬ୢ െ t୩,ୱ୲ୟ୰୲, t୩ାଵ,ୱ୲ୟ୰୲ – t୩,ୣ୬ୢ൯ 

where t୩,ୱ୲ୟ୰୲ and t୩,ୣ୬ୢ denote the beginning and end times of the kth interaction as 

estimated by the covariance threshold method. The window must be wide enough that it 

includes the entirety of the kth interaction but not so wide that it contains part of another 

interaction. The computational tool automatically searches the default window for change 
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points, but it also allows for manual adjustment of both the search window and the 

identified change points. 

The algorithm considers the average position between beads A and B during this 

window. For each pair of time points within the window, (t୧, t୨), the algorithm calculates 

the likelihood that these points coincide with changes in the mean and variance of the 

data. Each pair divides the window into three intervals: [tଵ, t୧], [t୧ାଵ, t୨], and [t୨ାଵ, t୒], 

where 1 < i < j < N. The log-likelihood score, Lሺ୲౟,୲ౠሻ, assigned to (t୧, t୨) measures how well 

normal distributions can be fit to these intervals of data: 

Lሺ୲౟,୲ౠሻ ൌ െ ൤
j െ i

2
ln ቀσଶ

ൣ୲౟శభ,୲ౠ൧ቁ൨ െ ൤
N െ j ൅ i

2
ln ቀσଶ

ሾ୲భ,୲౟ሿ∪ሾ୲ౠశభ,୲ొሿቁ൨ 

where σଶ is the variance of the data during the corresponding interval (see the Supporting 

Materials for the derivation). L is maximized where the values of t୧ and t୨ best divide the 

window into three sequences of normally distributed data, and these values of t୧ and t୨ 

are then assigned as the change points. 

After synchronization at the change points, both time forward and time reversed 

ensemble averages of individual binding interactions are generated from the average of 

the two beads’ positions using well-established methods (5). Shorter-lived binding 

interactions are extended in time to match the duration of the longest-lived binding 

interaction. The value of this extension equals the average position of the beads during 

either the first or last 5 ms of the binding interaction for the time reversed and time forward 

averages, respectively. 

 

Generation of simulated single-molecule data 
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To test the accuracy of the program and to aid in the selection of proper window 

sizes for the analysis of experimental data, we created an additional program to simulate 

data that resembles single-molecule interactions collected using our optical trapping 

system with user-defined substep sizes and kinetics. It is important to note that the signal-

to-noise ratio will vary between instruments. The code for this program is provided 

alongside SPASM so that users can adapt the simulation parameters for their system of 

interest. Rather than explicitly solving the equations of motion for the optically trapped 

beads, the parameters used for simulation can be empirically varied until the simulated 

data matches the experimental data. Trapping data is simulated using a continuous-time 

Markov jump process in which the motor switches among a baseline detached state and 

two successive attached states, each with a unique displacement, representing a motor 

with a two-substep working stroke. The user can set the number of states, the rates of 

transitioning between the states, and the displacements of each state. High-frequency 

Gaussian noise is added to simulate Brownian motion. To simulate mechanical coupling 

between the beads (i.e., higher covariance), a fraction of the noise in each bead’s 

position, f, is shared between the two beads. When the motor is dissociated from its track, 

f is set to a larger number so that the motion of the two beads is correlated. When the 

motor is bound to the track, f is set to a lower number, resulting in a lower covariance. 

Drift in the system is simulated by the addition of low-frequency noise. For additional 

details, see the Supporting Materials and the provided code. 

 

Analysis of simulated data 
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To test our analysis approach, we generated simulations with well-defined 

characteristics. Data were simulated with a 2 kHz sampling rate. First, we generated 10 

data sets (sets 1-10), each containing 100 binding interactions, to simulate beta cardiac 

myosin based on previous optical trapping and kinetic measurements (6-8). The rate of 

transitioning from the detached state to the first attached state was set to 0.5 s-1. The rate 

of transitioning from the first attached state to the second attached state was set to 70 s-

1, matching the rate of ADP release (9). The rate of transitioning from the second attached 

state to the detached state was 4 s-1, matching the rate of ATP-induced actomyosin 

dissociation at 1 µM ATP. The myosin was modeled to have a two-substep working stroke 

with a 4.7 nm substep followed by a second substep of 1.9 nm (6). 

We then generated 10 more data sets to analyze with SPASM (sets 11-20). Each 

of these sets of data contained 100 simulated binding interactions. The rate of 

transitioning from the detached state to the first attached state remained at 0.5 s-1. The 

rate of transitioning from the first attached state to the second attached state, however, 

was much lower at 5 s-1, and the rate of transitioning from the second attached state to 

the detached state was 2 s-1. As before, the myosin was modeled to have a two-substep 

working stroke with a 4.7 nm substep followed by a second substep of 1.9 nm. 

With the simulated data, the exact locations of transition points between the bound 

and unbound states are known, allowing us to test the performance of different analysis 

methods with regards to: (1) the frequency of false positive binding interactions (i.e., when 

the bound state is incorrectly detected while the motor is actually unbound), (2) the 

number of false negative binding interactions (i.e., when the unbound state is incorrectly 
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detected while the motor is actually bound), and (3) the error in determining the correct 

initiation and termination times of each binding interaction. 

To determine the number of false positives, each detected binding interaction was 

mapped to the nearest overlapping real binding interaction. If a detected binding 

interaction did not overlap with any real binding interactions, it was counted as a false 

positive. If multiple detected binding interactions were mapped to the same real binding 

interaction, all but the closest were also counted as false positives. As we fixed the 

number of simulated binding interactions within each data set, rather than the total 

duration of each data set, the data sets typically varied in duration. A longer set of data is 

expected to result in more false positives, and so the frequency of false positives was 

calculated by dividing the number of false positives by the duration of the data set. To 

determine the number of false negatives, each real binding interaction was mapped to 

the nearest overlapping detected binding interaction. If a real binding interaction did not 

overlap with any detected binding interactions, it was counted as a false negative. If 

multiple real binding interactions were mapped to the same detected binding interaction, 

all but the closest were also counted as false negatives. The error was calculated as the 

difference between the computationally identified transition points and the nearest 

simulated transition points for which the corresponding binding interactions overlapped. 

 

Statistical analysis 

Simulated binding interactions were detected using either the single threshold 

method or the peak-to-peak method (3), and the frequency of false positives and the 

number of false negatives were determined. To test for a significant difference in the mean 
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frequency of false positives or the mean number of false negatives between the two 

methods, p-values were obtained from the independent two-sample t-test. To test if the 

median error of the detected transition points was significantly changed with the addition 

of the change point algorithm, p-values were obtained from the Wilcoxon rank sum test.  

Ensemble averages were generated from each method of analysis, as well as from 

the known locations of actual simulated binding interactions. To extract parameters from 

the ensemble averages, exponential curves were fit to each average, yielding estimates 

for the substep sizes and rates of the simulated data. For each extracted parameter, a 

Kruskal-Wallis test was used followed by pairwise Wilcoxon rank sum tests to determine 

p-values.  

 

Design of optical trapping apparatus 

Experiments were performed on a custom-built, microscope free dual beam optical 

trap, based on (10, 11). The optical layout is described in the Supporting Materials and 

Methods (Fig. S1). Briefly, the output from a 10 W 1064 nm laser beams (IPG Photonics) 

was rotated by 45 degrees and then separated into vertically and horizontally polarized 

components to form 2 independent traps. Optical traps were independently steerable 

using acoustic optical deflectors (Gooch and Housego) and frequency synthesizer boards 

under FPGA control (Analog Devices, AD9910 Direct Digital Synthesis evaluation 

boards). The light from the trapping laser was used for determining the displacement of 

the beads from the center of the optical trap, and this was measured at the back focal 

plane using two quadrant photodiodes (501104, First Sensor). Data were low pass filtered 

(Frequency Devices) to the Nyquist frequency and digitized on a National Instruments 
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FPGA board (PCIe 7852) with simultaneously sampling analog to digital converters. 

System control was accomplished by custom software written in LabView. 3D stage 

control was achieved using a piezoelectric stage (Mad City Labs). Fluorescence was 

illuminated using the output of a 50 mW 532 laser (Crystalaser). Imaging was performed 

using an EMCCD camera (Andor). 

 

Optical trapping experiments 

Porcine cardiac myosin and actin were purified from cryoground tissue (Pelfreez) 

as previously described (12, 13). Bead coated flow cells were assembled as previously 

described (3, 6, 14). All experiments were performed in KMg25 buffer (60 mM MOPS pH 

7.0, 25 mM KCl, 2 mM EGTA, 4 mM MgCl2, 1 mM DTT). All buffers and dilutions were 

prepared fresh each day. Biotin-labeled actin (2 µM) was prepared using 10% biotin actin 

(Cytoskeleton) in KMg25 buffer. The mixture was allowed to polymerize for 20 minutes, 

and then the actin was stabilized using tetramethylrhodamine isothiocyanate-labeled 

phalloidin. 1 µm diameter, polystyrene beads coated with streptavidin (Bangs Labs) were 

washed in 1 mg/mL BSA in KMg25 buffer three times. Flow cells were loaded with myosin 

(4-20 nM in KMg25 with 200 mM KCl) for 5 minutes and then blocked with 1 mg/mL BSA 

for 5 minutes. Activation buffer contained KMg25 with the addition of 1 µM ATP, 192 U/mL 

glucose oxidase, 48 µg/mL catalase, 1 mg/mL glucose, and ~25 pM Biotin rhodamine-

phalloidin actin. A small amount (4 µL) of streptavidin beads were loaded into the flow 

cell, and the flow cell was sealed with vacuum grease. Trapping experiments were 

conducted as previously described (3). Two streptavidin beads were optically trapped, 

forming a bead-actin-bead dumbbell. Trap stiffness was determined by fitting of the power 
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spectral density collected at 20 kHz. The bead-actin-bead dumbbell was pretensed to 

approximately 2-3 pN and then lowered onto a surface bead to search for binding 

interactions. Approximately 1 in 5 beads showed binding interactions. Data were acquired 

at 2 kHz and filtered to 1 kHz.
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Derivation of the log-likelihood function for the change point algorithm 

 Generally, given a set of data, a change point algorithm can help determine 

whether any changes have occurred and, if so, where the changes most likely occurred. 

In our implementation, we first use the covariance to identify binding interactions and then 

apply the change point algorithm to precisely determine where the transitions between 

the bound and unbound states occurred. For each identified binding interaction, we 

consider windows of data surrounding the interactions. Therefore, we assume each 

window contains exactly two change points, and we only need to determine where they 

occur. 

 The change point algorithm aims to maximize the log-likelihood function, whose 

derivation requires knowledge of the distributions underlying a particular set of data. In 

the case of optical trapping data, the data points are typically normally distributed with 

unique means and variances for the bound and unbound states. Other types of data sets 

might have different underlying distributions and therefore different log-likelihood 

functions that must be maximized. For example, in the case of single molecule FRET 

data, the distributions of FRET efficiencies in each state typically have unique means but 

do not necessarily have unique variances. In the case of single photon wait times, the 

underlying distributions are Poisson distributed rather than normally distributed. Below, 

we show how to derive the log-likelihood function for normally distributed data with a 

change in both mean and variance, using maximum likelihood estimation. For other types 

of data, the log-likelihood function can be derived using similar methods. 

 For a window of data occurring at times 𝑻 ൌ ሼ1,2, … , 𝑁ሽ, we know the average 

position of the beads 𝑿 ൌ ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ேሽ. We assume there exist times 𝑖 and 𝑗 within 
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ሼ1,2, … , 𝑁 െ 1ሽ such that ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋௜ሽ and ሼ𝑋௝ାଵ, 𝑋௝ାଶ, … , 𝑋ேሽ are drawn from some normal 

distribution 𝑁ሺ𝜇௎, 𝜎௎
ଶሻ and ሼ𝑋௜ାଵ, 𝑋௜ାଶ, … , 𝑋௝ሽ are drawn from a second normal distribution 

𝑁ሺ𝜇஻, 𝜎஻
ଶሻ. Therefore, the density function for any point 𝑋௞ within our data is: 

𝑓ሺ𝑋௞ሻ ൌ

⎩
⎪
⎨

⎪
⎧ 1

ඥ2𝜋𝜎௎
ଶ

exp ቈെ
1
2

൬
𝑋௞ െ 𝜇௎

𝜎௎
൰

ଶ

቉ ,     if 1 ൑ 𝑘 ൑ 𝑖 or 𝑗 ൏ 𝑘 ൑ 𝑁

1

ඥ2𝜋𝜎஻
ଶ

exp ቈെ
1
2

൬
𝑋௞ െ 𝜇஻

𝜎஻
൰

ଶ

቉ ,                               if 𝑖 ൏ 𝑘 ൑ 𝑗

 

Assuming independence among the datapoints, the probability of obtaining the entire data 

set 𝑿 is given by the likelihood function: 

𝑓ሺ𝑿ሻ ൌ 𝑓ሺ𝑋ଵሻ𝑓ሺ𝑋ଶሻ … 𝑓ሺ𝑋ேሻ 

ൌ ቆෑ
1

ඥ2𝜋𝜎௎
ଶ

exp ቈെ
1
2

൬
𝑋௞ െ 𝜇௎

𝜎௎
൰

ଶ

቉
௜

௞ୀଵ
ቇ ∗ ቆෑ

1

ඥ2𝜋𝜎஻
ଶ

exp ቈെ
1
2

൬
𝑋௞ െ 𝜇஻

𝜎஻
൰

ଶ

቉
௝

௞ୀ௜ାଵ
ቇ

∗ ቆෑ
1

ඥ2𝜋𝜎௎
ଶ

exp ቈെ
1
2

൬
𝑋௞ െ 𝜇௎

𝜎௎
൰

ଶ

቉
ே

௞ୀ௝ାଵ
ቇ 

Only the values ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ேሽ are known. We wish to determine values for the 

parameters 𝜇௎, 𝜎௎
ଶ, 𝜇஻, 𝜎஻

ଶ, 𝑖, and 𝑗 which maximize 𝑓. Equivalently, one could maximize 

the log-likelihood function. The log-likelihood function is the natural logarithm of 𝑓: 

ln 𝑓 ൌ ቈെ
𝑖
2

lnሺ2𝜋𝜎௎
ଶሻ െ

1
2𝜎௎

ଶ ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ
௜

௞ୀଵ
቉

൅ ቈെ
𝑗 െ 𝑖

2
lnሺ2𝜋𝜎஻

ଶሻ െ
1

2𝜎஻
ଶ ෍ ሺ𝑋௞ െ 𝜇஻ሻଶ

௝

௞ୀ௜ାଵ
቉

൅ ቈെ
𝑁 െ 𝑗

2
lnሺ2𝜋𝜎௎

ଶሻ െ
1

2𝜎௎
ଶ ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ

ே

௞ୀ௝ାଵ
቉ 

An estimate for 𝜇௎ෞ , the value of 𝜇௎ which maximizes ln 𝑓, is obtained by solving 
డ ୪୬௙

డ ఓೆ
ൌ 0: 
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𝜕 ln𝑓
𝜕 𝜇௎

ൌ
1

𝜎௎
ଶ ቈ෍ ሺ𝑋௞ െ 𝜇௎ሻ

௜

௞ୀଵ
൅ ෍ ሺ𝑋௞ െ 𝜇௎ሻ

ே

௞ୀ௝ାଵ
቉ 

ൌ
1

𝜎௎
ଶ ቈቆ෍ 𝑋௞

௜

௞ୀଵ
൅ ෍ 𝑋௞

ே

௞ୀ௝ାଵ
ቇ െ ሺ𝑁 െ 𝑗 ൅ 𝑖ሻ𝜇௎቉ ൌ 0 

⇒ ෍ 𝑋௞

௜

௞ୀଵ
൅ ෍ 𝑋௞

ே

௞ୀ௝ାଵ
ൌ ሺ𝑁 െ 𝑗 ൅ 𝑖ሻ𝜇௎ 

⇒ 𝜇௎ෞ ൌ
1

ሺ𝑁 െ 𝑗 ൅ 𝑖ሻ
ቈ෍ 𝑋௞

௜

௞ୀଵ
൅ ෍ 𝑋௞

ே

௞ୀ௝ାଵ
቉ 

The estimate for 𝜇஻ෞ is found similarly to be: 

𝜇஻ෞ ൌ
1

𝑗 െ 𝑖
෍ 𝑋௞

௝

௞ୀ௜ାଵ
 

An estimate for 𝜎௎
ଶ෢  is obtained by solving 

డ ୪୬௙

డ ఙೆ
మ ൌ 0 and using 𝜇௎ෞ  as an estimate for 𝜇௎: 

𝜕 ln𝑓
𝜕 𝜎௎

ଶ ൌ െ
𝑁 െ 𝑗 ൅ 𝑖

2𝜎௎
ଶ ൅

1
2𝜎௎

ସ ቈ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ
௜

௞ୀଵ
൅ ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ

ே

௞ୀ௝ାଵ
቉ ൌ 0 

⇒
𝑁 െ 𝑗 ൅ 𝑖

2𝜎௎
ଶ ൌ

1
2𝜎௎

ସ ቈ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ
௜

௞ୀଵ
൅ ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ

ே

௞ୀ௝ାଵ
቉ 

⇒ 𝑁 െ 𝑗 ൅ 𝑖 ൌ
1

𝜎௎
ଶ ቈ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ

௜

௞ୀଵ
൅ ෍ ሺ𝑋௞ െ 𝜇௎ሻଶ

ே

௞ୀ௝ାଵ
቉ 

⇒ 𝜎௎
ଶ෢ ൌ

1
𝑁 െ 𝑗 ൅ 𝑖

ቈ෍ ሺ𝑋௞ െ 𝜇௎ෞሻଶ
௜

௞ୀଵ
൅ ෍ ሺ𝑋௞ െ 𝜇௎ෞሻଶ

ே

௞ୀ௝ାଵ
቉ 

The estimate for 𝜎஻
ଶ෢  is similarly given by: 

𝜎஻
ଶ෢ ൌ

1
𝑗 െ 𝑖

෍ ሺ𝑋௞ െ 𝜇஻ෞሻଶ
௝

௞ୀ௜ାଵ
 

The log-likelihood function simplifies after these values are substituted: 

ln 𝑓 ൌ ൤െ
𝑗 െ 𝑖

2
ln൫2𝜋𝜎஻

ଶ෢ ൯ െ
𝑁 െ 𝑗 ൅ 𝑖

2
ln൫2𝜋𝜎௎

ଶ෢ ൯൨ െ
𝑗 െ 𝑖

2
െ

𝑁 െ 𝑗 ൅ 𝑖
2
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ൌ ൤െ
𝑗 െ 𝑖

2
ln൫𝜎஻

ଶ෢ ൯ െ
𝑁 െ 𝑗 ൅ 𝑖

2
ln൫𝜎௎

ଶ෢ ൯൨ െ
𝑁
2

lnሺ2𝜋ሻ െ
𝑁
2

 

 It is sufficient to maximize the following function: 

𝐿 ൌ െ
𝑗 െ 𝑖

2
ln൫𝜎஻

ଶ෢ ൯ െ
𝑁 െ 𝑗 ൅ 𝑖

2
ln൫𝜎௎

ଶ෢ ൯ 

This function depends only on 𝑿, 𝑖, and 𝑗. As 𝑖 and 𝑗 must be within the set ሼ1,2, … , 𝑁 െ

1ሽ, 𝚤̂ and 𝚥̂ may be determined empirically. 
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Figure S1. Optical trap layout. A half-wave plate (HW) / polarizer (P) combination 

attenuates the vertically polarized 1064 nm trapping laser beam (IPG) to the intensity 

required for the experiment, while a second half-wave plate adjusts the polarization angle 

to 45 degrees such that two traps with orthogonal polarization and equal power can be 

formed. The beam is split into vertical and horizontal components by the first polarizing 

beam splitter (PBS, Newport), and each beam passes through an acousto-optic deflector 

(AOD, Gooch and Housego) for computer-controlled trap steering and power control. The 

AODs require an input polarization parallel to their horizontal steering plane, and the 

output from the AODs is vertically polarized. Therefore, a half-wave plate is needed to 

rotate the polarization before one AOD, and a separate half-wave plate is used to rotate 

polarization after the other AOD. The two polarization separated beams are then 

recombined using a second PBS. The beams are then expanded to fill the back aperture 
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of the microscope objective by a pair of beam expanders, each formed by two 

planoconvex lenses with a biconcave lens at the crossover point to limit fluctuations 

caused by localized heating of the air. Motorized mirrors (M, with arrows, Newport) are 

placed at two points for coarse positioning of the beams: the first adjusts one trap’s 

position while the second, which is conjugate to the back aperture of the objective, 

repositions both traps simultaneously in the microscope field of view. The AOD’s and 

quadrant photodiode detectors (QPDs, see below) are conjugate to the back focal plane 

of the objective so that beam steering is not registered as signal change on the QPDs. 

After the laser beams pass through the trapped beads, the resulting interference patterns 

are collected by the condenser (a second objective lens) and split into their respective 

polarizations by a PBS. These polarization-separated interference patterns are then 

imaged onto the two quadrant photodiodes (QPDs, First Sensor). Neutral density (ND) 

and 1064 nm bandpass filters (F) are used to avoid detector saturation and to remove 

non-trapping wavelengths of light, respectively. 

Beads are visualized on an electron multiplying charge coupled device (EMCCD), 

or alternatively a standard CCD camera using wide field transillumination provided by a 

730 nm LED (Thorlabs). An iris (I) is positioned so that its image is in focus when the 

condenser is set at the correct height for trapping beam imaging onto the QPDs. Before 

reaching the condenser, this beam passes through a dichroic mirror (DM, Semrock) that 

is used to reflect the trapping beams to the QPDs. 

The EMCCD is also used to visualize fluorescent actin molecules in a wide field 

epifluorescence arrangement using an expanded 532 nm laser (CrystaLaser) introduced 

into the trapping beam path with a dichroic mirror. Another dichroic mirror separates the 
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excitation light from the emission signal, which is subsequently filtered by dual filters (F). 

Both the 532 nm and 1064 nm lasers have shutters (S). 
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Figure S2. The single threshold method detects more false positive binding 

interactions than the peak-to-peak method, and efficiently excluding these 
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interactions is difficult. 10 sets of data, each containing 100 simulated binding 

interactions, were analyzed by either the single threshold method or the peak-to-peak 

method. (A) Scatter plot showing the duration and the smaller of the two separations of 

each binding interaction detected by the single threshold method, both in units of 

seconds. A binding interaction’s two separations are the amounts of time separating that 

interaction from the preceding and subsequent interactions. Both axes are scaled 

logarithmically. False positive interactions identified by the method are shown in red. As 

can be seen, most false positive interactions have relatively short durations and/or 

separations. The yellow box indicates the binding interactions which remain after filtering 

out any interactions with a duration shorter than 77 ms or a separation shorter than 63 

ms. These two values were chosen to be as small as possible while still filtering out all 

false positive interactions. Due to significant overlap between the false positive 

interactions and many of the correctly detected interactions, it is not easy to pick suitable 

values for filtering the interactions unless the false positive binding interactions have 

already been identified. This can only confidently be done using simulated data where 

one can know for certain whether a detected interaction is a false positive. After the 

filtering takes place, 598 interactions remain. (B) Scatter plot showing the duration and 

the smaller of the two separations of each binding interaction detected by the peak-to-

peak method. No false positive interactions were detected by the peak-to-peak method. 

Applying the same filtering as with the single threshold method leaves 613 interactions. 

Note that the durations and separations are calculated based on the binding initiation and 

termination times estimated by the single threshold or peak-to-peak method. A binding 

interaction detected by the peak-to-peak method will always appear to be longer than the 
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corresponding interaction detected by the single threshold method (see main text for 

details). 
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Figure S3. Higher signal-to-noise ratios enable the detection of a greater number 

of binding interactions, with fewer missed binding interactions.  10 sets of data, 

each containing 100 simulated binding interactions, were analyzed by either the single 

threshold method or the peak-to-peak method. Purple bars show binding interactions 

identified using the peak-to-peak method. (A) Simulated data trace taken from data sets 
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1-10. This is the same data set analyzed in Table S1. (B) Simulated data trace with a 

greater signal-to-noise ratio, taken from data sets 21-30.  The signal-to-noise ratio was 

increased in the simulations by reducing the amplitude of the high frequency noise.  The  

increased signal-to-noise ratio enabled the detection of a greater number of binding 

interactions, with fewer binding interactions being missed.  
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Figure S4. Ensemble averages generated with the single threshold method without 

filtering events leads to an underestimate of the total step size due to the inclusion 

of false positive binding interactions. The same sets of simulated data were analyzed 

as with Fig. 5 (sets 1-10), each containing 100 binding interactions. As with Fig. 5, 

interactions were detected using either the peak-to-peak (PTP) or the single threshold 

(ST) method, and interactions were aligned using either the transitions estimated by the 

covariance threshold method or the change points identified by the change point 

algorithm (CP). Here, unlike with Fig. 5, none of the binding interactions detected by the 

single threshold method were removed. Many of these binding interactions are false 

positives (see Figure S2). (A-B) Time forward (left) and time reversed (right) ensemble 

averages were generated from the known locations of the actual simulated binding 

interactions (real) and from each method of analysis. (C-F) Within each of the 10 sets of 

data, ensemble averages were generated and fit with single exponential functions. The 

substep sizes and rates of the simulated myosin working stroke were estimated from the 

exponential fits. Box plots show the estimated parameters for each analysis method. 

Outliers are indicated by red dots. The substep sizes were estimated from both the time 

forward (f) and time reversed (r) ensemble averages. Horizontal dashed lines show the 

values of the simulated parameters. The total step size is underestimated by the single 

threshold method, both with (ST/CP) and without (ST) the change point algorithm, due to 

the inclusion of false positive binding interactions which do not generate any net 

displacement in the optical trap. 
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Figure S5. Ensemble averages are able to accurately estimate the substep sizes 

and kinetic rates when the underlying transitions have slower kinetics. 10 sets of 
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data were simulated, each containing 100 binding interactions (sets 11-20). Here, the rate 

of transitioning from the first to second substep was set to 5 s-1, which is much lower than 

the rate of 70 s-1 used in Fig. 5. Additionally, the rate of transitioning from the second 

substep to the detached state was set to 2 s-1. The magnitude of the two substeps were 

still 4.7 nm and 1.9 nm, as before. As in Fig. 5, interactions were detected using either 

the peak-to-peak (PTP) or the single threshold (ST) method, and interactions were 

aligned using either the transitions estimated by the covariance threshold method or the 

change points identified by the change point algorithm (CP). Also similar to Fig. 5, binding 

interactions detected by the single threshold method which were too short or too close to 

other interactions were excluded from analysis, to minimize the number of false positive 

interactions. (A-B) Time forward (left) and time reversed (right) ensemble averages were 

generated from the known locations of the actual simulated binding interactions (real) and 

from each method of analysis. (C-F) Within each of the 10 sets of data, ensemble 

averages were generated and fit with single exponential functions. The substep sizes and 

rates of the simulated myosin working stroke were estimated from the exponential fits. 

Box plots show the estimated parameters for each analysis method. Outliers are indicated 

by red dots. The substep sizes were estimated from both the time forward (f) and time 

reversed (r) ensemble averages. Horizontal dashed lines show the values of the 

simulated parameters. Unlike with Fig. 5, the time reversed averages generated from 

simulations with slower kinetics offer accurate estimates of the size of substep 1. 
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Method 
Average # of correctly 
detected interactions 

(mean ± SD) 

Average # of 
missed interactions 

(mean ± SD) 

# of false 
positive 

interactions / 
100 seconds 
(mean ± SD)

Single threshold 80 ± 4 20 ± 4 4 ± 1
Peak-to-peak 65 ± 5 36 ± 5 0

 
Table S1. Detection of binding interactions using either the single or peak-to-peak 

covariance threshold method. Average number of correctly identified binding 

interactions and frequency of false positive binding interactions detected with the single 

threshold method and peak-to-peak method for 10 data sets, each containing 100 

simulated binding interactions (sets 1-10). Calculated values were rounded to the nearest 

whole number. 
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Method 
Error in binding initiation 

times (ms, mean with 95% CI)
Error in binding termination 

times (ms, mean with 95% CI)
Single threshold 28.2 (+13.8, -21.7) -28.6 (+19.1, -11.9)

Peak-to-peak -55.5 (+69.0, -195.5) 50.4 (+188.1, -64.9)
Change point 

algorithm 
0.5 (+9.0, -5.5) 0.7 (+4.8, -4.2) 

 
Table S2. The change point algorithm minimizes the error when detecting the 

locations of transitions. Mean and 95% confidence intervals for the error when 

detecting transitions within simulated data sets 1-10 with the single threshold method, the 

peak-to-peak method, and the change point algorithm. When estimating the binding 

initiation times, 645 of 1000 transitions were detected and analyzed for the peak-to-peak 

method, 598 transitions were detected and analyzed for the single threshold method, and 

644 transitions were detected and analyzed for the change point algorithm. The same 

number of transitions were detected and analyzed for each method when estimating the 

binding termination times. Note that a negative average error indicates that the detected 

transitions occurred before the actual transitions, on average. 
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Time forward ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP

Substep 1 
(nm) 

4.7 
(+0.4, -0.4) 

0.6 
(+0.7, -0.5) 
p < 0.001

6.3 
(+0.3, -0.3) 
p < 0.001

5.0 
(+0.5, -0.3) 
p = 0.021 

5.0 
(+0.4, -0.6) 
p = 0.045

Substep 2 
(nm) 

1.7 
(+0.5, -0.4) 

5.6 
(+1.7, -0.8) 
p < 0.001

0.5 
(+1.7, -0.4) 
p = 0.003

1.6 
(+0.3, -0.4) 
p = 0.427 

1.5 
(+0.5, -0.6) 
p = 0.186

Total step 
(nm) 

6.4 
(+0.2, -0.2) 

6.2 
(+2.0, -1.1) 
p = 0.026

6.8 
(+2.1, -0.3) 
p = 0.002

6.6 
(+0.1, -0.1) 
p = 0.001 

6.5 
(+0.2, -0.2) 
p = 0.186

Rate (s-1) 

68.7 
(+15.8, -20.

9) 

20.2 
(+7.4, -12.8)

p < 0.001 

84.3 
(+43.8, -84.

3) 
p = 0.141

64.5 
(+30.0, -20.

9) 
p = 0.473 

63.6 
(+42.3, -25.

0) 
p = 0.241

Time reversed ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP

Substep 1 
(nm) 

5.7 
(+0.2, -0.3) 

1.7 
(+0.8, -0.4) 
p < 0.001

5.2 
(+1.8, -5.2) 
p = 0.026

5.7 
(+0.4, -0.6) 
p = 0.970 

5.0 
(+1.0, -5.0) 
p = 0.385

Substep 2 
(nm) 

0.7 
(+0.2, -0.2) 

7.1 
(+1.7, -1.4) 
p < 0.001

1.4 
(+5.2, -1.4) 
p = 0.038

1.0 
(+0.5, -0.4) 
p = 0.026 

1.6 
(+4.8, -1.1) 
p = 0.045

Total step 
(nm) 

6.5 
(+0.1, -0.2) 

8.8 
(+1.4, -1.6) 
p < 0.001

6.6 
(+0.4, -0.1) 
p = 0.003

6.7 
(+0.1, -0.1) 
p < 0.001 

6.7 
(+0.4, -0.2) 
p = 0.011

Rate (s-1) 
4.3 

(+2.2, -1.9) 
3.3 

(+1.2, -0.6) 
p = 0.054

1.7 
(+4.8 -1.7) 
p = 0.038

3.3 
(+3.9, -2.0) 
p = 0.089 

3.0 
(+3.8, -2.9) 
p = 0.076

 

Table S3. The change point algorithm improves ensemble averages. 10 sets of data 

were simulated, each containing 100 binding interactions (sets 1-10). Interactions were 

detected using either the peak-to-peak or the single threshold method, and interactions 

were aligned using either the transitions estimated by the covariance threshold method 

or the change points identified by the change point algorithm. For each data set, ensemble 

averages were generated using either the known locations of actual simulated binding 

interactions (real) or using the binding interactions detected by each method of analysis. 
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The averages were fit with exponential functions, and the substep sizes and rates of the 

simulated myosin working stroke were estimated from the rates and amplitudes of the 

exponential fits. (top) Mean and 95% confidence intervals for the size of substep 1, the 

size of substep 2, the total step size, and the rate of transitioning from the first substep to 

the second substep, as estimated by the time forward ensemble averages. (bottom) Mean 

and 95% confidence intervals for the size of substep 1, the size of substep 2, the total 

step size, and the rate of transitioning from the second substep to the detached state, as 

estimated by the time reversed ensemble averages. The p-value for a given set of 

parameter values estimated by a given analysis method was obtained from the Wilcoxon 

rank sum test between those estimated parameter values and the values estimated by 

using the known locations of actual simulated binding interactions (real).  
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