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ABSTRACT Molecular motors couple chemical transitions to conformational changes that perform mechanical work in a wide
variety of biological processes. Disruption of this coupling can lead to diseases, and therefore there is a need to accurately mea-
sure mechanochemical coupling in motors in both health and disease. Optical tweezers with nanometer spatial and millisecond
temporal resolution have provided valuable insights into these processes. However, fluctuations due to Brownian motion can
make it difficult to precisely resolve these conformational changes. One powerful analysis technique that has improved our ability
to accurately measure mechanochemical coupling in motor proteins is ensemble averaging of individual trajectories. Here, we
present a user-friendly computational tool, Software for Precise Analysis of Single Molecules (SPASM), for generating ensemble
averages of single-molecule data. This tool utilizes several conceptual advances, including optimized procedures for identifying
single-molecule interactions and the implementation of a change-point algorithm, to more precisely resolve molecular transi-
tions. Using both simulated and experimental data, we demonstrate that these advances allow for accurate determination of
the mechanics and kinetics of the myosin working stroke with a smaller set of data. Importantly, we provide our open-source
MATLAB-based program with a graphical user interface that enables others to readily apply these advances to the analysis
of their own data.
SIGNIFICANCE Single-molecule optical trapping experiments have given unprecedented insights into the mechanisms
of molecular machines. Analysis of these experiments is often challenging because Brownian-motion-induced fluctuations
introduce noise that can obscure molecular motions. A powerful technique for analyzing these noisy traces is ensemble
averaging of individual binding interactions, which can uncover information about the mechanics and kinetics of molecular
motions that are typically obscured by Brownianmotion. Here, we provide an open-source, easy-to-use computational tool,
SPASM, with a graphical user interface for ensemble averaging of single-molecule data. This computational tool utilizes
several conceptual advances that significantly improve the accuracy and resolution of ensemble averages, enabling the
generation of high-resolution averages from a smaller number of binding interactions.
INTRODUCTION

Molecular motors generate force and movement in a wide
array of cellular processes, including muscle contraction,
packaging of DNA into viral capsids, intracellular transport,
DNA damage repair, and cell motility (1). These motors
have complex mechanochemical cycles in which chemical
transitions are coupled to conformational changes in the
protein structure that generate mechanical work. The
kinetics and mechanics of these transitions are tuned to
the specific molecular role of the motor in the cell, and
subtle changes in these properties can lead to an array of dis-
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eases (2). Therefore, there is a need for experimental and
computational techniques for probing these relationships.

Single-molecule optical trapping techniques with nano-
meter spatial and millisecond temporal resolution have
proven to be powerful tools for studying the mechanochem-
ical coupling in motors. One widely used optical trapping
technique is the three-bead assay (Fig. 1 A; (3,4)). In this
assay, two beads are held in place by dual-beam optical
tweezers. The motor’s track (e.g., actin) is strung between
these beads and then lowered onto a third, surface-bound
bead. This third bead is sparsely coated with motor mole-
cules (e.g., myosin) such that only a single motor interacts
with the track at any given time. The positions of the
two optically trapped beads are monitored to study the
interactions between the motor and the track (Fig. 1 B),
where motor binding to the track causes both displacement
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FIGURE 1 Ensemble averaging of optical trap-

ping data enables the study of mechanochemical

coupling. (A) A diagram of the three-bead assay,

in which an actin filament strung between the two

optically trapped beads is lowered onto a third sur-

face-bound bead that is sparsely coated with

myosin, is shown. (B) Single-molecule binding in-

teractions between cardiac myosin and actin at

1 mM ATP recorded in the optical trap are shown.

The average position between the optically trapped

beads is plotted as a function of time, with blue hor-

izontal bars indicating detected binding interac-

tions. The mean position and variance of the

beads change upon binding. A single binding inter-

action, shown in the red box, is expanded. Brow-

nian motion obscures the second substep of the

working stroke. (C) A schematic shows the two

substeps of the myosin working stroke. (D) Ideal-

ized trace shows the position over time of a motor

with a two-substep working stroke without Brow-

nian motion. (E) The procedure for generating

time-forward ensemble averages from individual

binding interactions is shown. Individual trajec-

tories are aligned at the initiation of binding and

averaged forward in time (black line), and the

average is fit with a single exponential function (red). The y offset and amplitude of this exponential provide estimates of the average size of the first

and second substeps, respectively. The rate of this exponential gives the rate of transitioning from the first substep to the second substep. (F) The procedure

for generating time-reversed ensemble averages from individual binding interactions is shown. Individual trajectories are aligned upon dissociation and

averaged backward in time (black), and the average is fit with a single exponential function (red). The y offset and amplitude of this exponential provide

estimates of the average size of the total step and the second substep, respectively. The rate of this exponential gives the rate of transitioning from the second

substep to the detached state. To see this figure in color, go online.
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of the beads as well as a reduction in the bead variance. This
assay has been applied to study several motor and nonmotor
systems, including dynein (5), the lac repressor (6), kinesins
(7), and several myosin isoforms (8–14).

Analysis of the individual time-dependent trajectories of
motor-induced displacements in the bead positions can pro-
vide information about both the mechanics and the kinetics
of the motor’s mechanochemical cycle. However, it can
be difficult to resolve details of these trajectories because
the amplitude of Brownian-motion-induced fluctuations in
the bead position is frequently larger than the size of
motor-induced displacements. One powerful method for ex-
tracting high spatial and temporal resolution information
from noisy traces is postsynchronization ensemble aver-
aging (13,15). In this method, trajectories from multiple in-
dividual binding interactions are aligned and then averaged
together, thereby increasing the signal/noise ratio. This tech-
nique has been applied to successfully identify substeps of
the myosin working stroke (12,13,16) and transitions in
the ribosome (15) that likely would have been obscured
using other analysis methods. Although this is a powerful
tool for analyzing single-molecule data, there is no software
in the public domain that is tailored to performing these
calculations, and this has limited the adoption of these tools
by many groups.

We have developed a MATLAB-based computational
tool, Software for Precise Analysis of Single Molecules
(SPASM), with a graphical user interface for the identifica-
tion and ensemble averaging of single-molecule trajectories.
This computational tool utilizes several conceptual ad-
vances, including an optimized method for identifying
binding interactions from noisy data and improved precision
in determining the exact initiation and termination times of
binding interactions using a change-point algorithm. Using
both simulated and experimental data sets, we demonstrate
that these advances permit the generation of accurate,
high-resolution ensemble averages using fewer individual
binding trajectories than were previously required. Our
easy-to-use computational tool includes an intuitive graph-
ical user interface and is offered both as open-source code
and as a stand-alone program that does not require full
installation of MATLAB. Finally, we provide a user guide,
a separate tool for simulating data, and sample data sets to
help other researchers apply this tool to their own single-
molecule data.
MATERIALS AND METHODS

Implementation of the computational tool

The SPASM computational tool, which includes a graphical user interface

and a tool for simulating data, was written in MATLAB (The MathWorks).

The details of the implementation can be found in the Supporting Material

(code availability: https://github.com/GreenbergLab/SPASM).
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Design of optical trapping apparatus

Experiments were performed on a custom-built, microscope-free, dual-

beam optical trap. The optical layout is described in the Supporting

Material (Fig. S1). Porcine cardiac myosin and actin were purified from

cryoground tissue (Pelfreez) as previously described (17,18). Trapping

experiments were conducted as previously described (3). Details can be

found in the Supporting Material.
RESULTS AND DISCUSSION

Ensemble averaging of single-molecule binding
interactions

Although ensemble averaging techniques are broadly appli-
cable, we will focus in this article on their application to
studying the interaction between myosin molecular motors
and actin. Using ensemble averaging of optical trapping
data, it has been shown that many myosin isoforms have a
two-substep working stroke in which the first substep corre-
sponds to the release of inorganic phosphate and the second
substep corresponds to a transition associated with ADP
release (Fig. 1, C and D; (8–10,12–14,16,19,20)). It is diffi-
cult to distinguish the second transition from raw data traces
because of Brownian motion. However, ensemble averaging
allows for easier visualization of this transition by
increasing the signal/noise ratio.

One can collect information about both the kinetics and
mechanics of the working stroke substeps from the post-
synchronized ensemble-averaged trajectories of individual
binding interactions (13,15). These interactions can be syn-
chronized upon actomyosin attachment and then averaged
forward in time or, alternatively, synchronized upon acto-
myosin detachment and then averaged backward in time
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(Fig. 1, E and F). The magnitude of the initial displacement
seen in the time-forward averages gives the size of the first
substep of the myosin working stroke, a transition which oc-
curs within the dead time of typical optical tweezer instru-
ments (6). The amplitude of the subsequent exponential
rise in displacement in the time-forward averages gives
the size of the second substep of the working stroke. The
rate of this exponential rise is the rate of transitioning
from the first substep to the second substep, and it is associ-
ated with ADP release in myosins (13). For the time-
reversed ensemble averages, the exponential rise in
displacement before detachment has an amplitude equal to
the size of the second substep, and the rate of this exponen-
tial gives the rate of transitioning from the second substep to
the detached state, a transition that corresponds to ATP-
induced actomyosin dissociation (13).
Generation of a covariance histogram to identify
binding interactions

The first step in generating ensemble averages is the identi-
fication of binding interactions from single-molecule data
traces. When optically trapped, the two beads in the bead-
actin-bead dumbbell undergo fluctuations in their position
due to Brownian motion (Fig. 2 A). The motion of these
beads is mechanically coupled through the actin filament,
as evidenced by the covariance between their positions
(Fig. 2 B). When the surface-bound motor binds to the actin
filament, it causes several pronounced changes: 1) it reduces
the positional variance of each bead’s position, 2) it reduces
the coupled motion (covariance) of the two trapped beads,
and 3) it displaces the mean position of each bead. The
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FIGURE 2 Detection of binding interactions us-

ing either the single or peak-to-peak covariance

threshold method. (A) Simulated optical trapping

data show the position of each optically trapped

bead over time. (B) Covariance between the posi-

tion of the optically trapped beads at each time

point gives rise to a bimodal distribution. (C) A

histogram of covariance values shows two distinct

populations that correspond to the bound (B) and

unbound (U) states. In the single-threshold method,

a binding interaction is detected when the covari-

ance crosses the value located at the minimum

between the two populations (green). In the peak-

to-peak method, two thresholds are placed, one at

the peak of each population (red), and a binding

interaction is detected when the covariance transi-

tions from one threshold to the other threshold.

(D) Simulated binding interactions detected by the

peak-to-peak method (red), binding interactions

detected by the single-threshold method (green),

and actual simulated binding interactions (real,

blue) are shown. The single threshold is more sus-

ceptible to false-positive interactions (circled).

The peak-to-peak method is more susceptible to

false-negative interactions (boxed). To see this

figure in color, go online.
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majority of analysis methods for identifying binding inter-
actions utilize the changes in the mean position, variance,
and/or covariance of the optically trapped beads upon bind-
ing of myosin to actin (11,21–23).

One popular method for selecting binding interactions is
to set a threshold based on the variance or covariance of the
beads. The choice of using a variance or covariance
threshold for binding interaction identification will partially
be dictated by the optical trap layout. For systems that only
monitor the position of a single bead, one must use a vari-
ance threshold for the position of the single bead. For sys-
tems that monitor both bead positions, a covariance
threshold is preferred because it is less sensitive to noisy
fluctuations in the data. Although we focus on the use of
our computational tool with a covariance threshold, the
same approaches and conclusions will hold true for a vari-
ance threshold based on the position of one bead. A version
of SPASM that uses a variance threshold is provided (see
Supporting Material).

Our computational tool identifies binding interactions
from the change in the covariance between the positions
of the two trapped beads that occurs upon myosin binding
to actin. SPASM first calculates the covariance over a
sliding window in time and then smooths the covariance
over a separate window. With properly chosen window
lengths, the histogram of the covariance values reveals
two populations (Fig. 2 C), with the higher covariance pop-
ulation corresponding to unbound states and the lower
population corresponding to bound states (3). One can
then select binding interactions based upon thresholds that
distinguish between these two populations (see Selection
of Binding Interactions below).

The success of this approach depends on the degree of
separation between the two peaks in the covariance histo-
gram. If the peaks are not well separated, the analysis is
more susceptible to false and/or missed binding interactions.
The ability to generate a histogram with two well-separated
peaks depends partly on the selection of proper window
lengths for the calculation and smoothing of the covariance.
Optimal values for these parameters, in turn, depend on the
kinetics of the myosin’s interaction with actin, the compli-
ance of the myosin and/or myosin-surface attachment, the
pretension between the optically trapped beads, and the
noise in the system. Therefore, the window lengths often
need to be determined empirically. If the kinetics of the
myosin’s transitions are known from other experimental
measurements, one can simulate data and select window
lengths that optimize analysis of the simulated data (see
Supporting Material). If kinetic information about the myo-
sin’s transitions is unknown, it may not be possible to
generate meaningful simulated data. In these cases, the win-
dow lengths can be determined empirically through the
computational tool’s graphical user interface, which allows
the user to vary the window lengths until a suitable bimodal
covariance histogram is achieved.
Selection of binding interactions

Once a suitable covariance histogram with two well-defined
peaks has been generated, the next step is to determine
proper thresholds for the covariance that will be used to
detect binding interactions. One possibility for distinguish-
ing the bound state from the unbound state is to use a single
covariance threshold located at the minimal value between
the two peaks of the covariance histogram (10). Here, de-
tected interactions start when the covariance drops below
this threshold value, and they end when the covariance rises
back above this threshold value (Fig. 2 D). Alternatively,
one could identify the binding interactions using a set of
two different covariance thresholds, located at the two
peaks of the covariance histogram. In this ‘‘peak-to-peak’’
approach, a binding interaction is considered to start when
the covariance drops from the threshold defined by the
unbound peak to the threshold defined by the bound
peak. Likewise, a binding interaction is considered to end
when the covariance rises from the threshold defined by
the bound peak to the threshold defined by the unbound
peak (Fig. 2 D).

We tested the abilities of the single-threshold and peak-
to-peak methods to accurately detect simulated binding
interactions between actin and cardiac myosin. Interactions
were simulated using a continuous-time Markov jump pro-
cess with kinetics and mechanics based on previously
measured parameters for ventricular cardiac myosin
(8,24,25) (see Materials and Methods for details). With
simulated data, the exact locations of the binding interac-
tions are known, allowing for easy comparison between
the simulated interactions and the interactions detected by
the computational tool using either method (Fig. 2 D).

We generated 10 independent sets of simulated data, each
containing 100 binding interactions (sets 1–10). For each
data set, we used our computational tool to calculate the
covariance histogram, locate the peaks and minimum of
the histogram, and identify binding interactions using either
the single-threshold method or the peak-to-peak method.
When we used a single threshold to identify binding interac-
tions, we correctly detected 80 5 4 of the 100 binding in-
teractions on average, and we incorrectly detected 4 5 1
false-positive binding interactions per 100 s of data, on
average (Table S1). The reported errors are standard devia-
tions. When we used the peak-to-peak method to identify
binding interactions, we correctly detected 65 5 5 of the
100 binding interactions on average, and we did not
detect any false-positive binding interactions. Although
the peak-to-peak method misses a greater number of binding
interactions, the false-positive rate is lower for this method
(p < 0.001).

A single threshold could work well for selecting binding
interactions if the two populations of the histogram are suf-
ficiently distinct. However, it is often not possible to obtain
sufficient separation between the peaks because of factors
Biophysical Journal 120, 10–20, January 5, 2021 13
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that lower the signal/noise ratio (e.g., system noise, insuffi-
cient pretension between the beads, fast binding kinetics). In
these cases, this single-threshold approach is prone to iden-
tifying false-positive interactions in which the covariance
crosses the threshold even though the actomyosin has re-
mained in an unbound state. These false-positive binding in-
teractions do not generate a net displacement in the optical
trap, so their inclusion in the ensemble averages is expected
to lead to an underestimation of the true size of the working
stroke. A methodology has been developed that attempts to
correct for these false-positive interactions through the use
of normalization factors (10). Alternatively, because the
vast majority of these false-positive interactions arise as a
result of either Brownian-motion-induced (or system-
noise-induced) rapid downward spikes in the covariance
(which lead to very short detected interactions) or rapid up-
ward spikes in the covariance (which lead to multiple de-
tected interactions in quick succession), it is possible to
avoid these false-positive interactions through the use of
temporal filters that exclude interactions that are too short
or pairs of interactions that are too close to one another.
However, it is not always easy to determine appropriate
values for these temporal filters. Further, the use of these
temporal filters may lead to the exclusion of many correctly
identified binding interactions. When we used optimized
values for these filters to exclude all of the false-positive in-
teractions in the simulated data that were detected by the
single-threshold method, we were left with fewer interac-
tions than were detected by the peak-to-peak method
(Fig. S2). The optimal parameter values to remove false-
positive binding interactions will depend on the signal/noise
ratio of the data (Fig. S3), and the user will need to optimize
these values for their own data using SPASM.

With the peak-to-peak method, the criteria for detecting a
binding interaction is much stricter than with the single-
thresholdmethod, and the number of identified false-positive
binding interactions is expected to decreasewhile the number
of missed, short-lived binding interactions increases. Unlike
the inclusion of false-positive interactions, the exclusion of
these missed binding interactions does not adversely affect
the size or shape of the ensemble averages. Although we
demonstrate that the peak-to-peak method performs better
in data traces with moderate separation between the peaks
of the covariance histogram, some experimental data might
have better peak separation. In this case, the single-threshold
method would be preferable because it maximizes the num-
ber of captured binding interactions. The computational tool
allows the user to try both methods, and it automatically de-
termines appropriate values for the thresholds.
Alignment of binding interactions using
covariance thresholds

After binding interactions are identified, they must be pre-
cisely aligned at the transitions between the bound and
14 Biophysical Journal 120, 10–20, January 5, 2021
unbound states to generate accurate ensemble averages.
The most critical step in aligning these interactions is the
careful determination of when exactly a transition occurs.
Inadequate determination of these transitions will lead to
inaccurate measurements of the substep sizes and/or ki-
netics. Several methods have been applied to locate transi-
tions in single-molecule data traces, including hidden
Markov models (23) and step-finding algorithms (26), but
a frequently used method for postsynchronization is to align
the binding interactions based on the same thresholds used
to identify the binding interactions (3,10,13).

To test the abilities of the single-threshold and peak-to-
peak methods to accurately identify the transitions, we
used the same 10 simulated data sets containing 100 transi-
tions each as described previously (sets 1–10). When we
used a single threshold to identify transition times, we found
that the detected attachment times occurred 28.2 (95% confi-
dence intervals:þ13.8,�21.7)ms after the actual attachment
times, on average (Table S2), and the detected detachment
times occurred 28.6 (þ11.9, �19.1) ms before the actual
detachment times, on average. On the other hand, when we
used the peak-to-peak method to identify transitions, we
found that the detected attachment times occurred 55.5
(þ195.5, �69.0) ms before the actual attachment times, on
average, and the detected detachment times occurred 50.4
(þ188.1, �64.9) ms after the actual detachment times, on
average. Taken together, the single-thresholdmethod has bet-
ter temporal resolution when identifying transitions between
the bound and unbound states.

When binding interactions are aligned based on the covari-
ance thresholds, it is assumed that the covariance drops and
rises in conjunction with transitions between the bound and
unbound states. With the single-threshold method, this is a
fairly reasonable assumption that explains why it outper-
forms the peak-to-peak method. Each true transition point
separates more highly correlated bead motion (i.e., the un-
bound state) from less highly correlated bead motion (i.e.,
the bound state). The covariance is calculated over a window
so that when the covariance window is centered at a transition
point, the window will include equal amounts of more highly
and less highly correlated data. The covariance at the transi-
tion point should then lie at some intermediate value between
the two peaks of the covariance histogram. However, the sin-
gle-threshold method is not perfect at locating the transition
points. First, although the value of the covariance at a transi-
tion point will likely be near the minimal value between the
two peaks of the covariance histogram, there is no guarantee
that it will lie exactly at this minimal value. Additionally,
synchronized large-scale movement of both beads due to
the myosin’s power stroke can produce transient spikes in
the covariance value during transitions, and these spikes
can potentially decrease the accuracy of the single-threshold
method in identifying exact transition times.

The peak-to-peak method produced poorer alignment
than the single-threshold method. When the peak-to-peak
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FIGURE 3 The change-point algorithm more precisely identifies transi-

tions between bound and unbound states. (A) Simulated optical trapping

data show the average position between the optically trapped beads over

time during a binding interaction. Data obtained during the bound state

(light purple) are drawn from a normal distribution with a shifted mean

and a lower variance when compared with data obtained during the un-

bound state (black). The change-point algorithm seeks to find the time

points that best separate the two distributions. The locations of the actual

simulated transitions are marked with blue vertical lines. (B) The calculated

covariance of the bead positions during the simulated binding interaction in

(A) is shown. The attachment and detachment times identified by the single-
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method is used to identify transitions, it is assumed that tran-
sitions occur when the covariance crosses the upper
threshold, defined by the position of the unbound peak.
This is inherently less accurate for estimating transition
points than the single-threshold method. A window of data
that has a covariance value that is similar to the value of
the unbound peak contains primarily correlated data, and
therefore it is unlikely that the center of this window is
near the actual transition point. In fact, the calculated tran-
sition point using the peak-to-peak method would be ex-
pected to deviate from the actual transition point by at
least half the window size.

Taken together, our data show that when binding interac-
tions are synchronized using a single covariance threshold,
the resulting ensemble averages are expected to have better
alignment of binding interactions. However, as noted previ-
ously, the use of a single covariance threshold to detect
binding interactions is more susceptible to false-positive
binding interactions, which would lead to an underestima-
tion of the true substep sizes. The peak-to-peak method is
better for binding interaction detection without including
false positives, but it lacks the necessary temporal resolution
to accurately align the detected interactions.
threshold (green) and the peak-to-peak (red) methods are shown with

dashed vertical lines. The actual transitions are marked with solid blue ver-

tical lines. (C) The change-point algorithm determines the likelihood that

any two points within an extended search window are the two transition

points. (left) A plot of the likelihood assigned to each pair of points within

the search window, viewed from the side (see Materials and Methods for

details), is shown. The change points, which occur when the likelihood is

maximized, are shown with dashed yellow vertical lines, and the actual

transitions are marked with solid blue vertical lines. (right) The likelihood

viewed from above is shown. Regions of yellow correspond to higher likeli-

hood, and regions of dark blue correspond to lower likelihood. The two

change points are marked with solid black lines. To see this figure in color,

go online.
Change-point algorithm for aligning interactions

Rather than relying on the covariance when estimating
transition times, we tested the use of separate methods for
detecting and synchronizing binding interactions. To
improve our ability to locate the transition times of each
binding interaction, we implemented a change-point algo-
rithm (see Materials and Methods for details). Change-point
algorithms have been used in step finding for transitions in
biological processes in which the algorithm identifies the
most likely times when there was a change in a parameter
such as motor position or rotation of the myosin lever arm
(26,27). We have adapted the change-point algorithm for
the three-bead assay, in which we search for the most likely
transition times based on changes in both the mean and the
variance of the bead positions because both of these param-
eters differ between the bound and unbound states (Fig. 3
A). For each binding interaction identified by the covariance
threshold method (Fig. 3 B), our algorithm examines the po-
sitions of the trapped beads in a window surrounding that
interaction and finds the two points (i.e., binding initiation
and detachment) within this window that most likely repre-
sent transitions in the mean and variance of the data (Fig. 3
C; see Materials and Methods for details).

To test the ability of the change-point algorithm to accu-
rately identify transition times, we again analyzed the same
10 sets of simulated data described above (sets 1–10). We
found that the attachment times detected by the change-
point algorithm occurred 0.5 (þ9.0, �5.5) ms after the
actual attachment times, on average (Table S2), and the
detachment times detected by the change-point algorithm
occurred 0.7 (þ4.8, �4.2) ms after the actual detachment
times, on average (Table S2). Statistical testing demon-
strates that the change-point algorithm outperforms both
the single-threshold method (pstart < 0.001, pend < 0.001)
and the peak-to-peak method (pstart < 0.001, pend <
0.001) in identifying transition times. As our simulated
data were generated with a sampling frequency of 2 kHz,
these average errors of �0.5 ms indicate that the change-
point algorithm was typically correct within one point. It
is possible that a higher sampling frequency would further
increase the accuracy.

To explore the ability of these three methods to accurately
identify transition points, we generated cumulative distribu-
tions of the differences between the detected transition times
and the actual simulated transition times for both the initia-
tion and termination of the binding interactions (Fig. 4).
Here, the width of the distribution reveals the precision of
the corresponding method, whereas the sign and magnitude
of the average error reveal the systematic bias of that method.
Biophysical Journal 120, 10–20, January 5, 2021 15



FIGURE 4 The change-point algorithmminimizes the error when detect-

ing the locations of transitions. The error was calculated as the difference

between the detected binding times and the actual simulated binding times

for simulated data (sets 1–10). (left) Cumulative distributions of the errors

in determining the binding initiation times using the peak-to-peak method

(red), the single-threshold method (green), and the change-point algorithm

(yellow) are shown. Blue shows the actual transition. Statistical compari-

sons can be found in Table S2. (right) Cumulative distributions of the errors

when determining the binding termination times using the peak-to-peak

method (red), the single-threshold method (green), and the change-point al-

gorithm (yellow) are shown. Blue shows the actual transition. To see this

figure in color, go online.
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As expected, the cumulative distributions of errors generated
from the peak-to-peak method are wide, indicating low pre-
cision at identifying the transitions, whereas the distributions
generated from the single-threshold method are narrower,
indicating higher precision. The distributions generated
from the change-point algorithm are very narrow, and the
mean error is close to 0. This indicates that the change-point
algorithm is very precise and has lower systematic bias than
either the single-threshold or peak-to-peak method.
Comparison of ensemble averages generated
using different methods

To test our predictions about the relative accuracy of the
ensemble averages when using each method of analysis,
we generated ensemble averages from the 10 sets of simu-
lated data studied previously (sets 1–10). First, we generated
ensemble averages using the actual locations of all 1000
simulated binding interactions to align the binding interac-
tions (Fig. 5, A and B, real). We also generated ensemble av-
erages for each of the 10 sets of data using the actual
locations of the 100 simulated binding interactions within
each set. Exponential curves were fit to each of these aver-
ages to estimate the substep sizes and rates of the simulated
myosin working stroke (Fig. 5, C–F, real; Table S3). The
magnitude of substep 1 estimated from the time-forward
averages was 4.7 (þ0.4, �0.4) nm, on average, whereas
the magnitude of the total step estimated from the time-for-
ward averages was 6.4 (þ0.2, �0.2) nm, on average. The
magnitude of substep 1 estimated from the time-reversed
averages was 5.7 (þ0.2, �0.3) nm, on average, whereas
the magnitude of the total step estimated from the time-
reversed averages was 6.5 (þ0.1, �0.2) nm, on average.
The estimated rate of transitioning from the first substep
16 Biophysical Journal 120, 10–20, January 5, 2021
to the second substep (kf) was 68.7 (þ15.8, �20.9) s�1,
and the estimated rate of transitioning from the second sub-
step to the detached state (kr) was 4.3 (þ2.2, �1.9) s�1.

We then used either the single-threshold method or the
peak-to-peak method to detect binding interactions within
each data set. When the single-threshold method was used
to detect binding interactions, we applied a filter to ignore
any detected interactions that were shorter than 77 ms or
within 63 ms of another detected interaction to avoid
including false-positive interactions (Figs. S2 and S4 show
the effect of including these false-positive binding interac-
tions). These parameters were selected to optimize the anal-
ysis of the simulated datawith its signal/noise ratio; however,
the optimal values for these parameters will vary depending
on the signal/noise ratio of the experimental data (Fig. S3),
and the program enables the user to adjust these values to
suit their data. That being said, techniques have been devel-
oped to accurately determine attachment lifetimes from
data with pronounced experimental dead times (28).

To identify transitions between the bound and unbound
states for each interaction, we either included or omitted
the change-point algorithm. For each of these analysis
methods, we used the binding interactions and transitions de-
tected over all 10 data sets to generate ensemble averages
(Fig. 5, A and B). As before, we also generated ensemble
averages from the binding interactions detected within each
of the 10 sets of data, and exponential curves were fit to
each average to estimate the substep sizes and rates of the
simulated myosin working stroke (Fig. 5, C–F; Table S3).
As expected, using the change-point algorithm to align the
binding interactions resulted in the most accurate estimates.

When the peak-to-peak method was used to both detect
and align the binding interactions, the ensemble averages
were misshapen (Fig. 5, peak-to-peak). The time-forward
average, for example, includes the characteristic increase in
displacement but then drops. This drop is due to the fact
that the binding interaction termination times detected by
the peak-to-peakmethod often came after the actual termina-
tion times, leading to the inclusion of baseline data at the end
of the time-forward average. Total step size estimates were
generated by extrapolation of the exponential fits. The
time-forward average also appears to start too late, as the
peak-to-peakmethod typically guesses that binding initiation
times occur before they actually do (Fig. 4). Exponential
curves were very poorly fit to these ensemble averages.

When the single-threshold method was used to both detect
and align the binding interactions, the ensemble averages had
better overall shape (Fig. 5, single-threshold). However,
similar to the averages generated with the peak-to-peak
method, misalignment among the individual trajectories re-
sulted in very gradual transitions between the bound and un-
bound states. The time-forward average, for example,
appears to start too early, as the single-threshold method typi-
cally guesses that binding initiation times occur after they
actually do (Fig. 4).
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FIGURE 5 Ensemble averages of simulated binding interactions. In total, 10 sets of data were simulated, each containing 100 binding interactions (sets

1–10). Interactions were detected using either the peak-to-peak (PTP) or the single-threshold (ST) method, and interactions were aligned using either the

transitions estimated by the covariance threshold method or the change points identified by the change-point algorithm (CP). (A) (left) For each analysis

method, all detected binding interactions were aligned at the estimated initiation times and averaged together to generate time-forward ensemble averages.

(right) For each analysis method, all detected binding interactions were aligned at the estimated termination times and averaged together to generate time-

reversed ensemble averages. Also shown are the time-forward and time-reversed ensemble averages generated from the known locations of the actual simu-

lated binding interactions (blue, real). (B) A zoomed-in view of the boxed segments of the ensemble averages in (A) highlights the misalignment in the av-

erages when the change-point algorithm is omitted. (C–F) For each of the 10 simulated sets of data containing 100 binding interactions, ensemble averages

were generated and fit with single exponential functions. The substep sizes and rates of the simulated myosin working stroke were estimated from the expo-

nential fits. Box plots show the estimated parameters for each analysis method. Outliers are indicated by red dots. The substep sizes were estimated from both

the time-forward (f) and the time-reversed (r) ensemble averages. Horizontal dashed lines show the values of the simulated parameters. Statistical analysis for

each parameter can be found in Table S3. To see this figure in color, go online.

Computational Tool
When the change-point algorithm was used to align the
binding interactions, the ensemble averages featured much
sharper transitions (Fig. 5, peak-to-peak/change-point algo-
rithm and single-threshold/change-point algorithm). How-
ever, very sharp spikes in displacement occur at the
transition times (Fig. 5, A and B, peak-to-peak/change-point
algorithm and single-threshold/change-point algorithm).
Brownian-motion-driven fluctuations in the bead positions
can cause changes in the data from one point to the next
that are not due to transitions between the bound and un-
bound states. If such noise happens to occur near a real tran-
sition point, it offers an attractive candidate for the change
point, and the change-point algorithm may choose that point
instead of the less pronounced, yet correct, transition time.
However, we have shown that the transition times estimated
by the change-point algorithm are within one to two points
of the actual simulated transition times, on average (Fig. 4;
Table S2), and the resulting ensemble averages are very ac-
curate. Appropriate fits can be obtained by omitting these
spikes from the fitted data.

The time-reversed ensemble average generated from the
actual locations of the simulated binding interactions led
to an overestimate of the magnitude of substep 1 (Fig. 5,
B and C; Table S3). To generate the time-reversed ensemble
average, short-lived binding interactions are extended in
time to match the duration of the longest-lived binding inter-
action, and the value of this extension equals the average po-
sition of the beads during the first 5 ms of the binding
interaction. The rate of transitioning from the first substep
to the second substep in our simulated data was 70 s�1,
matching the rate of ADP release for beta cardiac myosin
(24). Because of this fast rate, a large number of transitions
to the second substep occur before the 5 ms used to generate
the extensions, leading to inaccurate extension values. The
proportion of binding interactions that is expected to transi-
tion to the second substep within the first 5 ms is given by
the integral of the probability density function:

proportion of substeps missed ¼
Z0:005

0

ke�ktdt:

For a rate of 70 s�1, this proportion is equal to �30%, and
this will lead to an overestimation of the size of the first sub-
step. A possible fix is to shorten the 5-ms window used for
calculating the extensions, but it then becomes crucial that
the binding initiation times are determined with high
accuracy. Neither the single-threshold method nor the
peak-to-peak method has sufficient resolution to accurately
determine the exact initiation times (Fig. 4). Even the
change-point algorithm, which we have shown to have an
average error of �0.5 ms, would be insufficient for gener-
ating the time-reversed ensemble averages of interactions
with very fast kinetics. It is possible that this could be
Biophysical Journal 120, 10–20, January 5, 2021 17
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improved with faster data sampling. In the case of transi-
tions with slower kinetics, this problem is easily avoided.
When we simulated 1000 binding interactions using much
slower rates (kf of 5 s�1 and kr of 2 s�1, sets 11–20), we
were able to generate time-forward and time-reversed
ensemble averages with accurate step sizes using multiple
methods (Fig. S5).
Performance of the computational tool to analyze
experimental data

To test the ability of the computational tool on real exper-
imental data, we conducted optical trapping experiments
using ventricular myosin at 1 mM ATP (Fig. 6). We inten-
tionally collected a small data set consisting of 66 binding
interactions from five molecules. Binding interactions
were identified using the peak-to-peak method, and transi-
tion points were identified using the change-point algo-
rithm. The SPASM computational tool was used to
generate cumulative distributions of individual binding in-
teractions (Fig. 6 B). The cumulative distributions of the
attachment durations are well fit by a single exponential
function. This exponential rate gives the rate of actomy-
osin detachment, and it has a value of 4.7 s�1, which is
A

B C

FIGURE 6 Ensemble averages of experimental optical trapping data.

The kinetics and mechanics of cardiac myosin in 1 mMATP were measured

using the three-bead assay. (A) Experimental data trace shows the displace-

ment (D) and covariance (C). (B) Cumulative distributions for the (left)

binding interaction durations and (right) total working stroke displacements

are shown. The peak-to-peak method was used to detect binding interac-

tions. Red lines show the cumulative fits based on (left) exponential and

(right) normal distributions. The characteristic rate obtained from the fit

to the distribution of attachment durations gives a detachment rate equal

to 4.7 s�1, which is consistent with the expected rate of ATP-induced acto-

myosin dissociation at 1 mM ATP. The distribution of total step sizes has a

mean of 6.3 nm and a standard deviation of 9.2 nm. (C) The change-point

algorithm was used to align the interactions identified using the peak-to-

peak method. A total of 66 binding interactions from five molecules were

analyzed. The resulting ensemble averages have estimated substep sizes

of 4.4 and 2.0 nm. The estimated time-forward rate is 74 s�1, and the

estimated time-reversed rate is 3.2 s�1. These values are consistent with

previous measurements using a much larger data set, and they agree well

with the previously measured rates of ADP release and ATP-induced disso-

ciation 1 mM ATP. To see this figure in color, go online.
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consistent with the expected rate of ATP-induced actomy-
osin dissociation at 1 mM ATP (24). The cumulative distri-
bution of total working stroke displacements is well fit by
a single normal distribution (indicating likely single-mole-
cule conditions), with a mean displacement of 6.3 nm and
a standard deviation of 9.2 nm. This is consistent with pre-
vious measurements of the cardiac myosin working stroke
(8,25). Ensemble averages (Fig. 6 C) reveal that, consis-
tent with previous measurements (8,25), ventricular car-
diac myosin has a two-substep working stroke with a
first substep of 4.4 nm and a total displacement of
6.4 nm. The time-forward averages have a rate of 74
s�1, which is consistent with the rate of ADP release,
and the time-reversed averages have a rate of 3.2 s�1,
which is consistent with the rate of ATP-induced actomy-
osin dissociation at 1 mM ATP (24). Taken together, our
computational tool can generate accurate ensemble aver-
ages with sharp transitions from a relatively small set of
experimental data.
Broader applicability of the approach

The methods presented in this work were applied to study
actomyosin. As noted previously, the three-bead assay has
been used to explore many different single-molecule sys-
tems, including dynein, the lac repressor, and kinesins.
Moreover, the general ideas behind our computational tool
are broadly applicable to any set of data, not just optical
trapping data, containing well-defined populations that can
be distinguished through some aspect of the data. One
such possibility is data obtained from single-molecule fluo-
rescence resonance energy transfer (FRET) experiments. In
the Supporting Material, we describe how to adapt the
change-point algorithm to systems in which the desired
change points occur in data with different underlying
distributions.
Limitations

There are a number of limitations accompanying our
computational tool and the methods we use to analyze
our data. Although the covariance between the position
of each trapped bead in the three-bead assay is very helpful
for locating binding interactions under many circum-
stances, it does have drawbacks. The covariance is calcu-
lated over a window, and therefore it does not always
drop enough during short-lived binding interactions to reg-
ister as a genuine binding interaction. Furthermore, de-
pending on the quality of the data, it may be difficult or
even impossible to obtain a covariance histogram with
two distinct populations. This could stem from system
compliances. One benefit of the peak-to-peak method is
that the covariance histogram populations do not need to
be completely separated to avoid false-positive binding in-
teractions, but a certain degree of separation is needed to
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make the covariance useful. Additionally, analysis is
dependent on many parameters, including the window sizes
used to calculate and smooth the covariance, and it can be
difficult to choose appropriate values for these parameters
for a given experimental system. The computational tool
includes features that allow the user to correct for these
drawbacks when they are encountered. Finally, as evi-
denced by the ensemble averages generated from our simu-
lated data (Fig. 5), ensemble averaging has limitations for
estimating the rates and substep sizes for transitions with
very fast kinetics.
Summary

Here, we developed a computational tool, SPASM, for the
detection and alignment of single-molecule binding interac-
tions and for the generation of ensemble averages that can
reveal characteristics about the data that are often obscured
by noise. We show that it can be advantageous to use sepa-
rate techniques for the detection and alignment of binding
interactions. Specifically, we show that the addition of a
change-point algorithm to identify transition times can
generate precise ensemble averages with improved align-
ment. We offer the computational tool, with an intuitive
graphical user interface, along with a user guide so that
the reader can apply these methods to their own data.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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Supplemental Materials and Methods 

 

Implementation of the computational tool 

The SPASM computational tool, which includes a graphical user interface, was 

written in MATLAB (MathWorks). The program uses the Signal Processing Toolbox and 

the Optimization Toolbox, but neither toolbox is required for analysis. The code was 

tested on MATLAB versions R2017b through R2020a for both Windows and macOS 

operating systems. Standalone versions of the program for both Windows and macOS 

were generated using the MATLAB Compiler.  

The SPASM computational tool can be found at: 

https://github.com/GreenbergLab/SPASM.  This repository includes the open source 

code for SPASM (SPASM.m), compiled versions for Windows (SPASM_Windows.exe) 

and macOS (SPASM_macOS.app.zip), a versions of the program which analyze only 

one trapped bead and uses variance thresholds rather than covariance thresholds 

(SPASM_one_bead.m, SPASM_one_bead_Windows.exe, 

SPASM_one_bead_macOS.app.zip), MATLAB code to generate simulated data 

(simulator.m), a user guide for the aforementioned components 

(SPASM_user_guide.pdf), and the simulated data sets analyzed in this paper (sets 1-

30). 
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Detection of binding interactions 

Binding interactions between a motor and its track in the optical trap can be 

identified using either a variance (1) or a covariance (2, 3) threshold, since the binding of 

a motor to its track causes a reduction in both the variance and covariance of the two 

beads (Fig. 2). The covariance between the beads at any time, t, is calculated by: 

Cov୲ሺA, Bሻ  ൌ  E୵ౙ,୲ሾA ∗ Bሿ – E୵ౙ,୲ሾAሿ ∗ E୵ౙ,୲ሾBሿ 

where A is the position of one bead (bead A), B is the position of the other bead (bead 

B), and E୵ౙ,୲ሾXሿ denotes the mean of X over a window of size wc centered at t. Before 

generating a histogram of covariance values, the covariance is smoothed using a second-

order Savitzky-Golay filter with window size ws to remove high-frequency noise. The 

values of wc and ws can be optimized using the computational tool. See the Supporting 

Materials for details. 

A histogram of the filtered covariance between the two beads shows two distinct 

populations corresponding to bound (B) and unbound (U) states (Fig. 2). This histogram 

can be used to determine covariance thresholds for detecting binding interactions (4). We 

use one of two methods to detect binding interactions from the covariance: (1) assigning 

a single threshold based on the minimum value between the covariance peaks or (2) 

using a peak-to-peak method which requires that the covariance extend between the 

bound peak and the unbound peak. The advantages and disadvantages of these methods 

are discussed in detail in the Results and Discussion. 

Once potential binding interactions have been identified, temporal thresholds can 

be applied to filter the interactions. Any observed reductions in the covariance which are 
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shorter than a user-defined minimum duration are ignored to lower the chance of 

mistakenly identifying random correlated noise as a binding interaction. Also, any two 

binding interactions which are separated in time by less than a user-defined minimum 

separation are ignored to lower the chance of mistakenly identifying random noise as 

premature detachment between the motor and the track. Note that this filtering takes 

place after the change points have been located. 

 

Binding interaction alignment using a change point algorithm and the generation of 

ensemble averages 

Constructing ensemble averages requires the synchronization of individual binding 

interactions at transitions between the bound and unbound states. Here, we implement a 

change point algorithm to identify transitions. This algorithm uses maximum likelihood 

estimation to locate the times, or change points, where changes in both the mean and 

variance of each bead’s position have most likely occurred. For each binding interaction 

identified using covariance thresholds, the algorithm searches for the change points 

within a window of data. For the kth binding interaction, this window spans from  

tଵ ൌ  t୩,ୱ୲ୟ୰୲ െ 0.49 ∗ min ൫t୩,ୣ୬ୢ െ t୩,ୱ୲ୟ୰୲, t୩,ୱ୲ୟ୰୲ െ t୩ିଵ,ୣ୬ୢ൯ 

to 

t ൌ  t୩,ୣ୬ୢ  0.49 ∗ min ൫t୩,ୣ୬ୢ െ t୩,ୱ୲ୟ୰୲, t୩ାଵ,ୱ୲ୟ୰୲ – t୩,ୣ୬ୢ൯ 

where t୩,ୱ୲ୟ୰୲ and t୩,ୣ୬ୢ denote the beginning and end times of the kth interaction as 

estimated by the covariance threshold method. The window must be wide enough that it 

includes the entirety of the kth interaction but not so wide that it contains part of another 

interaction. The computational tool automatically searches the default window for change 
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points, but it also allows for manual adjustment of both the search window and the 

identified change points. 

The algorithm considers the average position between beads A and B during this 

window. For each pair of time points within the window, (t୧, t୨), the algorithm calculates 

the likelihood that these points coincide with changes in the mean and variance of the 

data. Each pair divides the window into three intervals: [tଵ, t୧], [t୧ାଵ, t୨], and [t୨ାଵ, t], 

where 1 < i < j < N. The log-likelihood score, Lሺ୲,୲ౠሻ, assigned to (t୧, t୨) measures how well 

normal distributions can be fit to these intervals of data: 

Lሺ୲,୲ౠሻ ൌ െ 
j െ i

2
ln ቀσଶ

ൣ୲శభ,୲ౠ൧ቁ൨ െ 
N െ j  i

2
ln ቀσଶ

ሾ୲భ,୲ሿ∪ሾ୲ౠశభ,୲ొሿቁ൨ 

where σଶ is the variance of the data during the corresponding interval (see the Supporting 

Materials for the derivation). L is maximized where the values of t୧ and t୨ best divide the 

window into three sequences of normally distributed data, and these values of t୧ and t୨ 

are then assigned as the change points. 

After synchronization at the change points, both time forward and time reversed 

ensemble averages of individual binding interactions are generated from the average of 

the two beads’ positions using well-established methods (5). Shorter-lived binding 

interactions are extended in time to match the duration of the longest-lived binding 

interaction. The value of this extension equals the average position of the beads during 

either the first or last 5 ms of the binding interaction for the time reversed and time forward 

averages, respectively. 

 

Generation of simulated single-molecule data 
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To test the accuracy of the program and to aid in the selection of proper window 

sizes for the analysis of experimental data, we created an additional program to simulate 

data that resembles single-molecule interactions collected using our optical trapping 

system with user-defined substep sizes and kinetics. It is important to note that the signal-

to-noise ratio will vary between instruments. The code for this program is provided 

alongside SPASM so that users can adapt the simulation parameters for their system of 

interest. Rather than explicitly solving the equations of motion for the optically trapped 

beads, the parameters used for simulation can be empirically varied until the simulated 

data matches the experimental data. Trapping data is simulated using a continuous-time 

Markov jump process in which the motor switches among a baseline detached state and 

two successive attached states, each with a unique displacement, representing a motor 

with a two-substep working stroke. The user can set the number of states, the rates of 

transitioning between the states, and the displacements of each state. High-frequency 

Gaussian noise is added to simulate Brownian motion. To simulate mechanical coupling 

between the beads (i.e., higher covariance), a fraction of the noise in each bead’s 

position, f, is shared between the two beads. When the motor is dissociated from its track, 

f is set to a larger number so that the motion of the two beads is correlated. When the 

motor is bound to the track, f is set to a lower number, resulting in a lower covariance. 

Drift in the system is simulated by the addition of low-frequency noise. For additional 

details, see the Supporting Materials and the provided code. 

 

Analysis of simulated data 
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To test our analysis approach, we generated simulations with well-defined 

characteristics. Data were simulated with a 2 kHz sampling rate. First, we generated 10 

data sets (sets 1-10), each containing 100 binding interactions, to simulate beta cardiac 

myosin based on previous optical trapping and kinetic measurements (6-8). The rate of 

transitioning from the detached state to the first attached state was set to 0.5 s-1. The rate 

of transitioning from the first attached state to the second attached state was set to 70 s-

1, matching the rate of ADP release (9). The rate of transitioning from the second attached 

state to the detached state was 4 s-1, matching the rate of ATP-induced actomyosin 

dissociation at 1 µM ATP. The myosin was modeled to have a two-substep working stroke 

with a 4.7 nm substep followed by a second substep of 1.9 nm (6). 

We then generated 10 more data sets to analyze with SPASM (sets 11-20). Each 

of these sets of data contained 100 simulated binding interactions. The rate of 

transitioning from the detached state to the first attached state remained at 0.5 s-1. The 

rate of transitioning from the first attached state to the second attached state, however, 

was much lower at 5 s-1, and the rate of transitioning from the second attached state to 

the detached state was 2 s-1. As before, the myosin was modeled to have a two-substep 

working stroke with a 4.7 nm substep followed by a second substep of 1.9 nm. 

With the simulated data, the exact locations of transition points between the bound 

and unbound states are known, allowing us to test the performance of different analysis 

methods with regards to: (1) the frequency of false positive binding interactions (i.e., when 

the bound state is incorrectly detected while the motor is actually unbound), (2) the 

number of false negative binding interactions (i.e., when the unbound state is incorrectly 
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detected while the motor is actually bound), and (3) the error in determining the correct 

initiation and termination times of each binding interaction. 

To determine the number of false positives, each detected binding interaction was 

mapped to the nearest overlapping real binding interaction. If a detected binding 

interaction did not overlap with any real binding interactions, it was counted as a false 

positive. If multiple detected binding interactions were mapped to the same real binding 

interaction, all but the closest were also counted as false positives. As we fixed the 

number of simulated binding interactions within each data set, rather than the total 

duration of each data set, the data sets typically varied in duration. A longer set of data is 

expected to result in more false positives, and so the frequency of false positives was 

calculated by dividing the number of false positives by the duration of the data set. To 

determine the number of false negatives, each real binding interaction was mapped to 

the nearest overlapping detected binding interaction. If a real binding interaction did not 

overlap with any detected binding interactions, it was counted as a false negative. If 

multiple real binding interactions were mapped to the same detected binding interaction, 

all but the closest were also counted as false negatives. The error was calculated as the 

difference between the computationally identified transition points and the nearest 

simulated transition points for which the corresponding binding interactions overlapped. 

 

Statistical analysis 

Simulated binding interactions were detected using either the single threshold 

method or the peak-to-peak method (3), and the frequency of false positives and the 

number of false negatives were determined. To test for a significant difference in the mean 
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frequency of false positives or the mean number of false negatives between the two 

methods, p-values were obtained from the independent two-sample t-test. To test if the 

median error of the detected transition points was significantly changed with the addition 

of the change point algorithm, p-values were obtained from the Wilcoxon rank sum test.  

Ensemble averages were generated from each method of analysis, as well as from 

the known locations of actual simulated binding interactions. To extract parameters from 

the ensemble averages, exponential curves were fit to each average, yielding estimates 

for the substep sizes and rates of the simulated data. For each extracted parameter, a 

Kruskal-Wallis test was used followed by pairwise Wilcoxon rank sum tests to determine 

p-values.  

 

Design of optical trapping apparatus 

Experiments were performed on a custom-built, microscope free dual beam optical 

trap, based on (10, 11). The optical layout is described in the Supporting Materials and 

Methods (Fig. S1). Briefly, the output from a 10 W 1064 nm laser beams (IPG Photonics) 

was rotated by 45 degrees and then separated into vertically and horizontally polarized 

components to form 2 independent traps. Optical traps were independently steerable 

using acoustic optical deflectors (Gooch and Housego) and frequency synthesizer boards 

under FPGA control (Analog Devices, AD9910 Direct Digital Synthesis evaluation 

boards). The light from the trapping laser was used for determining the displacement of 

the beads from the center of the optical trap, and this was measured at the back focal 

plane using two quadrant photodiodes (501104, First Sensor). Data were low pass filtered 

(Frequency Devices) to the Nyquist frequency and digitized on a National Instruments 
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FPGA board (PCIe 7852) with simultaneously sampling analog to digital converters. 

System control was accomplished by custom software written in LabView. 3D stage 

control was achieved using a piezoelectric stage (Mad City Labs). Fluorescence was 

illuminated using the output of a 50 mW 532 laser (Crystalaser). Imaging was performed 

using an EMCCD camera (Andor). 

 

Optical trapping experiments 

Porcine cardiac myosin and actin were purified from cryoground tissue (Pelfreez) 

as previously described (12, 13). Bead coated flow cells were assembled as previously 

described (3, 6, 14). All experiments were performed in KMg25 buffer (60 mM MOPS pH 

7.0, 25 mM KCl, 2 mM EGTA, 4 mM MgCl2, 1 mM DTT). All buffers and dilutions were 

prepared fresh each day. Biotin-labeled actin (2 µM) was prepared using 10% biotin actin 

(Cytoskeleton) in KMg25 buffer. The mixture was allowed to polymerize for 20 minutes, 

and then the actin was stabilized using tetramethylrhodamine isothiocyanate-labeled 

phalloidin. 1 µm diameter, polystyrene beads coated with streptavidin (Bangs Labs) were 

washed in 1 mg/mL BSA in KMg25 buffer three times. Flow cells were loaded with myosin 

(4-20 nM in KMg25 with 200 mM KCl) for 5 minutes and then blocked with 1 mg/mL BSA 

for 5 minutes. Activation buffer contained KMg25 with the addition of 1 µM ATP, 192 U/mL 

glucose oxidase, 48 µg/mL catalase, 1 mg/mL glucose, and ~25 pM Biotin rhodamine-

phalloidin actin. A small amount (4 µL) of streptavidin beads were loaded into the flow 

cell, and the flow cell was sealed with vacuum grease. Trapping experiments were 

conducted as previously described (3). Two streptavidin beads were optically trapped, 

forming a bead-actin-bead dumbbell. Trap stiffness was determined by fitting of the power 
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spectral density collected at 20 kHz. The bead-actin-bead dumbbell was pretensed to 

approximately 2-3 pN and then lowered onto a surface bead to search for binding 

interactions. Approximately 1 in 5 beads showed binding interactions. Data were acquired 

at 2 kHz and filtered to 1 kHz.
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Derivation of the log-likelihood function for the change point algorithm 

 Generally, given a set of data, a change point algorithm can help determine 

whether any changes have occurred and, if so, where the changes most likely occurred. 

In our implementation, we first use the covariance to identify binding interactions and then 

apply the change point algorithm to precisely determine where the transitions between 

the bound and unbound states occurred. For each identified binding interaction, we 

consider windows of data surrounding the interactions. Therefore, we assume each 

window contains exactly two change points, and we only need to determine where they 

occur. 

 The change point algorithm aims to maximize the log-likelihood function, whose 

derivation requires knowledge of the distributions underlying a particular set of data. In 

the case of optical trapping data, the data points are typically normally distributed with 

unique means and variances for the bound and unbound states. Other types of data sets 

might have different underlying distributions and therefore different log-likelihood 

functions that must be maximized. For example, in the case of single molecule FRET 

data, the distributions of FRET efficiencies in each state typically have unique means but 

do not necessarily have unique variances. In the case of single photon wait times, the 

underlying distributions are Poisson distributed rather than normally distributed. Below, 

we show how to derive the log-likelihood function for normally distributed data with a 

change in both mean and variance, using maximum likelihood estimation. For other types 

of data, the log-likelihood function can be derived using similar methods. 

 For a window of data occurring at times 𝑻 ൌ ሼ1,2, … , 𝑁ሽ, we know the average 

position of the beads 𝑿 ൌ ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ேሽ. We assume there exist times 𝑖 and 𝑗 within 
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ሼ1,2, … , 𝑁 െ 1ሽ such that ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ሽ and ሼ𝑋ାଵ, 𝑋ାଶ, … , 𝑋ேሽ are drawn from some normal 

distribution 𝑁ሺ𝜇, 𝜎
ଶሻ and ሼ𝑋ାଵ, 𝑋ାଶ, … , 𝑋ሽ are drawn from a second normal distribution 

𝑁ሺ𝜇, 𝜎
ଶሻ. Therefore, the density function for any point 𝑋 within our data is: 

𝑓ሺ𝑋ሻ ൌ

⎩
⎪
⎨

⎪
⎧ 1

ඥ2𝜋𝜎
ଶ

exp ቈെ
1
2

൬
𝑋 െ 𝜇

𝜎
൰

ଶ

 ,     if 1  𝑘  𝑖 or 𝑗 ൏ 𝑘  𝑁

1

ඥ2𝜋𝜎
ଶ

exp ቈെ
1
2

൬
𝑋 െ 𝜇

𝜎
൰

ଶ

 ,                               if 𝑖 ൏ 𝑘  𝑗

 

Assuming independence among the datapoints, the probability of obtaining the entire data 

set 𝑿 is given by the likelihood function: 

𝑓ሺ𝑿ሻ ൌ 𝑓ሺ𝑋ଵሻ𝑓ሺ𝑋ଶሻ … 𝑓ሺ𝑋ேሻ 

ൌ ቆෑ
1

ඥ2𝜋𝜎
ଶ

exp ቈെ
1
2

൬
𝑋 െ 𝜇

𝜎
൰

ଶ




ୀଵ
ቇ ∗ ቆෑ

1

ඥ2𝜋𝜎
ଶ

exp ቈെ
1
2

൬
𝑋 െ 𝜇

𝜎
൰

ଶ




ୀାଵ
ቇ

∗ ቆෑ
1

ඥ2𝜋𝜎
ଶ

exp ቈെ
1
2

൬
𝑋 െ 𝜇

𝜎
൰

ଶ


ே

ୀାଵ
ቇ 

Only the values ሼ𝑋ଵ, 𝑋ଶ, … , 𝑋ேሽ are known. We wish to determine values for the 

parameters 𝜇, 𝜎
ଶ, 𝜇, 𝜎

ଶ, 𝑖, and 𝑗 which maximize 𝑓. Equivalently, one could maximize 

the log-likelihood function. The log-likelihood function is the natural logarithm of 𝑓: 

ln 𝑓 ൌ ቈെ
𝑖
2

lnሺ2𝜋𝜎
ଶሻ െ

1
2𝜎

ଶ  ሺ𝑋 െ 𝜇ሻଶ


ୀଵ


 ቈെ
𝑗 െ 𝑖

2
lnሺ2𝜋𝜎

ଶሻ െ
1

2𝜎
ଶ  ሺ𝑋 െ 𝜇ሻଶ



ୀାଵ


 ቈെ
𝑁 െ 𝑗

2
lnሺ2𝜋𝜎

ଶሻ െ
1

2𝜎
ଶ  ሺ𝑋 െ 𝜇ሻଶ

ே

ୀାଵ
 

An estimate for 𝜇ෞ , the value of 𝜇 which maximizes ln 𝑓, is obtained by solving 
డ ୪୬

డ ఓೆ
ൌ 0: 
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𝜕 ln𝑓
𝜕 𝜇

ൌ
1

𝜎
ଶ ቈ ሺ𝑋 െ 𝜇ሻ



ୀଵ
  ሺ𝑋 െ 𝜇ሻ

ே

ୀାଵ
 

ൌ
1

𝜎
ଶ ቈቆ 𝑋



ୀଵ
  𝑋

ே

ୀାଵ
ቇ െ ሺ𝑁 െ 𝑗  𝑖ሻ𝜇 ൌ 0 

⇒  𝑋



ୀଵ
  𝑋

ே

ୀାଵ
ൌ ሺ𝑁 െ 𝑗  𝑖ሻ𝜇 

⇒ 𝜇ෞ ൌ
1

ሺ𝑁 െ 𝑗  𝑖ሻ
ቈ 𝑋



ୀଵ
  𝑋

ே

ୀାଵ
 

The estimate for 𝜇ෞ is found similarly to be: 

𝜇ෞ ൌ
1

𝑗 െ 𝑖
 𝑋



ୀାଵ
 

An estimate for 𝜎
ଶ  is obtained by solving 

డ ୪୬

డ ఙೆ
మ ൌ 0 and using 𝜇ෞ  as an estimate for 𝜇: 

𝜕 ln𝑓
𝜕 𝜎

ଶ ൌ െ
𝑁 െ 𝑗  𝑖

2𝜎
ଶ 

1
2𝜎

ସ ቈ ሺ𝑋 െ 𝜇ሻଶ


ୀଵ
  ሺ𝑋 െ 𝜇ሻଶ

ே

ୀାଵ
 ൌ 0 

⇒
𝑁 െ 𝑗  𝑖

2𝜎
ଶ ൌ

1
2𝜎

ସ ቈ ሺ𝑋 െ 𝜇ሻଶ


ୀଵ
  ሺ𝑋 െ 𝜇ሻଶ

ே

ୀାଵ
 

⇒ 𝑁 െ 𝑗  𝑖 ൌ
1

𝜎
ଶ ቈ ሺ𝑋 െ 𝜇ሻଶ



ୀଵ
  ሺ𝑋 െ 𝜇ሻଶ

ே

ୀାଵ
 

⇒ 𝜎
ଶ ൌ

1
𝑁 െ 𝑗  𝑖

ቈ ሺ𝑋 െ 𝜇ෞሻଶ


ୀଵ
  ሺ𝑋 െ 𝜇ෞሻଶ

ே

ୀାଵ
 

The estimate for 𝜎
ଶ  is similarly given by: 

𝜎
ଶ ൌ

1
𝑗 െ 𝑖

 ሺ𝑋 െ 𝜇ෞሻଶ


ୀାଵ
 

The log-likelihood function simplifies after these values are substituted: 

ln 𝑓 ൌ െ
𝑗 െ 𝑖

2
ln൫2𝜋𝜎

ଶ ൯ െ
𝑁 െ 𝑗  𝑖

2
ln൫2𝜋𝜎

ଶ ൯൨ െ
𝑗 െ 𝑖

2
െ

𝑁 െ 𝑗  𝑖
2
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ൌ െ
𝑗 െ 𝑖

2
ln൫𝜎

ଶ ൯ െ
𝑁 െ 𝑗  𝑖

2
ln൫𝜎

ଶ ൯൨ െ
𝑁
2

lnሺ2𝜋ሻ െ
𝑁
2

 

 It is sufficient to maximize the following function: 

𝐿 ൌ െ
𝑗 െ 𝑖

2
ln൫𝜎

ଶ ൯ െ
𝑁 െ 𝑗  𝑖

2
ln൫𝜎

ଶ ൯ 

This function depends only on 𝑿, 𝑖, and 𝑗. As 𝑖 and 𝑗 must be within the set ሼ1,2, … , 𝑁 െ

1ሽ, 𝚤̂ and 𝚥̂ may be determined empirically. 
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Figure S1. Optical trap layout. A half-wave plate (HW) / polarizer (P) combination 

attenuates the vertically polarized 1064 nm trapping laser beam (IPG) to the intensity 

required for the experiment, while a second half-wave plate adjusts the polarization angle 

to 45 degrees such that two traps with orthogonal polarization and equal power can be 

formed. The beam is split into vertical and horizontal components by the first polarizing 

beam splitter (PBS, Newport), and each beam passes through an acousto-optic deflector 

(AOD, Gooch and Housego) for computer-controlled trap steering and power control. The 

AODs require an input polarization parallel to their horizontal steering plane, and the 

output from the AODs is vertically polarized. Therefore, a half-wave plate is needed to 

rotate the polarization before one AOD, and a separate half-wave plate is used to rotate 

polarization after the other AOD. The two polarization separated beams are then 

recombined using a second PBS. The beams are then expanded to fill the back aperture 
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of the microscope objective by a pair of beam expanders, each formed by two 

planoconvex lenses with a biconcave lens at the crossover point to limit fluctuations 

caused by localized heating of the air. Motorized mirrors (M, with arrows, Newport) are 

placed at two points for coarse positioning of the beams: the first adjusts one trap’s 

position while the second, which is conjugate to the back aperture of the objective, 

repositions both traps simultaneously in the microscope field of view. The AOD’s and 

quadrant photodiode detectors (QPDs, see below) are conjugate to the back focal plane 

of the objective so that beam steering is not registered as signal change on the QPDs. 

After the laser beams pass through the trapped beads, the resulting interference patterns 

are collected by the condenser (a second objective lens) and split into their respective 

polarizations by a PBS. These polarization-separated interference patterns are then 

imaged onto the two quadrant photodiodes (QPDs, First Sensor). Neutral density (ND) 

and 1064 nm bandpass filters (F) are used to avoid detector saturation and to remove 

non-trapping wavelengths of light, respectively. 

Beads are visualized on an electron multiplying charge coupled device (EMCCD), 

or alternatively a standard CCD camera using wide field transillumination provided by a 

730 nm LED (Thorlabs). An iris (I) is positioned so that its image is in focus when the 

condenser is set at the correct height for trapping beam imaging onto the QPDs. Before 

reaching the condenser, this beam passes through a dichroic mirror (DM, Semrock) that 

is used to reflect the trapping beams to the QPDs. 

The EMCCD is also used to visualize fluorescent actin molecules in a wide field 

epifluorescence arrangement using an expanded 532 nm laser (CrystaLaser) introduced 

into the trapping beam path with a dichroic mirror. Another dichroic mirror separates the 
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excitation light from the emission signal, which is subsequently filtered by dual filters (F). 

Both the 532 nm and 1064 nm lasers have shutters (S). 
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Figure S2. The single threshold method detects more false positive binding 

interactions than the peak-to-peak method, and efficiently excluding these 
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interactions is difficult. 10 sets of data, each containing 100 simulated binding 

interactions, were analyzed by either the single threshold method or the peak-to-peak 

method. (A) Scatter plot showing the duration and the smaller of the two separations of 

each binding interaction detected by the single threshold method, both in units of 

seconds. A binding interaction’s two separations are the amounts of time separating that 

interaction from the preceding and subsequent interactions. Both axes are scaled 

logarithmically. False positive interactions identified by the method are shown in red. As 

can be seen, most false positive interactions have relatively short durations and/or 

separations. The yellow box indicates the binding interactions which remain after filtering 

out any interactions with a duration shorter than 77 ms or a separation shorter than 63 

ms. These two values were chosen to be as small as possible while still filtering out all 

false positive interactions. Due to significant overlap between the false positive 

interactions and many of the correctly detected interactions, it is not easy to pick suitable 

values for filtering the interactions unless the false positive binding interactions have 

already been identified. This can only confidently be done using simulated data where 

one can know for certain whether a detected interaction is a false positive. After the 

filtering takes place, 598 interactions remain. (B) Scatter plot showing the duration and 

the smaller of the two separations of each binding interaction detected by the peak-to-

peak method. No false positive interactions were detected by the peak-to-peak method. 

Applying the same filtering as with the single threshold method leaves 613 interactions. 

Note that the durations and separations are calculated based on the binding initiation and 

termination times estimated by the single threshold or peak-to-peak method. A binding 

interaction detected by the peak-to-peak method will always appear to be longer than the 



  20

corresponding interaction detected by the single threshold method (see main text for 

details). 
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Figure S3. Higher signal-to-noise ratios enable the detection of a greater number 

of binding interactions, with fewer missed binding interactions.  10 sets of data, 

each containing 100 simulated binding interactions, were analyzed by either the single 

threshold method or the peak-to-peak method. Purple bars show binding interactions 

identified using the peak-to-peak method. (A) Simulated data trace taken from data sets 
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1-10. This is the same data set analyzed in Table S1. (B) Simulated data trace with a 

greater signal-to-noise ratio, taken from data sets 21-30.  The signal-to-noise ratio was 

increased in the simulations by reducing the amplitude of the high frequency noise.  The  

increased signal-to-noise ratio enabled the detection of a greater number of binding 

interactions, with fewer binding interactions being missed.  
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  24

Figure S4. Ensemble averages generated with the single threshold method without 

filtering events leads to an underestimate of the total step size due to the inclusion 

of false positive binding interactions. The same sets of simulated data were analyzed 

as with Fig. 5 (sets 1-10), each containing 100 binding interactions. As with Fig. 5, 

interactions were detected using either the peak-to-peak (PTP) or the single threshold 

(ST) method, and interactions were aligned using either the transitions estimated by the 

covariance threshold method or the change points identified by the change point 

algorithm (CP). Here, unlike with Fig. 5, none of the binding interactions detected by the 

single threshold method were removed. Many of these binding interactions are false 

positives (see Figure S2). (A-B) Time forward (left) and time reversed (right) ensemble 

averages were generated from the known locations of the actual simulated binding 

interactions (real) and from each method of analysis. (C-F) Within each of the 10 sets of 

data, ensemble averages were generated and fit with single exponential functions. The 

substep sizes and rates of the simulated myosin working stroke were estimated from the 

exponential fits. Box plots show the estimated parameters for each analysis method. 

Outliers are indicated by red dots. The substep sizes were estimated from both the time 

forward (f) and time reversed (r) ensemble averages. Horizontal dashed lines show the 

values of the simulated parameters. The total step size is underestimated by the single 

threshold method, both with (ST/CP) and without (ST) the change point algorithm, due to 

the inclusion of false positive binding interactions which do not generate any net 

displacement in the optical trap. 
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Figure S5. Ensemble averages are able to accurately estimate the substep sizes 

and kinetic rates when the underlying transitions have slower kinetics. 10 sets of 
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data were simulated, each containing 100 binding interactions (sets 11-20). Here, the rate 

of transitioning from the first to second substep was set to 5 s-1, which is much lower than 

the rate of 70 s-1 used in Fig. 5. Additionally, the rate of transitioning from the second 

substep to the detached state was set to 2 s-1. The magnitude of the two substeps were 

still 4.7 nm and 1.9 nm, as before. As in Fig. 5, interactions were detected using either 

the peak-to-peak (PTP) or the single threshold (ST) method, and interactions were 

aligned using either the transitions estimated by the covariance threshold method or the 

change points identified by the change point algorithm (CP). Also similar to Fig. 5, binding 

interactions detected by the single threshold method which were too short or too close to 

other interactions were excluded from analysis, to minimize the number of false positive 

interactions. (A-B) Time forward (left) and time reversed (right) ensemble averages were 

generated from the known locations of the actual simulated binding interactions (real) and 

from each method of analysis. (C-F) Within each of the 10 sets of data, ensemble 

averages were generated and fit with single exponential functions. The substep sizes and 

rates of the simulated myosin working stroke were estimated from the exponential fits. 

Box plots show the estimated parameters for each analysis method. Outliers are indicated 

by red dots. The substep sizes were estimated from both the time forward (f) and time 

reversed (r) ensemble averages. Horizontal dashed lines show the values of the 

simulated parameters. Unlike with Fig. 5, the time reversed averages generated from 

simulations with slower kinetics offer accurate estimates of the size of substep 1. 
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Method 
Average # of correctly 
detected interactions 

(mean ± SD) 

Average # of 
missed interactions 

(mean ± SD) 

# of false 
positive 

interactions / 
100 seconds 
(mean ± SD)

Single threshold 80 ± 4 20 ± 4 4 ± 1
Peak-to-peak 65 ± 5 36 ± 5 0

 
Table S1. Detection of binding interactions using either the single or peak-to-peak 

covariance threshold method. Average number of correctly identified binding 

interactions and frequency of false positive binding interactions detected with the single 

threshold method and peak-to-peak method for 10 data sets, each containing 100 

simulated binding interactions (sets 1-10). Calculated values were rounded to the nearest 

whole number. 
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Method 
Error in binding initiation 

times (ms, mean with 95% CI)
Error in binding termination 

times (ms, mean with 95% CI)
Single threshold 28.2 (+13.8, -21.7) -28.6 (+19.1, -11.9)

Peak-to-peak -55.5 (+69.0, -195.5) 50.4 (+188.1, -64.9)
Change point 

algorithm 
0.5 (+9.0, -5.5) 0.7 (+4.8, -4.2) 

 
Table S2. The change point algorithm minimizes the error when detecting the 

locations of transitions. Mean and 95% confidence intervals for the error when 

detecting transitions within simulated data sets 1-10 with the single threshold method, the 

peak-to-peak method, and the change point algorithm. When estimating the binding 

initiation times, 645 of 1000 transitions were detected and analyzed for the peak-to-peak 

method, 598 transitions were detected and analyzed for the single threshold method, and 

644 transitions were detected and analyzed for the change point algorithm. The same 

number of transitions were detected and analyzed for each method when estimating the 

binding termination times. Note that a negative average error indicates that the detected 

transitions occurred before the actual transitions, on average. 
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Time forward ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP

Substep 1 
(nm) 

4.7 
(+0.4, -0.4) 

0.6 
(+0.7, -0.5) 
p < 0.001

6.3 
(+0.3, -0.3) 
p < 0.001

5.0 
(+0.5, -0.3) 
p = 0.021 

5.0 
(+0.4, -0.6) 
p = 0.045

Substep 2 
(nm) 

1.7 
(+0.5, -0.4) 

5.6 
(+1.7, -0.8) 
p < 0.001

0.5 
(+1.7, -0.4) 
p = 0.003

1.6 
(+0.3, -0.4) 
p = 0.427 

1.5 
(+0.5, -0.6) 
p = 0.186

Total step 
(nm) 

6.4 
(+0.2, -0.2) 

6.2 
(+2.0, -1.1) 
p = 0.026

6.8 
(+2.1, -0.3) 
p = 0.002

6.6 
(+0.1, -0.1) 
p = 0.001 

6.5 
(+0.2, -0.2) 
p = 0.186

Rate (s-1) 

68.7 
(+15.8, -20.

9) 

20.2 
(+7.4, -12.8)

p < 0.001 

84.3 
(+43.8, -84.

3) 
p = 0.141

64.5 
(+30.0, -20.

9) 
p = 0.473 

63.6 
(+42.3, -25.

0) 
p = 0.241

Time reversed ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP

Substep 1 
(nm) 

5.7 
(+0.2, -0.3) 

1.7 
(+0.8, -0.4) 
p < 0.001

5.2 
(+1.8, -5.2) 
p = 0.026

5.7 
(+0.4, -0.6) 
p = 0.970 

5.0 
(+1.0, -5.0) 
p = 0.385

Substep 2 
(nm) 

0.7 
(+0.2, -0.2) 

7.1 
(+1.7, -1.4) 
p < 0.001

1.4 
(+5.2, -1.4) 
p = 0.038

1.0 
(+0.5, -0.4) 
p = 0.026 

1.6 
(+4.8, -1.1) 
p = 0.045

Total step 
(nm) 

6.5 
(+0.1, -0.2) 

8.8 
(+1.4, -1.6) 
p < 0.001

6.6 
(+0.4, -0.1) 
p = 0.003

6.7 
(+0.1, -0.1) 
p < 0.001 

6.7 
(+0.4, -0.2) 
p = 0.011

Rate (s-1) 
4.3 

(+2.2, -1.9) 
3.3 

(+1.2, -0.6) 
p = 0.054

1.7 
(+4.8 -1.7) 
p = 0.038

3.3 
(+3.9, -2.0) 
p = 0.089 

3.0 
(+3.8, -2.9) 
p = 0.076

 

Table S3. The change point algorithm improves ensemble averages. 10 sets of data 

were simulated, each containing 100 binding interactions (sets 1-10). Interactions were 

detected using either the peak-to-peak or the single threshold method, and interactions 

were aligned using either the transitions estimated by the covariance threshold method 

or the change points identified by the change point algorithm. For each data set, ensemble 

averages were generated using either the known locations of actual simulated binding 

interactions (real) or using the binding interactions detected by each method of analysis. 
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The averages were fit with exponential functions, and the substep sizes and rates of the 

simulated myosin working stroke were estimated from the rates and amplitudes of the 

exponential fits. (top) Mean and 95% confidence intervals for the size of substep 1, the 

size of substep 2, the total step size, and the rate of transitioning from the first substep to 

the second substep, as estimated by the time forward ensemble averages. (bottom) Mean 

and 95% confidence intervals for the size of substep 1, the size of substep 2, the total 

step size, and the rate of transitioning from the second substep to the detached state, as 

estimated by the time reversed ensemble averages. The p-value for a given set of 

parameter values estimated by a given analysis method was obtained from the Wilcoxon 

rank sum test between those estimated parameter values and the values estimated by 

using the known locations of actual simulated binding interactions (real).  
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