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Evaluation Measurement

The metrics we used for method evaluation include mean absolute deviation
(mAD), Pearson correlation, and Spearman correlation. Given a parameter
z and its estimator ẑ , these metrics can be defined as:

mAD = mean{‖z − ẑ‖1}
Pearson/Spearman R = corr(z , ẑ)

‖·‖1 denotes the L1 norm.

Inverse Sum of Squared Errors

In the spirit of meta analysis (Borenstein et al. [2011], DerSimonian and
Laird [2015]), we propose an alternative weighting scheme, where we assign
reference-specific weights that are proportional to the inverse sum of squared
errors (SSE) between Y and Ŷ . That is, for the rth single-cell reference, we
assign its weights as

ŵr = iSSEr =
1/SSEr∑
r ′ 1/SSEr ′

, r = 1, ...,R ; SSEr = ||Y − Ŷr ||22,

where ‖·‖2 denotes the L2 norm. This score can be used as a criteria while
the grid search/regression-based methods show any discrepancy. To reduce
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the effects of the genes with extreme expression values that could bias the
weight selection procedure, SCDC opts to further filter out genes whose gene
expressions in bulk samples are within the upper 5% quantile or the lower
15% quantile.

Quality Control and Clustering of scRNA-seq Data

For single cells from the three cell-line experiment, cells with a high percent-
age of mitochondrial gene expressions were filtered out. Genes with lengths
greater than 200kb, ribosomal genes, and genes with undetectable expres-
sions were filtered out. Seurat was applied for single cell clustering: genes
detected in at least three cells were kept; cells with less than 200 genes de-
tected were filtered out; the number of genes detected and the number of
UMIs were regressed out in the scaling procedure; ‘FindClusters’ was ap-
plied using the first twenty principal components, with resolution parameter
set from 0.6 to 1. Finally, cell types were annotated according to previously
reported marker genes.

For the mouse mammary gland data, single cell clustering was performed
within each subject separately. In addition to the Seurat clustering proce-
dures described above, the percentage of cell-cycle gene expressions was also
regressed out when scaling the gene expression matrix. Epithelial cells were
first identified as a major cluster and were further subgrouped into lumi-
nal and basal cells. ‘FindMarkers’ function was applied to each pair of cell
types, and the number of marker genes from each pair was used to determine
whether or not to combine the two clusters.

Two-Level Deconvolution

Similar to MuSiC (Wang et al. [2019]), for cases where closely related cell
types are present in the data, SCDC adopts a two-step approach, which first
separates remotely connected cell types and, in the second step, dissociates
cell types that share high similarities. However, there is no consensus on how
to determine the order of deconvolution, especially when multiple scRNA-
seq datasets are available. To solve this, we employ MNN (Haghverdi et al.
[2018]) to correct for batch effect and to calculate a basis matrix from the ad-
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justed data. Hierarchical clustering is applied to determine the relationship
between the cell types of interest. The hierarchical structure is further used
to guide the two-step approach for deconvolution. For the mouse mammary
gland dataset, the first-round deconvolution separates cluster 1 = {immune
cells} from cluster 2 ={endothelial, fibroblast, basal, luminal cells} and the
second-round deconvolution further separates the cell types in cluster 2 (Fig-
ure S4A). Within each level of deconvolution, differentially expressed genes
are first identified by Wilcoxon rank-sum test with multiple testing correction
and then used as input.

Deconvolution Using Single Cells from One Subject

To accommodate experimental designs using single cells from only one sub-
ject, we adapt the W-NNLS framework to calculate the gene-specific weights
by within-subject variation only. Denote the cell-type proportion vector for
bulk sample d as Pd = (P1d ,P2d , ...,PKd)

T and the normalized bulk gene
expression as Yd = (Y1d ,Y2d , ...,YGd)

T . The gene-specific expression can be
formalized as

Ydg − BgPd = εdg ∼ F
(
µg , δ

2
g

)
,

where Bg is the g th row in the basis matrix B; the residual term εdg follows
a certain distribution F with mean µg and variance δ2g . Adjusting for the
variance of residuals, we derive:

Ydg

δg
− BgPd

δg
=
εdg
δg
∼ F

(
µg

δg
, 1

)
.

We can iteratively estimate the proportion vector Pd and derive the residual
vector in the meantime. If two consecutive estimated proportion vectors P̂d

and P̂
′
d are equal, then we derive a consistent estimation result. That is, if

‖P̂d − P̂
′
d‖ < a→ 0+ and P̂d ≈ P̂

′
d , then

1

δ̂g
(Ydg − εdg )−

1

δ̂′g
(Ydg − εdg ) = Bg

(
P̂d

δ̂g
− P̂

′
d

δ̂′g

)
≈ Bg P̂d

(
1

δ̂g
− 1

δ̂′g

)
.

Hence, as the proportion estimates converge, we derive a final deconvolution
result:

Ydg − εdg ≈ Bg P̂d .
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Supplemental Figure Titles and Legends

Figure S1. Empirical results via simulations show that the metrics on gene
expression levels Y are good proxies for the metrics on cell-type proportions
P. A-C: Prediction errors ‖Y−Ŷ‖1 against Pearson correlation between cell-
type proportions P and P̂ for pseudo-bulk samples constructed using single
cells from Åsa Segerstolpe et al. [2016], Baron et al. [2016], and Xin et al.
[2016], respectively. D-F: Prediction errors ‖Y − Ŷ‖1 against ‖P − P̂‖1 for
pseudo-bulk samples constructed from Åsa Segerstolpe et al. [2016], Baron
et al. [2016], and Xin et al. [2016], respectively.

Figure S2. Prediction errors of Y serve as a surrogate for the estimation
errors of P. The simulation setups differ from those in Figure 2. A: Outline
of simulation setup, where single cells of human pancreatic islets from Baron
et al. [2016] are aggregated to generate pseudo-bulk samples, whose cell-type
proportions are known. We examine the results of deconvolution via ENSEM-
BLE under two settings, both with and without paired single-cell reference
datasets. B: mAD(P − P̂) and mAD(Y − Ŷ) with three varying dataset-
specific weights for deconvolution of bulk samples with paired scRNA-seq.
The two metrics agreed on the assignment of the optimal weights: around
(ŵ1, ŵ2, ŵ3) = (1, 0, 0). C: Spearman correlation and mAD of Y and Ŷ, Pear-
son correlation and mAD of P and P̂ with varying dataset-specific weights
for deconvolution of bulk samples without paired scRNA-seq. The two met-
rics are highly correlated with varying weights for the reference dataset from
Åsa Segerstolpe et al. [2016]. D: Outline of simulation setup, where single
cells of human pancreatic islets from Åsa Segerstolpe et al. [2016] are ag-
gregated to generate pseudo-bulk samples, whose cell-type proportions are
known. E: mAD(P − P̂) and mAD(Y − Ŷ) with three varying dataset-
specific weights for deconvolution of bulk samples with paired scRNA-seq.
The two metrics agreed on the assignment of the optimal weights to be
around (ŵ1, ŵ2, ŵ3) = (0, 1, 0). F: Spearman correlation and mAD of Y and
Ŷ, Pearson correlation and mAD of P and P̂ with varying dataset-specific
weights for deconvolution of bulk samples without paired scRNA-seq. While
the mAD metrics are minimized at different optimal weights, the Spearman
correlation between Y and Ŷ, and the Pearson correlation between P and P̂
largely agree with each other.

Figure S3. Single-cell clustering visualization by t-SNE. A-B: scRNA-seq
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data from the Perou Lab. C-D: scRNA-seq data from the Tabula Muris
Consortium.

Figure S4. Deconvolution results without the tree-guided approach hardly
separate closely related cell types. A: Pairwise correlation of cell-type-specific
gene expression profiles estimated by scRNA-seq. B: Estimated cell-type
proportions of mouse mammary gland 10X bulk samples without tree-guided
approach. C: Estimated cell-type proportions of mouse mammary gland
fresh-frozen bulk samples without tree-guided approach.

Figure S5. A first-pass SCDC run on the single-cell reference dataset re-
moves potentially mislabeled cells and doublets. Each single cell is treated
as a “bulk” sample and used as input for SCDC. The highly binary cell-
type proportions indicate good data quality and reliable cell type clustering.
Cells whose estimated cell-type proportions have a maximum less than a
user-defined threshold (0.7 by default) are filtered out. These cells are po-
tentially doublets, mis-classified, poorly sequenced, or from cell types not of
interest. A: A first-pass SCDC run using cells as “bulk” samples. B: Unique
cell identities after QC.

Figure S6. Number and percentage of single cells grouped by cell type clus-
ters using scRNA-seq data of human pancreatic islets and mouse mammary
glands. A: Baron et al. [2016]. B: Åsa Segerstolpe et al. [2016]. C: Xin et al.
[2016]. D: Perou Lab. E: Tabula Muris.

Figure S7. Running time for SCDC with varying number of single-cell
references. With less than or equal to three references, both A grid search and
B LAD can finish within 200 seconds. With greater than three references,
which may be rare in empirical study, grid search can take longer to run
while the computing time for LAD does not change much with the increasing
number of references.
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