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S1 Supplementary Methods

S1.1 Enrichment methods
In the following, we provide a brief overview of the main features of each enrichment method listed in
Table 1 of the main manuscript with a focus on functionality, statistical approach, and implementation.
Please refer to the references provided in Table 1 of the main manuscript for methodological details, and
the R documentation of each method for implementation details. The categorization of each method as
either self-contained or competitive is discussed in Supplementary Discussion S2.1.
All methods under benchmark were carried out through the EnrichmentBrowser package [1], which uses
its own implementation of ORA, available R-scripts for GSEA and SAMGS, the corresponding CRAN pack-
age for GSA, and the respective Bioconductor packages for GLOBALTEST, SAFE, ROAST, CAMERA,
PADOG, and GSVA.

ORA: Overrepresentation Analysis. Tests the overlap between the differentially expressed genes and
genes in a gene set based on the hypergeometric distribution. Implementation: function phyper from the
stats package. See Supplementary Discussion S2.1 for details.

GLOBALTEST: Global testing of groups of genes. Implements a self-contained test of groups of genes
for association with a response variable. Implemented in the globaltest package [2]. We executed
GLOBALTEST (globaltest::gt) providing the sample group vector (argument response), the expres-
sion dataset (alternative), the gene sets (subsets), and the number of permutations (permutations).
Defaults were used for all other arguments. From the resulting gt.object we extracted the p-value for
each gene set using the p.value accessor method.

GSEA: Gene Set Enrichment Analysis. Uses a Kolmogorov-Smirnov (KS) statistic to test whether the
ranks of the p-values of genes in a gene set resemble a uniform distribution. Computation of the cu-
mulative KS statistic can be time-consuming. Implementation: R script [3]. GSEA (function GSEA of
the script) was executed providing the expression matrix (argument input.ds), the sample group vector
(input.cls), the gene sets in GMT format (gs.db), and the number of permutations (nperm). Defaults
were used for all other arguments. From the two tab-separated global result text files (one for gene
sets with positive enrichment score, one for gene sets with negative enrichment score), we extracted the
p-value for each gene set from the NOM p-val column.

SAFE: Significance Analysis of Function and Expression. Implements a general permutation framework
that allows to combine values of a local (per-gene) test statistic within a global (gene set) test statis-
tic. Uses Wilcoxon’s rank sum as default global statistic. Implemented in the safe package [4]. SAFE
(safe::safe) was executed providing the expression matrix (argument X.mat), the sample group vector
(y.vec), the gene × gene set incidence matrix (C.mat), and the number of permutations (Pi.mat). De-
faults were used for all other arguments, resulting in SAFE using Student’s t as the gene level statistic
(local="t.Student") and Wilcoxon’s rank sum as the gene set statistic (global="Wilcoxon"). From
the resulting object we extracted the permutation p-value for each gene set from the global.pval slot.

GSA: Gene Set Analysis. Differs from GSEA by using the maxmean statistic, i.e. the maximum mean of
either the positive or negative part of gene scores in the gene set. Uses a combination of sample permu-
tation and gene permutation, which can result in longer runtimes. Implemented in the GSA package [5].
We executed GSA (GSA::GSA) providing the expression matrix (x), the sample group vector (y), the list
of gene sets (genesets), and the number of permutations (nperms). Defaults were used for all other
arguments, resulting in GSA using the maxmean statistic as method for computing the gene set statistic
(method="maxmean"). From the result list we extracted the p-values for negative gene sets (pvalues.lo)
and the p-values for positive gene sets (pvalues.hi), and calculated a single combined p-value for each
gene set by taking the minimum p-value of the two directional p-values (positive / negative) multiplied
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by two.

SAMGS: Significance Analysis of Microarrays on Gene Sets. Implements a self-contained test that extends
the SAM method [6] for single genes to gene set analysis. Implementation: R script [7]. SAMGS (function
SAMGS of the script) was executed providing the expression matrix (argument DATA), the sample group vec-
tor (cl), the gene × gene set incidence matrix (GS), and the number of permutations (nbPermutations).
From the result we extracted the p-value for each gene set from the GS p-value column.

ROAST: ROtAtion gene Set Test. Implements a self-contained test that uses rotation instead of permu-
tation for assessment of gene set significance. Implemented in the limma [8] and edgeR [9] packages for
microarray and RNA-seq data, respectively. We executed ROAST (limma::mroast) providing the ex-
pression matrix (argument y), the gene set index list (index), the experimental design matrix (design),
and the number of rotations (nrot). For raw RNA-seq read counts, the expression matrix was provided
as a DGEList with size factors and dispersions calculated. Other arguments were left unchanged and
carried out using the corresponding default value. From the result list we extracted the column PValue,
containing the two-sided directional p-value for each gene set, which was used to generate the presented
results.

CAMERA: Correlation Adjusted MEan RAnk gene set test. Implements a competitive test that ac-
counts for inter-gene correlations. Implemented in the limma [8] and edgeR [9] packages for microarray
and RNA-seq data, respectively. We executed CAMERA (limma::camera) providing the expression ma-
trix (argument y), the gene set index list (index), and the experimental design matrix (design). For raw
RNA-seq read counts, the expression matrix was provided as a DGEList with size factors and dispersions
calculated. Other arguments were left unchanged and carried out using the corresponding default value.
From the result list we extracted the column PValue, containing the two-tailed p-value for each gene set,
which was used to generate the presented results.

PADOG: Pathway Analysis with Down-weighting of Overlapping Genes. PADOG computes the mean of
the absolute moderated t-scores of the genes in a gene set, but additionally incorporates gene weights to
favor genes appearing in few pathways versus genes that appear in many pathways. Implemented in the
PADOG package [10]. PADOG (PADOG::padog) was executed providing the expression matrix (argument
esetm), the sample group vector (group), the list of gene sets (gslist), and the number of permutations
(NI). From the resulting data.frame we extracted the column Ppadog, containing the p-value for each
gene set, which was used for all further analysis.

GSVA: Gene Set Variation Analysis. Transforms the data from a gene by sample matrix to a gene set
by sample matrix, thereby allowing the evaluation of gene set enrichment for each sample. Implemented
in the GSVA package [11]. We executed GSVA (GSVA::gsva) providing the expression matrix (argument
expr), the list of gene sets (gset.idx.list), and kcdf="Gaussian" for continuous expression values (mi-
croarray log-intensities, RNA-seq log-CPMs or log-TPMs) and kcdf="Poisson" for raw RNA-seq read
counts. Other arguments were left unchanged and carried out using the corresponding default value. Ac-
cordingly, GSVA were carried out with mx.diff=TRUE (default), calculating the enrichment score as the
difference between the maximum positive and negative deviations from zero of the random walk statistic.
To analyze differences in the enrichment scores between sample groups, we applied limma as suggested
in the vignette of the GSVA package.
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S1.2 Enrichment tools
The goal of our benchmark study is a quantitative assessment of the performance of EA methods/algo-
rithms as opposed to a comparison of EA tools, typically facilitating the execution of one or more EA
methods on a number of existing gene set databases with different options for result exploration and
visualization. Popular enrichment tools listed in Table 2 of the main manuscript typically work on a list
of genes provided by the user, and use a version of ORA and/or GSEA to quantify enrichment of genes
annotated to specific molecular functions or biological process as e.g. defined in the Gene Ontology or
the KEGG pathway database. In the following, we describe which methods each tool implements. Please
refer to the references provided in Table 2 of the main manuscript for more information.

DAVID: uses ORA. Tests the overlap between the input gene list and genes in a gene set based on the
hypergeometric distribution. The statistical test is identical to our implementation of ORA, but is often
used with a much larger background set (the whole genome) which typically results in less conservative
p-values (Supplementary Discussion S2.2.2).

GORILLA: provides two modes of hypergeometric testing. (1) standard ORA, identical to the one used
by DAVID. (2) Application of ORA to all possible partitions of a ranked input list of genes and identifi-
cation of the partition with minimum p-value.

GOSTATS: also provides two modes of hypergeometric testing. (1) standard ORA, but uses a non-
specific filtering strategy to arrive at a more realistic background set (similar to the strategy described in
Supplementary Discussion S2.2.2). (2) A conditional ORA that also takes into account the parent-child
relationships between terms of the Gene Ontology.

WEBGESTALT: provides (1) standard ORA, identical to the one used by DAVID. (2) pre-ranked GSEA,
which works on a ranked gene list instead of the full expression matrix [12]. (3) A network-based approach
that performs random walk-based network propagation on an input gene list.

PANTHER: provides (1) standard ORA, identical to the one used by DAVID. (2) an enrichment test
that is based on Wilcoxon’s rank sum test, which is also used in SAFE per default.

CLUSTER-PROFILER: Similar to WEBGESTALT in providing (1) standard ORA, and (2) preranked
GSEA.

ENRICHR: provides (1) standard ORA, identical to the one used by DAVID. (2) an empirical z-score
method, that compares the observed rank for a gene set to the expected rank derived from performing
ORA on many random input gene lists. (3) a combined score that multiplies the log of the ORA p-value
from (1) with the z-score from (2).

TOPPGENE: uses standard ORA, identical to the one used by DAVID.

G:PROFILER: Similar to GORILLA in providing (1) standard ORA, and (2) application of ORA to
all possible partitions of a ranked input list of genes and identification of the partition with minimum
p-value.

GENETRAIL: supports enrichment analysis for (optionally ranked) input gene lists as the other tools
above, but also implements methods for expression-based enrichment analysis when provided the full
expression matrix (genes x samples). For simple gene lists, it provides standard ORA. For ranked gene
lists that are optionally accompanied with scores it additionally provides pre-ranked GSEA and a number
of additional set-level statistics. When provided a full expression matrix (such as an expression dataset
from GEO), it allows similar to SAFE to choose from a number of local (gene-level) and global (set-level)
statistics.
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S1.3 Construction of gene set relevance rankings from MalaCards
As illustrated in Figure 1 of the main manuscript, we constructed gene set relevance rankings from
MalaCards [13] in two steps. Focusing on the diseases investigated in the datasets of the benchmark
compendia, we (1) systematically extracted relevant genes for each disease directly from the respective
MalaCards page, and (2) subjected the disease genes for each disease to GeneAnalytics [14] to obtain
the gene set relevance rankings for GO-BP terms and KEGG pathways. In the following we describe
both steps in more detail. It is important to note that both steps of the curation process exclude any
meaningful impact of (i) expression datasets of our benchmark compendium, and (ii) published gene
set enrichment analyses of transcriptomic studies investigating diseases represented in our benchmark
compendium.

1. Disease genes: According to https://www.malacards.org/pages/info#related_genes, the cura-
tion process of disease genes takes into account:

• GeneCards [15] textual association,

• Genetic testing resources supplying specific genetic tests for the disease,

• Genetic variations resources supplying specific causative variations in genes for the disease,

• Resources that manually curate the association of the disease with genes,

The sources for these evidence categories are (see Table 3 in [14]):

Evidence category Source
Causative mutation ClinVar, OMIM, Orphanet
Risk factor ClinVar, OMIM, Orphanet
Resistant factor ClinVar, OMIM
Genetic tests GeneTests
Drug response ClinVar
Structural gene variation OMIM, Orphanet

According to https://www.malacards.org/pages/info#scores these evidence categories are combined
into a composite score consisting of co-occurrences of gene and disease in GeneCards summaries, as well
as the targeted experiments listed above, which do not include (1) high-throughput expression assays or
(2) gene set enrichment analyses.
As an example, see the Genes for Breast Cancer section of https://www.malacards.org/card/breast_
cancer#related_genes. For each gene it lists up to nine evidence categories including Molecular ba-
sis known, Pathogenic, Causative variation, Genetic Tests, and Susceptibility factor. One category is
GeneCards inferred of which one sub-category is Publications. While this last category could include
co-occurring text from the publications of our benchmark datasets, we note that our cancer vs. normal
contrasts each generated from hundreds to thousands of differentially expressed genes. Even if a few of
these genes were mentioned in the publications of the benchmark datasets, the impact on the MalaCards
relevance score would be negligible.

2. Gene set relevance rankings: Given the list y of relevant genes for a disease D, GeneAnalytics [14]
computes a composite relevance score S(x) for a gene set x of interest (here: a GO-BP term or a KEGG
pathway) via

S(x) = log10

(
log100(R(x))

∏
g∈z

log100(SD(g))

)
+ 10 +NS (1)

6

https://www.malacards.org/pages/info#related_genes
https://www.malacards.org/pages/info#scores
https://www.malacards.org/card/breast_cancer#related_genes
https://www.malacards.org/card/breast_cancer#related_genes


where R(x) is the rank of gene set x, when ordering gene sets first by their SetDistiller [16] p-value,
and then by gene set size. SD(g) is the disease relevance score of a gene g as derived in Step 1 above, and
is taken into account for all genes in z = x ∩ y, i.e. for genes that are shared between gene set x and the
list y of relevant genes for disease D. NS is the number of data sources supporting the disease relevance
of genes in the gene set.
We observe that the gene set relevance score has three main components:

1. R(x) is based on the SetDistiller [16] p-value, which is calculated from the binomial distribution,
testing the null hypothesis that the frequency of gene set x in the query set y is not significantly
different from what is expected with a random sampling of genes, given the frequency of the x in
the set of all genes,

2.
∏

g∈z SD(g) summarizes the per-gene disease relevance for genes shared between the gene set x and
the disease gene set y, and

3. NS is the number of sources listed on a GeneCards page that support a link between genes in gene
set x and disease D (see evidence categories and sources listed above).

We note that the SetDistiller test comes methodologically close to a hypergeometric ORA, but is
carried out on the list of disease genes (as opposed to the list of DE genes for each dataset of the
benchmark compendium). Further, it is used here as an additional weighting factor, where the main
contribution to the gene set relevance score comes from the product of the per-gene disease relevance
scores.

S1.4 Comparison of the relevance score to alternative measures
S1.4.1 Motivation and properties of the relevance score Xm(d)

In the manuscript we motivate the score as a measure of phenotype relevance accumulated along a gene
set ranking. The score Xm(d) for method m applied to dataset d therefore sums up the individual gene
set relevance scores, weighted by the relative position of each gene set in the ranking of method m. Gene
sets that are ranked towards the top obtain a high weight, and vice versa.
The goal of the score is to generalize the approach we take when manually inspecting a gene set ranking
for phenotype relevance: we check whether top ranked gene sets ("positives") have relevance for the
phenotype as reported in the literature ("true positives"). In general, we are thus interested in detecting
a gene set if it is relevant. Researchers rarely inspect the bottom of the ranking / insignificant gene
sets ("negatives"), and check whether these gene sets indeed have no relevance for the phenotype ("true
negatives"). True negatives are also more difficult to establish as it can rarely be definitively determined
whether a gene set is indeed irrelevant for a phenotype, or whether the gene set’s relevance has simply
not been studied or established yet (investigation bias / observational bias).
For additional properties and limitations of the relevance score Xm(d) with respect to comparability
between datasets and the presence of ties, we refer to Methods, Section 2.6 Phenotype relevance.

S1.4.2 Alternative measures (true negative rate, ROC/AUC, cor, ...)

It is instructive to inspect other measures. The evalRelevance function therefore accepts an argument
method that determines how the relevance score is summarized across the enrichment analysis ranking
(see the documentation of the function in the reference manual of the package). Choices for the method
argument include:

• "wsum" to compute a weighted sum of the relevance scores (default, corresponds to Xm(d));
• "auc" to perform a ROC/AUC analysis;
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• "cor" to compute a correlation;
• or a user-defined function for customized behaviors.

Instead of "auc", this can also be any other performance measure that the ROCR package implements, for
example "tnr" for calculation of the true negative rate.

However, the following considerations apply:

– ROC / AUC / true negative rate: It is tempting to treat the comparison of the EA ranking and the
MalaCards ranking as a classification problem. However, this requires to divide (i) the EA ranking into
enriched (positive) and not enriched (negative) gene sets, and (ii) the MalaCards ranking into relevant
and irrelevant gene sets. Both steps are not straightforward and require the definition of thresholds. For
(i), universal thresholding on the gene set p-value seems to lead to either overly small or large proportions
of enriched gene sets depending on the method (Figure 3). And for (ii), the MalaCards ranking seem to
rather provide varying degrees of relevance for a subset of gene sets, as opposed to a binary categorization
as either relevant or irrelevant for all gene sets. Also, given the above considerations on the difficulty of
establishing real true negatives, it is our understanding that absence from a MalaCards relevance ranking
does not imply irrelevance for the phenotype per se. As a compromise, we consider a defined number of
gene sets at the top of the EA ranking as enriched and, analogously, a defined number of gene sets at the
top of the MalaCards ranking as relevant.

Let us consider the top 10 gene sets of the EA ranking as enriched and the top 10 gene sets of the
MalaCards ranking as relevant. An optimal AUC of 1 is then achieved if all 10 relevant gene sets are
placed (in arbitrary order) among the top 10 enriched gene sets. Note that such an analysis therefore
does not allow to account for varying degrees of relevance among the 10 relevant gene sets: an optimal
EA ranking placing the 10 relevant gene sets in the order of the relevance ranking achieves an AUC of
1; but also a suboptimal EA ranking that places the 10 relevant gene sets in reverse order at the top
achieves an AUC of 1.

1 # setup
2 > l i b r a r y (GSEABenchmarkeR)
3

4 # MalaCards r e l evance ranking f o r Alzheimer ’ s d i s e a s e (KEGG pathways )
5 > r e l . ranks
6 DataFrame with 57 rows and 2 columns
7 TITLE REL.SCORE
8 <character> <numeric>
9 hsa05010 Alzheimers d i s e a s e 84 .12

10 hsa04932 Non−a l c o h o l i c f a t t y l i v e r d i s e a s e (NAFLD) 84 .12
11 hsa04726 Se ro tone rg i c synapse 49 .19
12 hsa04728 Dopaminergic synapse 49 .19
13 hsa04713 Circadian entrainment 49 .19
14 . . . . . . . . .
15 hsa05310 Asthma 9 .81
16 hsa05416 Vi ra l myocard i t i s 9 .81
17 hsa05330 A l l o g r a f t r e j e c t i o n 9 .81
18 hsa05332 Graft−versus−host d i s e a s e 9 .81
19 hsa05321 Inflammatory bowel d i s e a s e (IBD) 9 .81
20

21 # an optimal EA ranking f o r which the top 10 enr i ched pathways . . .
22 # . . . correspond to the top 10 r e l e van t pathways
23 > ea . ranks
24 DataFrame with 323 rows and 2 columns
25 GENE.SET PVAL
26 <character> <numeric>
27 1 hsa05010_Alzheimers_d i s e a s e 1 .98 e−12
28 2 hsa04932_Non−a l c o h o l i c_f a t t y_l i v e r_d i s e a s e_(NAFLD) 2 .6 e−11
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29 3 hsa04726_Se ro tone rg i c_synapse 3 .43 e−11
30 4 hsa04728_Dopaminergic_synapse 1 .28 e−10
31 5 hsa04713_Circadian_entrainment 7 .08 e−05
32 . . . . . . . . .
33 319 hsa03040_Spl iceosome 0.999
34 320 hsa04914_Progesterone−mediated_oocyte_maturation 1
35 321 hsa00232_Ca f f e i n e_metabolism 1
36 322 hsa00460_Cyanoamino_ac id_metabolism 1
37 323 hsa00524_But i r o s in_and_neomycin_b i o s yn th e s i s 1
38

39 # AUC con s i d e r i ng top 10 gene s e t s o f r e l evance ranking as r e l e van t ( t rue p o s i t i v e s )
40 > evalRe levance ( ea . ranks , r e l . ranks , method="auc" , top=10)
41 [ 1 ] 1
42

43 # Now, p lace the 10 gene s e t s in r e v e r s e order at the top o f the EA ranking . . .
44 > ind <− c ( 1 0 : 1 , 11 : nrow ( ea . ranks ) )
45 > ea . ranks . rev <− DataFrame (GENE.SET = ea . ranks $GENE.SET[ ind ] , PVAL = ea . ranks $PVAL)
46 > ea . ranks . rev [ 1 : 1 0 , ]
47 DataFrame with 10 rows and 2 columns
48 GENE.SET PVAL
49 <character> <numeric>
50 1 hsa05211_Renal_c e l l_carcinoma 1 .98 e−12
51 2 hsa04725_Cho l i n e rg i c_synapse 2 .6 e−11
52 3 hsa04723_Retrograde_endocannabinoid_s i g n a l i n g 3 .43 e−11
53 4 hsa04724_Glutamatergic_synapse 1 .28 e−10
54 5 hsa04727_GABAergic_synapse 7 .08 e−05
55 6 hsa04713_Circadian_entrainment 0.000118
56 7 hsa04728_Dopaminergic_synapse 0 .00174
57 8 hsa04726_Se ro tone rg i c_synapse 0 .00198
58 9 hsa04932_Non−a l c o h o l i c_f a t t y_l i v e r_d i s e a s e_(NAFLD) 0.00369
59 10 hsa05010_Alzheimers_d i s e a s e 0 .00975
60

61 # . . . and c a l c u l a t e AUC again
62 > evalRe levance ( ea . ranks . rev , r e l . ranks , method="auc" , top=10)
63 [ 1 ] 1

This illustrates two beneficial aspects of the weighted sum Xm(d): (1) it avoids any artificial thresholding
on the EA ranking by calculating weights that express whether gene sets are rather ranked towards the top
or the bottom of the ranking, and (2) it accounts for varying degrees of relevance in the MalaCards ranking.
It thereby faithfully distinguishes between EA rankings that accumulate high phenotype relevance, but
each ranking to a slightly different extent.

1 # optimal EA ranking
2 # (10 r e l e van t pathways at the top , in the order o f the r e l evance ranking )
3 > evalRe levance ( ea . ranks , r e l . ranks , method="wsum" )
4 [ 1 ] 908 .1592
5

6 # suboptimal EA ranking
7 # (10 r e l e van t pathways at the top , but in r e v e r s e order )
8 > evalRe levance ( ea . ranks . rev , r e l . ranks , method="wsum" )
9 [ 1 ] 905 .8367

– Correlation: The main argument against using a standard correlation measure comes from the miss-
ingness in the relevance rankings (Supplementary Figure S12a and c). Thus, for a dataset and associated
phenotype, we compare an EA ranking going over the full gene set vector (N ≈ 300 for KEGG; N ≈ 4, 600
for GO-BP) against the typically much smaller vector of gene sets for which a relevance score is anno-
tated. For this scenario, using rank correlation reduces the question to "does a subset of the EA ranking
preserve the order of the relevance ranking"; although our question of interest is rather "is a subset of
the relevant gene sets ranked highly in the EA ranking".
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Consider the case of a relevance ranking containing 10 relevant gene sets against an EA ranking of 323
gene sets. Rank correlation (using stats::cor with use = "pariwise.complete.obs" and method =
"spearman") is then computed between the relevance ranking and the EA ranking restricted to the 10
relevant gene sets. This accordingly results in very different correlations for (i) an EA ranking that places
the 10 relevant gene sets at the top (in the order of the relevance ranking), and (ii) an EA ranking that
also places the 10 relevant gene sets at the top, but in reverse order.

1 # cont inu ing with the r e l evance ranking f o r Alzheimer ’ s d i s e a s e from above , . . .
2 # . . . but r e s t r i c t i n g the r e l evance ranking to 10 pathways
3 > r e l . ranks <− r e l . ranks [ 1 : 1 0 , ]
4

5 # Spearman c o r r e l a t i o n f o r the optimal EA ranking
6 # (10 r e l e van t pathways at the top , in the order o f the r e l evance ranking )
7 > evalRe levance ( ea . ranks , r e l . ranks , method=" cor " )
8 [ 1 ] 1
9

10 # Spearman c o r r e l a t i o n f o r the suboptimal EA ranking
11 # (10 r e l e van t pathways at the top , but r e v e r s e order )
12 > evalRe levance ( ea . ranks . rev , r e l . ranks , method=" cor " )
13 [ 1 ] −1

Here, the weighted sum Xm(d) again has preferable properties, as it recognizes that both EA rankings
accumulate high phenotype relevance at the top. Yet, as desired, a slightly higher score is obtained for
the optimal ranking.

1 # Score o f the optimal EA ranking
2 # (10 r e l e van t pathways at the top , in the order o f the r e l evance ranking )
3 > evalRe levance ( ea . ranks , r e l . ranks , method="wsum" )
4 [ 1 ] 539 .7688
5

6 # Score f o r the suboptimal EA ranking
7 # (10 r e l e van t pathways at the top , but r e v e r s e order )
8 > evalRe levance ( ea . ranks . rev , r e l . ranks , method="wsum" )
9 [ 1 ] 537 .4463

S1.5 Executable benchmark system
The GSEABenchmarkeR package is implemented in R [17] and is available from Bioconductor [18] under
http://bioconductor.org/packages/GSEABenchmarkeR. The package allows to (i) load specific pre-defined
and user-defined data compendia, (ii) carry out DE analysis across datasets, (iii) apply EA methods to
multiple datasets, and (iv) benchmark results with respect to the chosen criteria.

Loading of benchmark compendia is facilitated through the loadEData function, which simplifies access
to (i) the pre-defined GEO2KEGG microarray compendium, (ii) the pre-defined TCGA RNA-seq com-
pendium, and (iii) user-defined data from file. Datasets of the GEO2KEGG microarray compendium are
loaded from the Bioconductor packages KEGGdzPathwaysGEO and KEGGandMetacoreDzPathwaysGEO [19,
20]. Probe-to-gene mapping for each dataset can optionally be carried out, in order to summarize ex-
pression levels for probes annotated to the same gene. Datasets of the TCGA RNA-seq compendium are
loaded using the curatedTCGAData package [21] (TPMs) or from GSE62944 [22, 23] (raw read counts).
User-defined data is also accepted, requiring a file path to the directory where datasets have been saved
as serialized R data files (Supplementary Methods S1.8).

Caching to flexibly save and restore an already processed expression data compendium is incorporated by
building on functionality of the BiocFileCache package [24]. This is particularly beneficial as preparing
an expression data compendium for benchmarking of EA methods can be time-consuming and can involve
several pre-processing steps.
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DE analysis between sample groups for selected datasets of a compendium can be carried out using the
function runDE. The function invokes deAna on each dataset, which contrasts the sample groups depend-
ing on data type and user choice via limma/voom, edgeR, or DESeq2.

Enrichment analysis At the core of applying a specific EA method to a single dataset is the runEA func-
tion, which delegates execution of the chosen method to either sbea (set-based enrichment analysis) or
nbea (network-based enrichment analysis). Both functions also accept user-defined enrichment meth-
ods (Supplementary Methods S1.7, [1]). In addition, runEA returns CPU time used and allows saving
results for subsequent assessment.

Parallel computation of functions for microarray preprocessing, DE analysis, and enrichment analy-
sis when applied to multiple datasets is realized by building on infrastructure implemented in the
BiocParallel package [25]. Internally, these functions call bplapply, which per default triggers par-
allel computation as configured in BiocParallel’s registry of computation parameters. As a result,
parallel computation is implicitly incorporated when calling these functions on a multi-core machine. To
change the execution mode of these functions, accordingly configured computation parameters can either
directly be registered, or supplied as an argument to the respective function. Distributed computation
on an institutional computer cluster or a computing cloud is straightforward by similarly configuring a
computation parameter of class BatchtoolsParam for that purpose.

Benchmarking Once methods have been applied to a chosen benchmark compendium, they can be sub-
jected to a comparative assessment using dedicated functions for loading, evaluation, and visualization
of the results. The function evalNrSigSets evaluates the fraction of significant gene sets given a signifi-
cance level alpha and a method for multiple testing correction, which can be chosen from the methods
implemented in p.adjust from the stats package. The function evalRelevance evaluates phenotype
relevance between EA rankings and corresponding relevance rankings, given a mapping from dataset to
phenotype investigated. Integrated relevance rankings can be refined and relevance rankings for addi-
tional datasets can also be incorporated (Supplementary Methods S1.9). Detailed documentation of all
implemented functions is available in the reference manual of the package.

S1.6 Benchmarking network-based methods
Benchmarking with the GSEABenchmarkeR package extends to network-based methods that incorpo-
rate known gene regulatory interactions. For demonstration, we execute two network-based methods
(SPIA [26] and GGEA [27]) on three datasets of the GEO2KEGG microarray compendium, and compare
their runtimes on these datasets.

1 # setup
2 > l i b r a r y (GSEABenchmarkeR)
3 > l i b r a r y ( EnrichmentBrowser )
4

5 # prepare
6 > geo2kegg <− loadEData ( " geo2kegg" , nr . da ta s e t s =3, cache=FALSE)
7 > geo2kegg <− maPreproc ( geo2kegg )
8 > geo2kegg <− runDE( geo2kegg )
9

10 # get KEGG gene s e t s
11 > kegg . gs <− getGenesets ( org="hsa" , db="kegg" )
12

13 # compile a gene r egu l a t o ry network from KEGG
14 > kegg . grn <− compileGRN( org="hsa" , db="kegg" )
15

16 # execute SPIA and GGEA on the three da ta s e t s
17 > re s <− runEA( geo2kegg ,
18 methods=c ( " sp i a " , " ggea" ) ,
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19 gs=kegg . gs ,
20 grn=kegg . grn ,
21 s a v e 2 f i l e=TRUE,
22 out . d i r="~/nbea_bench" )
23

24 # get the runtimes
25 > rt imes <− r eadResu l t s ( data . d i r="~/nbea_bench" , data . i d s=names ( geo2kegg ) ,
26 methods=c ( " sp i a " , " ggea" ) , type=" runtime" )
27 > rt imes
28 $ sp i a
29 GSE1297 GSE14762 GSE15471
30 188.016 187.544 170.474
31

32 $ggea
33 GSE1297 GSE14762 GSE15471
34 58 .351 45 .705 46 .612
35

36 # v i s u a l i z e comparative performance
37 > bpPlot ( rt imes , what=" runtime" )
38

39 # pre−de f ined network−based methods
40 > EnrichmentBrowser : : nbeaMethods ( )
41 [ 1 ] " ggea" " sp i a " "pathnet " "degraph" "ganpa"
42 [ 6 ] " cepa" " topo logygsa " " netgsa "

Listing 1: Benchmarking network-based methods

S1.7 Benchmarking user-defined methods
User-defined enrichment methods can easily be plugged into the benchmarking framework. For demon-
stration, we define a dummy enrichment method that randomly draws p-values from a uniform distri-
bution. We then execute this method on datasets of the GEO2KEGG compendium and inspect the
percentage of significant gene sets returned for each dataset.

1 # de f i n i n g a new enrichment method
2 > method <− f unc t i on ( se , gs )
3 {
4 ps <− r un i f ( l ength ( gs ) )
5 names ( ps ) <− names ( gs )
6 r e turn ( ps )
7 }
8

9 # execute the method on the three da ta s e t s
10 > re s <− runEA( geo2kegg ,
11 methods=method ,
12 gs=kegg . gs ,
13 s a v e 2 f i l e=TRUE,
14 out . d i r="~/method_bench" )
15

16 # get the rank ings
17 > ranks <− r eadResu l t s ( data . d i r="~/method_bench" , data . i d s=names ( geo2kegg ) ,
18 methods="method" , type=" ranking " )
19

20 # eva luate the percentage o f s i g n i f i c a n t gene s e t s
21 > s i g . s e t s <− eva l S i gS e t s ( ranks , padj="none" , alpha =0.05)
22 > s i g . s e t s
23 method
24 GSE1297 4.012346
25 GSE14762 3.076923
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26 GSE15471 5.538462

Listing 2: Benchmarking user-defined methods

S1.8 Incorporating user-defined benchmark compendia
The benchmarking can be straightforward extended to additional datasets. The loadEData function
accepts a directory where datasets of class SummarizedExperiment [28] are stored as RDS files [29].

1 # chos ing a data d i r e c t o r y from which add i t i o na l da ta s e t s are loaded
2 > data . d i r <− system . f i l e ( " extdata " , package="GSEABenchmarkeR" )
3 > edat . d i r <− f i l e . path ( data . d i r , "myEData" )
4

5 # load ing from the chosen data d i r e c t o r y
6 > edat <− loadEData ( edat . d i r )
7 > names ( edat )
8 [ 1 ] "GSE42057x" "GSE7305x"
9

10 > edat [ [ 1 ] ]
11 c l a s s : SummarizedExperiment
12 dim : 50 136
13 metadata (5 ) : experimentData annotat ion protoco lData dataType dataId
14 as says (1 ) : exprs
15 rownames (50) : 3310 7318 . . . 123036 117157
16 rowData names (0 ) :
17 colnames (136) : GSM1031553 GSM1031554 . . . GSM1031683 GSM1031684
18 colData names (2 ) : Sample GROUP

Listing 3: Incorporating user-defined benchmark compendia

S1.9 Incorporating user-defined relevance rankings
It is also possible to refine the integrated MalaCards relevance rankings or to incorporate relevance
rankings for additional datasets. For demonstration, we define an exemplary relevance ranking for 10
gene sets, and evaluate the relevance accumulated by an exemplary EA ranking.

1 # (1) producing an EA ranking
2 > ea . ranks <− makeExampleData ( "ea . r e s " )
3 > ea . ranks <− gsRanking ( ea . ranks , s i g n i f . only=FALSE)
4 > ea . ranks
5 DataFrame with 10 rows and 2 columns
6 GENE.SET PVAL
7 <character> <numeric>
8 1 gs3 0 .007
9 2 gs4 0 .009

10 3 gs9 0 .037
11 4 gs7 0 .039
12 5 gs6 0 .041
13 6 gs5 0 .351
14 7 gs8 0 .437
15 8 gs10 0 .558
16 9 gs1 0 .835
17 10 gs2 0 .978
18

19 # (2) d e f i n i n g a r e l evance s co r e ranking
20 > r e l . ranks <− ea . ranks
21 > r e l . ranks [ , 2 ] <− round ( r un i f ( nrow ( ea . ranks ) , min=1, max=100) )
22 > colnames ( r e l . ranks ) [ 2 ] <− "REL.SCORE"
23 > rownames ( r e l . ranks ) <− r e l . ranks [ , "GENE.SET" ]
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24 > ind <− order ( r e l . ranks [ , "REL.SCORE" ] , d e c r ea s i ng=TRUE)
25 > r e l . ranks <− r e l . ranks [ ind , ]
26 > r e l . ranks
27 DataFrame with 10 rows and 2 columns
28 GENE.SET REL.SCORE
29 <character> <numeric>
30 gs10 gs10 88
31 gs6 gs6 84
32 gs9 gs9 70
33 gs5 gs5 70
34 gs4 gs4 70
35 gs8 gs8 62
36 gs7 gs7 57
37 gs2 gs2 39
38 gs3 gs3 22
39 gs1 gs1 17
40

41 # (3a ) eva luate r e l evance s co r e
42 > evalRe levance ( ea . ranks , r e l . ranks )
43 [ 1 ] 266 .9
44

45 # (3b) compute optimal s co r e
46 > compOpt( r e l . ranks , ea . ranks [ , "GENE.SET" ] )
47 [ 1 ] 324 .3
48

49 # (3 c ) r e l evance s c o r e s o f random gene s e t rank ings
50 > compRand( r e l . ranks , ea . ranks [ , "GENE.SET" ] , perm=3)
51 [ 1 ] 270 .2 247 .0 278 .5

Listing 4: Incorporating user-defined relevance rankings

S2 Supplementary Discussion

S2.1 Self-contained vs. competitive
It is not always trivial to categorize methods as either competitive or self-contained, and several methods
combine aspects from both models. For example, GSEA and SAFE are hybrid in the sense that they
motivate their test statistic on the basis of a competitive gene-sampling model, but calculate their p-
value in a self-contained subject-sampling manner [30]. This similarly applies for GSA, which computes
a self-contained test statistic and calculate the p-value in a self-contained subject-sampling manner, but
uses a competitive gene-sampling procedure for restandardization of the observed and permuted values
of the test statistic, making GSA effectively competitive. PADOG also uses sample permutation and
restandardization via gene permutation, but computes a mean of the absolute gene scores weighted by
the occurrence frequency of genes across all gene sets tested. The classification of GSEA further depends
on the execution mode: for small sample sizes, GSEA provides an argument to use gene permutation for
the p-value calculation, making it fully competitive. When using sample permutation, GSEA can also
be executed fully self-contained if the Kolmogorov-Smirnov statistic is calculated on the basis of the DE
p-values for each gene in the gene set, instead of on their ranks [30].
Another interesting example is GSVA, that belongs to the class of single sample EA methods and thus
takes a conceptually different approach than all other methods assessed in this paper. The other methods
(1) analyze differential expression of individual genes between sample groups, and (2) summarize DE of
individual genes across the gene set of investigation. Applied in a comparison of sample groups, GSVA
reverses the typical approach by (1) computing gene set enrichment scores for each sample, and (2) testing
for differential "expression" of these enrichment scores between sample groups using e.g. limma. While the
second step is a self-contained significance assessment of the enrichment scores for each gene set, GSVA
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computes the enrichment score for each sample like GSEA based on the KS-statistic in an "unsupervised"
competitive way, i.e. without taking the sample classification into account [31]. Interestingly, we observed
this approach to be effectively self-contained and closely resembling results obtained for ROAST, a fully
self-contained method. We further note that such distinctions are not necessary for the competitive
methods ORA and CAMERA, and the self-contained methods GLOBALTEST, SAMGS, and ROAST.

S2.2 ORA
S2.2.1 Choosing the DE genes

DE studies typically report a gene as differentially expressed if the corresponding DE p-value, corrected
for multiple testing, satisfies the chosen significance level. EA methods that work directly on the list of DE
genes are then substantially influenced not only by the DE method, but also by the method for multiple
testing correction. ORA is inapplicable if there are few genes satisfying the significance threshold, or if
almost all genes are DE. We therefore implemented a flexible, context-dependent adjustment procedure
to account for such cases by applying multiple testing correction in dependence on the overall DE level
in the dataset:

• the correction method from Benjamini and Hochberg (BH) is applied, if it renders ≥ 1% and ≤ 25%
of all measured genes as DE,

• the p-values are left unadjusted, if the BH correction results in < 1% DE genes, and

• the more stringent Bonferroni correction is applied, if the BH correction results in > 25% DE genes.

Note that resulting p-values are not further used for assessing the statistical significance of DE genes
within or between datasets. They are solely used to determine which genes are included in the analysis
with ORA - where the context-dependent correction ensures that the fraction of included genes is roughly
in the same order of magnitude across datasets.

S2.2.2 Choosing the background

Competitive gene set tests such as ORA compare the genes of the gene set tested against the background
of genes not in the set [30]. Although rarely explicitly stated, the background is thus an important
parameter [32], especially for the hypergeometric test used by ORA where it determines the size of the
population from which genes are drawn [33]. We consider three different options for the population: (i)
all genes measured in the microarray or RNA-seq experiment under study, (ii) all genes annotated in the
gene set collection under study, and (iii) the intersection of (i) and (ii). While the differences between
these three options seem subtle, the impact on the significance estimation of the hypergeometric test can
be substantial.
We illustrate the impact of the choice of the background by considering a transcriptomic study, in which
12,671 genes have been tested for differential expression between two sample conditions and 529 genes
were found DE. Among the DE genes, 28 are annotated to a specific gene set, which contains in total
170 genes. This setup corresponds to a 2 x 2 contingency table, where the overlap of 28 genes can be
assessed based on the hypergeometric distribution. This corresponds to a one-sided version of Fisher’s
exact test, yielding here a highly significant enrichment.

1 > deTable <− matrix ( c (28 , 142 , 501 , 12000) ,
2 nrow = 2 ,
3 dimnames = l i s t ( c ( "DE" , "Not .DE" ) ,
4 c ( " In . gene . s e t " , "Not . in . gene . s e t " ) ) )
5 > deTable
6 In . gene . s e t Not . in . gene . s e t
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7 DE 28 501
8 Not .DE 142 12000
9

10 > f i s h e r . t e s t ( deTable , a l t e r n a t i v e = " g r e a t e r " )
11

12 Fisher ’ s Exact Test f o r Count Data
13

14 data : deTable
15 p−value = 4.088 e−10
16 a l t e r n a t i v e hypothes i s : t rue odds r a t i o i s g r e a t e r than 1
17 95 percent con f idence i n t e r v a l :
18 3.226736 In f
19 sample e s t imate s :
20 odds r a t i o
21 4.721744

Listing 5: Using all genes measured in the microarray or RNA-seq experiment under study

This setup would be realistic if all genes of the universe have equal chance to be drawn. However, due to
overlaps between gene sets and missing annotation for other genes, some genes are preferentially drawn,
and some genes cannot be drawn at all. To account for missing annotation, we restrict the population
to genes annotated in the gene set collection under study. We illustrate this by using the human KEGG
gene set collection that contains roughly 8,000 genes. The resulting p-value of the hypergeometric test
drops by 4 orders of magnitude.

1 > kegg . gs <− EnrichmentBrowser : : getGenesets ( org="hsa" , db="kegg" )
2 > length ( unique ( u n l i s t ( kegg . gs ) ) )
3 [ 1 ] 7852
4

5 > deTable [ 2 , 2 ] <− 8000
6 > f i s h e r . t e s t ( deTable , a l t e r n a t i v e = " g r e a t e r " )
7

8 Fisher ’ s Exact Test f o r Count Data
9

10 data : deTable
11 p−value = 1.207 e−06
12 a l t e r n a t i v e hypothes i s : t rue odds r a t i o i s g r e a t e r than 1
13 95 percent con f idence i n t e r v a l :
14 2.150785 In f
15 sample e s t imate s :
16 odds r a t i o
17 3.147949

Listing 6: Using all genes annotated in the gene set collection under study

A similar argument can be made for genes in the gene set collection that are not measured, which is
more common for microarray studies than for RNA-seq studies. To account for such genes, we restrict
the population to the intersection of measured genes and annotated genes. For the example considered
here, we assume the intersection to be 7,000 genes, reducing the p-value by another order of magnitude.

1 > deTable [ 2 , 2 ] <− 7000
2 > f i s h e r . t e s t ( deTable , a l t e r n a t i v e = " g r e a t e r " ) $p . va lue
3 [ 1 ] 1 .240368 e−05

Listing 7: Using the intersection of measured genes and annotated genes

S2.3 Limitations of the MalaCards relevance rankings
The MalaCards relevance rankings represent a systematic approach to quantifying phenotype relevance
of gene sets based on experimental evidence and co-citation in the literature. However, there are three
main limitations that leave room for future improvements:

16



• The MalaCards relevance rankings are incomplete. As the rankings are constructed from disease
relevance of individual genes, only gene sets that contain at least one relevant gene are included
in the rankings. However, in agreement with the considerations in Supplementary Methods S1.4
on investigation bias and observational bias, absence from a relevance ranking does not imply
irrelevance for the phenotype per se. On the other hand, containing one or more relevant genes
alone does not neccessarily imply relevance of the gene set as a whole, and a gene set’s relevance
might further depend on interplay between genes and context dependency of their activation.

• The relationship between dataset, investigated phenotype, and associated relevance ranking is not
always clear-cut. Supplementary Figures S17 and S18 display the relevance score distribution of
the overall high-scoring methods (the six competitive methods PADOG, ORA, SAFE, GSEA, GSA,
CAMERA), identifying datasets of both benchmark compendia where those methods consistently
return low scores. For those datasets further curational effort is required to clarify whether this
inconsistency between the observed expression (in the dataset) and the expected expression (from
the associated MalaCards relevance ranking) is due to (i) a not well-defined contrast between cases
and controls, or (ii) a relevance ranking that is mainly based on experimental evidence types that
are not detectable on the transcriptomic level.

• The relevance rankings have limited discriminatory power for related diseases. Supplementary
Figure S14 demonstrates that the relevance rankings are partly very similar for different cancer types
(especially the KEGG rankings). While this is expected to a certain extent given the universality of
many cancer driver genes [34] and oncogenic pathways [35], supplementing the rankings with more
fine-grained cancer type-specific information will likely also improve the accuracy of the phenotype
relevance evaluation of the GSEA methods.
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Table S1: GEO2KEGG microarray compendium.

Dataset Disease Disease code
GSE14924_CD4 Acute myeloid leukemia LAML
GSE14924_CD8 Acute myeloid leukemia LAML
GSE9476 Acute myeloid leukemia LAML
GSE1297 Alzheimer disease ALZ
GSE16759 Alzheimer disease ALZ
GSE5281_EC Alzheimer disease ALZ
GSE5281_HIP Alzheimer disease ALZ
GSE5281_VCX Alzheimer disease ALZ
GSE24739_G0 Chronic myeloid leukemia CML
GSE24739_G1 Chronic myeloid leukemia CML
GSE23878 Colorectal cancer CRC
GSE4107 Colorectal cancer CRC
GSE4183 Colorectal cancer CRC
GSE8671 Colorectal cancer CRC
GSE9348 Colorectal cancer CRC
GSE19420 Diabetes mellitus type 2 DMND
GSE1145 Dilated cardiomyopathy DCM
GSE3585 Dilated cardiomyopathy DCM
GSE7305 Endometrial cancer UCEC
GSE19728 Glioma GBM
GSE21354 Glioma LGG
GSE8762 Huntington disease HUNT
GSE30153 Lupus erythematosus systemic LES
GSE18842 Non small cell lung cancer LUAD
GSE19188 Non small cell lung cancer LUAD
GSE38666_epithelia Ovarian neoplasms OV
GSE38666_stroma Ovarian neoplasms OV
GSE15471 Pancreatic cancer PAAD
GSE16515 Pancreatic cancer PAAD
GSE22780 Pancreatic neoplasms PAAD
GSE32676 Pancreatic cancer PAAD
GSE20153 Parkinson disease PARK
GSE20164 Parkinson disease PARK
GSE20291 Parkinson disease PARK
GSE6956AA Prostate cancer PRAD
GSE6956C Prostate cancer PRAD
GSE11906 Pulmonary disease chronic obstructive PDCO
GSE42057 Pulmonary disease chronic obstructive PDCO
GSE14762 Renal cancer KIRC
GSE781 Renal cancer KIRC
GSE3467 Thyroid cancer THCA
GSE3678 Thyroid cancer THCA
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Table S2: TCGA disease codes.

Disease code Disease
ACC Adrenocortical carcinoma
BLCA Bladder Urothelial Carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and Neck squamous cell carcinoma
KICH Kidney Chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute Myeloid Leukemia
LGG Brain Lower Grade Glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach adenocarcinoma
TGCT Testicular Germ Cell Tumors
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine Corpus Endometrial Carcinoma
UCS Uterine Carcinosarcoma
UVM Uveal Melanoma
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Table S3: Gene set analysis methods under benchmark (continued).

Method Null hypothesis1 Generation2 Directionality3 Pre-ranked4 Experimental design

ORA Competitive Overrepresentation Mixed (default) Available Arbitrary
GLOBALTEST Self-contained – Mixed (default) Not available Design matrix
GSEA Competitive Gene set scoring Directional Available Two groups
SAFE Competitive Gene set scoring Directional (default) Not available Various
GSA Competitive Gene set scoring Directional Not available Various
SAMGS Self-contained Gene set scoring Mixed Not available Two groups
ROAST Self-contained Gene set scoring Directional (default) Not available Design matrix
CAMERA Competitive Gene set scoring Directional Available Design matrix
PADOG Competitive Gene set scoring Mixed Not available Two groups
GSVA Self-contained – Directional Not available Single sample
1 See Supplementary Discussion S2.1 for details
2 Generations as defined by Khatri et al. [36] and in the Introduction section of the main manuscript.
3 A directional method tests whether genes in the set tend to be either predominantly up- or down-regulated; a mixed method
tests whether genes in the set tend to be differentially expressed, regardless of the direction.

4 Analysis of pre-ranked list of genes, which is useful for scenarios where the full expression matrix is not available. ORA:
choose from the tools listed in Table 2 of the main manuscript. GSEA: popular implementations include GSEAPreranked [12]
and fgsea [37]. CAMERA: part of the limma [8] package.

Table S4: Dealing with RNA-seq data: correlation of log2 fold changes. Using the log2 fold changes
obtained from applying voom/limma to the raw read counts available from GSE62944 as a reference, the table
shows Pearson correlation with log2 fold changes obtained from applying limma subsequent to a variance sta-
bilizing transformation (VST) on the raw read counts (2nd column), or voom/limma on TPMs available from
curatedTCGAData (3rd column), or limma on the log2-transformed TPMs.

Dataset VST + limma TPM + voom/limma log2 TPM + limma
BLCA 0.971 0.993 0.966
BRCA 0.991 0.996 0.987
COAD 0.995 0.979 0.978
HNSC 0.982 0.998 0.982
KICH 0.99 0.996 0.983
KIRC 0.992 0.997 0.988
KIRP 0.979 0.995 0.967
LIHC 0.964 0.995 0.956
LUAD 0.993 0.993 0.985
LUSC 0.993 0.997 0.989
PRAD 0.991 0.992 0.985
READ 0.992 0.987 0.984
STAD 0.975 0.992 0.967
THCA 0.987 0.994 0.98
UCEC 0.985 0.992 0.978
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Table S5: Dealing with RNA-seq data: correlation of -log10 DE p-values. See caption of Table S4.

Dataset VST + limma TPM + voom/limma log2 TPM + limma
BLCA 0.976 0.98 0.963
BRCA 0.987 0.986 0.96
COAD 0.989 0.954 0.921
HNSC 0.983 0.992 0.978
KICH 0.976 0.986 0.875
KIRC 0.985 0.989 0.964
KIRP 0.964 0.975 0.924
LIHC 0.97 0.985 0.964
LUAD 0.989 0.971 0.963
LUSC 0.986 0.992 0.975
PRAD 0.992 0.959 0.948
READ 0.984 0.97 0.964
STAD 0.982 0.978 0.951
THCA 0.979 0.984 0.929
UCEC 0.98 0.976 0.965
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(a) GEO2KEGG: number of samples (b) GEO2KEGG: percentage of DE genes

(c) TCGA: number of samples (d) TCGA: percentage of DE genes

Figure S1: Benchmark compendia: sample size and differential expression. Panel (a) and (c) show
the number of cases and controls for each dataset of the GEO2KEGG microarray compendium (N = 42) and
the TCGA RNA-seq compendium (N = 15), respectively. Using the typical thresholds for differential expression
(DE), panel (b) and (d) show the percentage of genes with an absolute log2 fold change above 1 (x-axis) and a
Benjamini-Hochberg (BH)-adjusted p-value below 0.05 (y-axis).
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(a) KEGG (b) GO-BP

Figure S2: Gene set size distribution. Considering only gene sets with a minimum of 5 genes and a maximum
of 500 genes (the typical thresholds for EA analysis), gene set size distributions are shown for (a) 323 human
KEGG gene sets (median set size of 72 genes), and (b) 4,631 human GO-BP gene sets (median set size of 11
genes). Filtering for set size was applied on a total of 331 KEGG gene sets and 12,078 GO-BP gene sets.
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Figure S3: Runtime. Shown are the distributions of the elapsed processing times (y-axis, log-scale) when
applying the enrichment methods indicated on the x-axis to the GEO2KEGG microarray compendium (top, 42
datasets) and the TCGA RNA-seq compendium (bottom, 15 datasets). Gene sets were defined according to
KEGG (left, 323 gene sets) and GO-BP (right, 4,631 gene sets). Computation was carried out on an Intel Xeon
2.7 GHz machine.
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(a) CAMERA, ROAST, GSVA (b) SAFE

Figure S4: Runtime for different RNA-seq modes. Shown are the distributions of the elapsed processing
times (y-axis, log-scale) when applying the enrichment methods indicated on the x-axis to the TCGA RNA-seq
compendium (15 datasets). Gene sets were defined according to KEGG (323 gene sets). Computation was carried
out on an Intel Xeon 2.7 GHz machine. VST: application of methods in microarray mode after applying a variance
stabilizing transformation (VST) to the raw RNA-seq read counts. RAW: application of methods in RNA-seq
mode to the raw RNA-seq read counts. For SAFE, application to the raw RNA-seq read counts was carried out
by using voom/limma for recalculation of the local (per-gene) statistic in each permutation of the sample labels.
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Figure S5: Random sample labels. Type I error rates (y-axis) as evaluated on the Golub dataset by shuffling
sample labels 1000 times, and assessing in each permutation the fraction of gene sets with p < 0.05. Gene sets
were defined according to KEGG (N = 323). Blue points indicate the mean type I error rate. The red dashed line
indicates the significance level of 0.05. The grey dashed line divides methods based on the type of null hypothesis
tested.
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Figure S6: Type I error rate. Mean type I error rates (y-axis) when applying methods to the GEO2KEGG
microarray compendium (top, 42 datasets) and the TCGA RNA-seq compendium (bottom, 15 datasets). Gene
sets were defined according to KEGG (left, 323 gene sets) and GO-BP (right, 4,631 gene sets). Type I error rates
were computed for each dataset of the benchmark compendia by sample label permutation as described for the
Golub dataset in Supplementary Figure S5. Note that we show for each method the distribution of the mean
type I error rate per dataset (blue points in Supplementary Figure S5).
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Figure S7: Correlation of differential expression and gene set enrichment. Percentage of significant
gene sets (FDR < 0.05, y-axis) when applying methods to the GEO2KEGG microarray compendium (42 datasets)
as a function of the percentage of DE genes (FDR < 0.05, x-axis). Gene sets were defined according to GO-BP
(left panel) and KEGG (right panel). The plots show strong correlation for the self-contained methods ROAST
(Pearson correlation of 0.968 for GO, and 0.91 for KEGG), GSVA (0.947, 0.903), GLOBALTEST (0.792, 0.637),
and SAMGS (0.745, 0.631).
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Figure S8: Statistical significance. Percentage of significant gene sets before multiple testing correction
(p < 0.05, y-axis) when applying methods to the GEO2KEGG microarray compendium (top, 42 datasets) and
the TCGA RNA-seq compendium (bottom, 15 datasets). Gene sets were defined according to KEGG (left, 323
gene sets) and GO-BP (right, 4,631 gene sets). The grey dashed line divides methods based on the type of null
hypothesis tested.
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(a) p.adiust=BH (b) built-in FDR

Figure S9: Statistical significance with 10,000 permutations. Percentage of significant gene sets (FDR <
0.05, y-axis) when applying methods with 10,000 permutations to the GEO2KEGG microarray compendium (42
datasets) and using KEGG gene sets (N = 323). Multiple testing correction was carried out with (a) the function
p.adjust from the stats package setting the argument method="BH", and (b) with the respective built-in FDR
correction of GSEA and SAFE.

(a) KEGG (b) GO-BP

Figure S10: Ranking granularity. Percentage of gene sets with unique p-value returned by SBEA methods
when applied to the 42 datasets of the microarray benchmark set and using (a) KEGG (N = 292), and (b)
GO-BP (N = 4128) gene sets, respectively.
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(a) Number of genes (b) Most frequent genes

Figure S11: MalaCards disease genes.
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(a) KEGG: number of gene sets (b) KEGG: most frequent gene sets

(c) GO-BP: number of gene sets (d) GO-BP: most frequent gene sets

Figure S12: MalaCards disease gene sets.
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(a) KEGG (b) GO-BP

Figure S13: MalaCards relevance score range.

(a) KEGG (b) GO-BP

Figure S14: Similarity of MalaCards relevance rankings. The heatmap shows the percentage of the
optimal phenotype relevance score on a color scale. The optimal relevance score corresponds to the case that
two relevance rankings are identical. The heatmap in (a) for KEGG shows high similarity between the relevance
rankings for cancer types (large red cluster in the upper right), neurodegenerative diseases (ALZ, PARK, HUNT),
and previously linked autoimmune / chronic inflammatory lung diseases (LES / PDCO, [38]). These similarities
are also apparent to a lesser extent for GO-BP relevance rankings in (b), demonstrating higher similarity of
relevance rankings within disease classes than between disease classes.
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Figure S15: Phenotype relevance for the top 20% of each EA ranking. Percentage of the optimal
phenotype relevance score (y-axis) when applying methods to the GEO2KEGG microarray compendium (top,
42 datasets) and the TCGA RNA-seq compendium (bottom, 15 datasets). Gene sets were defined according to
KEGG (left, 323 gene sets) and GO-BP (right, 4,631 gene sets). The grey dashed line divides methods based on
the type of null hypothesis tested. Computation of the phenotype relevance score is outlined in Figure 1 of the
main manuscript and detailed in Methods, Section Phenotype relevance.
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(a) GSE14924-CD4 (LAML), KEGG (b) GSE7305 (UCEC), GO-BP

(c) THCA (THCA), KEGG (d) BRCA (BRCA), GO-BP

Figure S16: Accumulation of relevance score at different thresholds. Shown is the phenotype relevance
score Xm(d) (y-axis) for individual datasets at varying thresholds of the MalaCards relevance score (x-axis).

37



(a) KEGG

(b) GO-BP

Figure S17: Relevance score distribution per dataset (GEO2KEGG). Shown is the percentage of the
optimal phenotype relevance score (y-axis) obtained for the 6 competitive methods (PADOG, ORA, SAFE, GSEA,
GSA, CAMERA) for each dataset of the GEO2KEGG microarray compendium (x-axis) for (a) KEGG pathways
and (b) GO-BP terms.
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(a) KEGG

(b) GO-BP

Figure S18: Relevance score distribution per dataset (TCGA). Shown is the percentage of the optimal
phenotype relevance score (y-axis) obtained for the 6 competitive methods (PADOG, ORA, SAFE, GSEA, GSA,
CAMERA) for each dataset of the TCGA RNA-seq compendium (x-axis) for (a) KEGG pathways and (b)
GO-BP terms.
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