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Figure S1: FPR and power of variance tests. (a-b) Power comparison between variance tests in normally distributed phenotypes (a) 
and chi-square phenotypes (b) as a function of varied interaction effect sizes (Ѱ). Power calculated as the proportion of simulations with 
P < 0.05. Methods tested: Deviation Regression Model (DRM), Levene’s test (LT), Brown-Forsythe test (BF), Bartlett’s test (BT), Fligner-
Killeen test (FK), double generalized linear model (DGLM), two-step squared residual approach (TSSR), Squared value Linear Modeling 
(SVLM), extended Levene’s test of generalized scale (gS). (c) Power of muQTL and vQTL tests to identify SNPs with an interaction 
effect. An increase in the percent variance explained by the interaction (x-axis) leads to an increase in power to detect interaction SNPs 
for both muQTL approaches (red, using linear regression (LR)) and vQTL approaches (blue, using the Deviation Regression Model
(DRM)), as measured across 2000 simulations (1000 iterations of a normally distributed trait, 1000 in a non-normal phenotype setting). 
Across all interaction effect sizes, the linear regression approach has higher power than the variance test. However, any SNPs with only 
a mean effect (and no interaction effect) would also be identified using a linear regression approach. 
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Figure S2: DRM power as a function of sample size and effect size. (a) Effect size is the proportion of phenotypic variance due to 
the interaction (y-axis). Light to dark color reflects low to high statistical power. Power calculated across 1000 simulations. (b) Influence 
of sample size on estimated variance effects. The standard error of the DRM-estimated variance effect (y-axis) is decreased with larger 
sample sizes (boxplot grouping). Results shown for 1%, 2%, and 3% variation explained by the interaction (x-axis). (c-d) Influence of 
interaction effects on estimated variance effects. (c) An increase in the variation explained by an interaction (x-axis) leads to an increase 
in the DRM-estimated variance effect (y-axis). (d) However, an increase in the variation explained by a SNP influencing the mean but not 
the variance of a phenotype (x-axis) does not lead to an increase in the DRM-estimated variance effect (y-axis). In (b-d), results are 
summarized and displayed in boxplots. Each point represents a new simulation iteration. The middle line is the median, the lower and 
upper hinges represent first and third quartiles, and the whiskers extend from the hinge with a length of 1.5x the inter-quartile range. All 
data points outside the lower and upper whisker ends are shown individually.
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Figure S3: Standard error of the mean and variance. Standard error of the mean and variance estimates in normal and chi-square 
distributions, as a function of either sample size (a-d) or distribution parameters (e-j). In the left column figures, the red line describes 
the standard error of variance (!!) and the black line describes the standard error of mean (!μ). The ratio !! / !μ, which describes how 
the variance standard error changes relative to the mean standard error, is displayed in the right column figures as a blue line.
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Figure S4: The different ”flavors” of QTLs. (a-d) Influence of raw and RINT analyses on 
muQTLs and vQTLs. A genome-wide association study was performed to search for mean 
(muQTL) and variance (vQTL) effects on body mass index (BMI) levels. It was repeated for 
both rank inverse normal transformed (RINT) and untransformed BMI (raw). (a-b) Estimated 
effect sizes (a) and P-values (b) between raw vQTL and RINT vQTL analyses. Colors 
represent –log10 raw muQTL P-values. (c-d) Estimated effect sizes (c) and P-values (d) 
between raw muQTL and RINT muQTL analyses. Colors represent –log10 raw vQTL P-
values. Red lines represent line of best fit. (e-h) RINT-based QTLs are displaced from a 
mean-variance relationship. A genome-wide association study (GWAS) was performed to 
search for mean (muQTL) and variance (raw vQTL) effects on untransformed body mass 
index (BMI) levels. A GWAS was also performed on the rank inverse normal transformed 
(RINT) BMI to search for variance (RINT vQTL) and dispersion (dQTL) effects. Estimated 
effect sizes (e, g) and -log10 p-values (f, h) are shown for the muQTL and raw vQTL 
analyses, with light to dark colors representing –log10 RINT vQTL p-values in panels e-f and 
–log10 dQTL p-values in g-h. SNPs with P < 10-5 colored in dark purple. The dQTLs (bottom 
row) are slightly more displaced from the general mean-variance relationship compared to 
the RINT vQTLs. These figures can be compared to those in Main Text Figures 3. (i-n) 
Relationship between raw vQTLs, RINT vQTLs, and dQTLs. Comparison of raw vQTLs, 
RINT vQTLs, and dQTLs according to effect sizes (i-k) and significance (l-n). The red line 
represents the line of best fit. Points are colored by the –log10 p-value of the y-axis analysis, 
with purple representing significant (P < 5 x 10-8 with raw BMI, P < 10-5 with RINT BMI). 



Figure S5: Discovering GxE interactions. (a-d) False positive vQTLs do not correlate with false positive interactions. 10,000 
simulations of a SNP-by-factor interaction were performed. For each iteration, statistical testing was performed between the SNP and 
the variance of the phenotype, and the SNP-factor interaction and the mean of the phenotype. The relationship between interaction 
and variance effect sizes (a-b) and P-values (c-d) are shown. In (b) and (d), the data is subset to the simulations where the variance 
P-values are below 0.05. (e) Winner’s curse is reduced at QTLs. Winner’s curse describes the upward bias in the magnitude of effect 
sizes within significant associations from a GWAS. The prevalence of winner’s curse in the GxE analyses were calculated by 
estimating the proportion of interactions where the magnitude of the estimated effect size in the discovery cohort was larger than the 
magnitude of the estimated effect size in the replication cohort. This was calculated for all interactions where the direction of effect 
was identical. In the figure, given a threshold x (x-axis), the winner’s curse prevalence (y-axis) is calculated for all interactions with PD
< x. The upper black line indicates GxE interactions using matched genome-wide SNPs. The lower red line indicates GxE interactions 
using all QTL-nominated SNPs. The expected winner’s curse prevalence under random observations (50%) is shown as a horizontal 
dashed red line. Red points are FDR < 0.1, < 0.05, and < 0.01 cut-offs. (f-i) Discovery of GxE interactions using different QTL criteria. 
Quantile-quantile plots for GxE interactions across seven environmental factors using (f) 21 raw vQTLs, (g) 448 muQTLs that were
not raw vQTLs, (h) 20 RINT vQTLs that were not raw vQTLs, or (i) 23 dQTLs that were not raw vQTLs. The x-axis shows the –log10
p-values under the null distribution and the y-axis shows the observed –log10 p-values, where each point represents a different GxE 
interaction. The red line represents the expectation under the null, with intercept = 0 and slope = 1. 
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Figure S6: Searching for gene-gene interactions. (a) Quantile-quantile plot showing the observed –log10(P) for all-pairwise interactions 
based on QTLs (y-axis) compared to the theoretical –log10(P) distribution (x-axis). The red line has slope 1 and intercept 0, indicating the 
expected p-values under the null distribution. There does not appear to be any deviation from the expectation. (b) Relationship between 
estimated GxG effects within the discovery cohort and the replication cohort. Each data point represents a different GxG interaction, and are 
colored red if replicated within the replication cohort (according to same direction of effect and PR < 0.05). (c) GxG interactions, as quantified 
by those with the same direction of effect in both discovery and replication sets and PR < 0.05. Given a threshold x (x-axis), the replication 
rate (y-axis) is calculated for all interactions with PD < x. The grey area represents the confidence interval from a binomial test with 
hypothesized replication rate equal to 0.025. (d) Same figure as (b) except interactions are subset to those with P80 < 0.001. (e) The 
estimated GxG effect sizes within the discovery set was correlated with the estimated GxG effect sizes within the replication sets (y-axis). 
The set of GxG interactions was subset according to the label along the “Subset” axis, where “1+” indicates that the GxG interactions 
contain at least 1 of that QTL type, “2” indicates both SNPs in the interaction are from that QTL type, “P<5E-8” indicates a stricter 
significance threshold of P < 5 x 10-8, “AND” indicates the SNP must pass both QTL type criteria. “FTO region” indicates the 501 interactions 
between rs56094641 (the FTO intron region’s tag SNP in our study) and the 501 other identified QTLs. “P < 0.001” specifies the GxG 
interactions with P < 0.001 in the discovery cohort. The estimated correlation is shown by the white outlined circle, while the confidence 
interval of this estimate is outlined by the minimum and maximum values of the bar. Correlation equal to 0 is outlined by a red line.
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Figure S7: Marginal QTL effects correlate with estimated GxE effects. The estimated marginal effects from the muQTL (light blue), 
raw vQTL (golden), RINT vQTL (dark blue), and dQTL (black) analyses were correlated with the estimated GxE effects for each co-factor 
separately. The estimated Spearman’s rho is shown with 95% confidence intervals based on standard errors. Raw vQTL effects are 
either the 1st or 2nd best correlated QTL effect with the estimated GxE effects across all environmental factors. MuQTLs had the weakest 
correlation with GxE effects using sedentary behavior.



Figure S8: Pleiotropic GxE effects. (a) Schematic diagram. The original analysis identified GxE interactions associated with BMI. 
Using a PheWAS-inspired approach, we tested for association between GxE interactions and high blood pressure diagnosis risk, 
coronary artery disease risk, and diabetes risk. (b) Estimated GxE effects in BMI within the 80% discovery set (x-axis) from linear 
regression were correlated with estimated GxE effects on diabetes risk within the 20% replication set (y-axis) from logistic regression. 
Each data point represents a different SNP x co-factor interaction. In contrast to Figure 5b, the estimated GxE effects on diabetes risk 
were adjusted for measured BMI. BMI GxE interactions appear predictive of diabetes GxE interactions, even after accounting for BMI. 
(c) The estimated marginal effect of the rs4743930 T allele on diabetes risk, conditioned on physical activity (PA) levels and adjusted for 
measured BMI. Estimated diabetes risk effect is in terms of the relative odds ratio (OR). The estimate is shown by the black dot, and the 
bars indicate the 95% confidence intervals. (d) BARX1 gene expression across GTEx tissues. Figure made by the GTEx Consortium.
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Figure S9: PheWAS enrichment and partitioned LD-score regression. (a) Control experiment for the PheWAS enrichment test. A 
PheWAS was performed using the Open Targets database with P < 0.05 and a binomial test is used to determine whether a phenotype 
is more often associated within a test set of SNPs compared to a background set of SNPs. The proportion of SNPs in the test set that 
are associated with a given phenotype is shown along the y-axis, and proportion of SNPs in the background set that are associated with 
a given phenotype is shown along the x-axis. Each point represents a different phenotype in the Open Targets database, where a red 
colored point indicates FDR < 0.1. In this figure, the test set is a random set of 21 pure muQTLs (muQTLs with no vQTL significance), 
and the background set is the remaining set of pure muQTLs. (b-c) Stratified linkage disequilibrium score regression was performed on 
the muQTL summary statistics and the raw vQTL summary statistics using the “Multi_tissue_gene_expr” gene set. (b) The enrichment 
coefficients for the mean (x-axis) and variances (y-axis). Each data point represents a different cell-type category. The points colored red 
and orange represent the “A03.556.875.875.Stomach” (Franke data) and “Stomach” (GTEx data) categories respectively. The red line 
has slope equal to 1 and intercept equal to 0, as if mean and variance heritability enrichments were identical. The blue line is the line of 
best fit. c) The magnitude of cell-type enrichments in mean and variance analyses. Magnitude is the absolute value of the cell-type 
category coefficient. Each point represents a different cell-type category. In the box plots, the middle line is the median, the lower and 
upper hinges represent first and third quartiles, and the whiskers extend from the hinge with a length of 1.5x the inter-quartile range. The 
magnitude of cell-type enrichments in mean BMI heritability is larger than the enrichments in variance heritability (P = 3.6 x 10-45). This is 
expected as the mean GWAS signal was much stronger than the variance signal.
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Figure S10: Gene-environment interactions at the SEC16B locus. The estimated marginal BMI effect of the rs539515 risk allele 
conditioned on the different environmental co-variates. For visualization, age, sedentary behavior values, and diet (bottom 20%, middle 
60%, upper 20%) were grouped and ”rarely” or “never” answers for alcohol intake frequency were combined. Significant GxE 
interactions highlighted with an asterisk (FDR < 0.1), with nominal P-values shown.
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Supplemental Table 1: Pairwise correlation r between estimated β effects from GxE 
analysis under BMI transformations. 
 
 Raw RINT log 
Raw 1 0.976 0.992 
RINT 0.976 1 0.995 
log 0.992 0.995 1 

 
 
  



Supplemental Table 2: Pairwise correlation r between -log10 p-values from GxE analysis 
under BMI transformations. 
 
 Raw RINT log 
Raw 1 0.925 0.977 
RINT 0.925 1 0.984 
log 0.977 0.984 1 

 
  



Supplemental Table 3: FTO interaction effects are independent. A model was fit with 
pairwise interaction terms between rs56094641, an intronic FTO variant, and co-factors 
smoking status (Smoking), age, diet, sedentary behavior (SB), physical activity level (PA), and 
alcohol intake frequency (Alc). The effect size, standard error, test statistic, and p-value of the 
interaction term is shown in columns 2-5. 
 

Interaction Term Estimate Std. Error t value Pr(>|t|) 
SNP*Smoking 0.06222388 0.02867939 2.16 0.03003545 

SNP*Age -0.0059631 0.00176839 -3.37 0.00074625 
SNP*Diet 0.04077586 0.01460421 2.79 0.0052378 
SNP*SB 0.02001741 0.00580839 3.44 0.00056845 
SNP*PA -0.0796201 0.0181919 -4.37 1.21E-05 
SNP*Alc 0.04830689 0.00956766 5.04 4.45E-07 

 
 
  



Supplemental Table 4: Loci with very significant interactions (FDR < 0.01). This table 
contains the marginal, single-SNP effect estimates (β) for the loci found in Main Text Table 1. 
From left to right: The SNP name, annotated gene (based on evidence in the Open Targets 
database, see Methods), estimated muQTL effects and muQTL P-values, estimated raw vQTL 
effects and raw vQTL P-values, estimated RINT vQTL effects and RINT vQTL P-values, and 
estimated dQTL effects and dQTL P-values. 
 
 

SNP Gene βmean Pmean βraw Praw βRINT PRINT βdisp Pdisp 

rs539515 SEC16B 0.046 10-44 0.013 10-8 2.3x10-3 0.26 -3.4x10-3 0.42 

rs56094641 FTO 0.076 10-172 0.028 10-53 0.011 10-11 9.6x10-3 0.01 

rs58084604 MC4R 0.057 10-73 0.019 10-19 6.8x10-3 10-4 5.6x10-3 0.21 

rs7132908 FAIM2 0.031 10-30 0.012 10-11 4.9x10-3 10-3 5.8x10-3 0.14 

rs12467692 UBE2E3 -0.017 10-10 -5.4x10-3 10-3 -1.9x10-3 0.26 -2.0x10-4 0.96 

rs12996547 TMEM18 0.023 10-16 0.010 10-7 5.4x10-3 10-3 7.9x10-3 0.05 

 
  



Legends for External Supplemental Data Files 
 
Supplemental Data 1: Kept phenotype categories in Open Targets. List of phenotype 
categories that were kept for downstream PheWAS enrichment analyses. These phenotype 
categories were curated by Open Targets, and each phenotype in Open Targets is assigned to 
a single phenotype category. 
 
Supplemental Data 2: Proxy SNPs in LD as replacement SNPs. Some SNPs nominated as 
the lead SNP within our analyses were not present in the Open Targets database. These 
missing SNPs (column 1) were re-assigned to proxy SNPs in linkage disequilibrium (column 2). 
Four SNPs were not able to be re-assigned due to annotation issues; these are marked. 
 
Supplemental Data 3: Ensembl Gene IDs for raw vQTLs. SNPs associated with the variance 
of untransformed BMI. Genes were annotated using Open Targets1 (see Methods). SNPs in the 
MHC and their corresponding genes have been removed. 
 
Supplemental Data 4: Ensembl Gene IDs for pure muQTLs. SNPs associated with the mean 
but not the variance of untransformed BMI. Genes were annotated using Open Targets (see 
Methods). SNPs in the MHC and their corresponding genes have been removed. 
 
Supplemental Data 5: GeneMania report for raw vQTL genes. List of genes were input into 
GeneMania. The output data includes information on the network nodes (genes) and edges 
(gene networks used). 
 
Supplemental Data 6: GeneMania-based GO enrichment for raw vQTL genes. List of gene 
ontology (GO) terms that were significant within the GeneMania network. Listed are all GO 
terms with FDR < 0.1. “Genes in network” represent the number of genes in both the 
GeneMania network and the GO term’s gene list, while “Genes in genome” is the gene count 
within the GO term’s gene list. 
 
Supplemental Data 7: GeneMania report for pure muQTL genes. List of genes were input 
into GeneMania. The output data includes information on the network nodes (genes) and edges 
(gene networks used). 
 
Supplemental Data 8: GeneMania-based GO enrichment for pure muQTL genes. List of 
gene ontology (GO) terms that were significant within the GeneMania network. Listed are all GO 
terms with FDR < 0.1. “Genes in network” represent the number of genes in both the 
GeneMania network and the GO term’s gene list, while “Genes in genome” is the gene count 
within the GO term’s gene list. 
 
Supplemental Data 9: QTL summary statistics. The 502 unique QTLs from the BMI GWAS. 
Columns, left to right: SNP ID, chromosome, position, reference allele, minor allele, minor allele 
frequency, effect size and P-value of mean GWAS on untransformed BMI (linear regression), 
effect size and P-value of variance GWAS on untransformed BMI (DRM), effect size and P-
value of variance GWAS on transformed BMI (DRM), and effect sizes and P-values of Young et 
al.’s GWAS approach on transformed BMI (HLMM-derived additive, log-linear variance, 
additive-variance, and dispersion statistics and P-values). 
 



Supplemental Data 10: Full PheWAS enrichment table. All phenotypes that are significantly 
enriched (FDR < 0.1) in the raw vQTLs compared to the pure muQTLs. muQTL and vQTL 
columns specify the proportion of SNPs associated with the phenotype in each respective set. 
Diff column is the difference in proportions, and vQTL/muQTL is the ratio between proportions. 
PVAL is the nominal P-value and FDR is the multiple test-corrected significance value (via 
Benjamini-Hochberg false discovery rate2). 
 
 
 
Access 
 
Supplemental Data Files 1, 2, 3, 4, 6, 8, 9, and 10 are accessible within different spreadsheets 
of the main Excel Supplemental Data File. Supplemental Data Files 5 and 7 are accessed within 
two individual PDF files. 
  



Supplemental Note 1: Influence of sample size and interaction effects on bvar. 
In our simulations for comparing variance test methods, we also varied the sample sizes 

and interaction effects and assessed the influence on estimated variance effects (bvar) and 
power from the DRM. We performed simulations at N = 10,000 to N = 50,000 at increments of 
10,000, and Ѱ = 1% to 10% at increments of 1%. As shown in Figure S2, the power increases 
as either sample size or interaction effects increase. For example, the power to detect a Ѱ = 2% 
interaction in an N = 10,000 population using the DRM is similar to the power to detect a Ѱ = 
1% interaction in an N = 40,000 population (Figure S2a).  

The improved DRM power from an increase in sample size is due to the standard error 
of the variance effects bvar reducing, as bvar becomes more consistent with less variability 
(Figure S2b). Due to an increase in interaction effect sizes, bvar increases proportionally to the 
size of interaction effects (Figure S2c). This is contrast to the FPR simulations, where there was 
no correlation between single-SNP mean effects and bvar at SNPs with only a pure mean effect 
(Figure S2d).  
 
 
Supplemental Note 2: Mean GWAS comparison to Neale Lab analysis. 

We confirmed our mean-based GWAS results by comparing the results to the publicly 
available Neale Lab analysis in UK Biobank. We downloaded the summary statistics from 
http://www.nealelab.is/uk-biobank/. We observed that the -log10 P-values recapitulated the -
log10 P-values (r = 0.93). However, we had decreased power, with the most significant 
associations in the Neale Lab analysis having lower P-values than in our analysis. We attributed 
this to reduced sample size in our analysis from having a held-out replication set containing 
68,840 individuals. 

 
 

Supplemental Note 3: Mean and variances are correlated in non-normal distributions. 
 In a sample from a normal distribution, the mean and the variance are independent. In 
contrast, in most non-normal distributions, the distributional parameters jointly influence both the 
mean and variance. For example, the chi-square distribution is characterized by a single 
parameter k, also known as the degrees of freedom. The parameter k determines the number of 
squared normal random variables that are jointly summed to create the chi-square distribution. 
The mean and variance of the chi-square distribution is equal to k and 2k respectively. 
Therefore, any change in k will also impact a sample’s mean and variance. It can be implied 
that, in non-normal distributions where the means and variances are not independent, any 
genetic effect which influences the means will also have an effect on the variances through this 
general relationship.  
 
 
Supplemental Note 4: Standard error of variance estimates versus mean estimates. 

We identified many fewer vQTLs compared to muQTLs in our analyses. Using 
simulation, we review how this is due to a typically much higher standard error in sample 
variance compared to the standard error in sample means. 

We first review how the standard errors of mean and variance estimates are greatly 
influenced by sample size. We generated N data points from a standard normal distribution 
(mean = 0 and variance = 1) and calculated the mean and variance of the N sampled values. 
We repeated this data generation process 10,000 times for each value of N, and estimated the 
standard error of the mean and variance estimates by calculating the standard deviation of the 



sample estimates across all 10,000 sets. We iterated over all increments of 20 for N = 20 to N = 
1,000 data points, calculating the standard deviation of the mean estimates (!μ) and the 
standard deviation of the variance estimates (!!) at each N value. We found that both !μ and !! 
decrease as sample size decreases (Figure S3a). However, the ratio !! / !μ, which describes 
how the variance standard error changes relative to the mean standard error, stayed relatively 
similar across values of N (Figure S3b). We had the same observations when using N data 
points from a chi-square distribution with 15 degrees of freedom (Figures S3c-d). This data 
suggests that an increase in sample size leads to improved accuracy for estimating means and 
variances, but an increase in sample size (given the distributional parameter settings) will not 
lead to having superior accuracy for the estimation of variances compared to the estimation of 
means. 

We next analyzed how the parameters of the underlying distribution influence !μ and !!. 
First, we repeated the process above for a normal distribution, except keeping N = 100 and 
iterating over mean = 1 to 20 in 1 unit increments (keeping the variance constant at 1). We 
found that the true mean value does not have a strong influence over standard error of mean or 
variance (Figures S3e-f). We then generated data by keeping constant N = 100 and constant 
mean = 0, but at different variance values: 0.01, 0.1, 0.25, 0.5, 0.75, 1, 4, 9, and 20. We found 
that an increase in the true variance would increase !! and !μ, although with an interesting 
relationship. When the true variance was very small (reduced to below 0.25), the estimated 
standard error for variance was smaller than the estimated standard error for mean (!! / !μ < 1 
). !! increased with a greater rate than !μ, and thus !! / !μ > 1 for larger true variance values (> 
0.5) (Figures S3g-h). This suggests that if the underlying data has very low variability, variance 
estimates may be more accurate to estimate than mean estimates. As the previous results 
suggested and we further confirm, this relationship is independent of sample size. However, in 
more typical data distributions with larger variability, variance estimates are more difficult to 
accurately estimate.  

Finally, we further show that in a chi-squared distribution (where the degrees of freedom 
specify the mean and the variance of the non-normal distribution) with degrees of freedom 
selected at the integers between 1 and 20, !! / !μ > 1 and continues to increase as the degrees 
of freedom increases (Figures S3i-j). 

Overall, we review that variance estimates are more difficult to accurately estimate (have 
higher standard error) than mean estimates (which have lower standard error), unless there is 
very little variability in the distribution. Therefore, in the context of genetic studies, attempting to 
detect differences in phenotypic variance estimates between genotypes will be far more difficult 
compared to the identification of differences in phenotypic mean estimates between genotypes. 
 
 
Supplemental Note 5: Statistical methods and transformations under a mean-variance 
relationship in UK Biobank. 

Young et al.3 previously described how a rank inverse normal transformation (RINT) 
reduces the correlation between mean and variance effects, and a subsequent dispersion effect 
test (DET) can infer robust changes in phenotypic variance independent of genotypic changes 
and any phenotypic transformations. The authors’ implemented a heteroskedastic linear mixed 
model (HLMM), which jointly estimates mean and log-linear variance effects, to perform the 
DET. Using these statistical tools, we performed a comprehensive analysis of mean, variance, 
and dispersion effects in untransformed and RINT body mass index levels, contrasting the 
Young et al. approaches with our own. We refer to mean (linear regression, or LR) and variance 
(DRM) effects on the untransformed phenotype as “Raw muQTLs” and “Raw vQTLs”; mean 



(LR), variance (DRM), and log-linear (HLMM) effects on the transformed phenotype as “RINT 
muQTLs”, “RINT vQTLs”, and “RINT log-vQTLs”, and dispersion effects as “dQTLs” (DET).  

Despite only 4 of 24 RINT vQTLs (P < 10-5) also being genome-wide significant raw 
vQTLs (16.7%) (P < 5 x 10-8) (Figure 3e), we observed strong correlation between RINT and 
raw vQTL estimated effects (r = 0.89) (Figure S4a). The variance P-values also correlated (r = 
0.68), although it is clear that some of the RINT vQTL p-values were more conservative than the 
raw vQTL p-values (Figure S4b). For example, there were only 3 independent significant RINT 
vQTLs compared to 21 independent significant raw vQTLs with P < 10-8.  In comparison, the 
mean effects were near-identical for raw and RINT BMI phenotypes (r=0.99) (Figure S4c-d). 
Furthermore, we note that the RINT vQTLs and RINT log-vQTLs were very similar across the 
spectrum of strong and weak effects (r = 0.94 and r = 0.80 for effect sizes and p-values 
respectively). Therefore, we did not consider RINT muQTLs and RINT log-vQTLs in other 
comparisons, only using the raw muQTLs and RINT vQTLs to represent these analyses.  

In our analysis, we observed a decrease in the correlation between raw muQTL and 
variance effects as estimated on the RINT phenotype (r = 0.28) compared to the untransformed 
phenotype (r = 0.65) (Figure 3b, 3d). This mean-variance relationship could be reduced further 
by considering the dispersion effects (r = 0.04) (Figure 3f), which are very similar to the RINT 
vQTL effects (r = 0.91) (Figure S4k) but in a manner that reduces the correlation with mean 
effects (Figure 3f). As seen in Figure S4e-h, the significant SNPs in either the RINT vQTL or 
dQTL analyses are the ones that are furthest displaced from the general mean-variance 
relationship in untransformed BMI (red line), with the dQTLs being more displaced from the 
general mean-variance correlation than the RINT vQTLs. We observed that the DET method to 
account for any mean effects in variance estimates resulted in only minor changes to RINT 
vQTL analysis, with large similarities between p-values (Figure S4n). However, P-values were 
even more conservative in the DET framework than the RINT vQTLs (which are more 
conservative than the raw vQTL analysis) to subtract any mean effects. Interestingly, under the 
relaxed SNP-trait significance threshold of P < 10-5 employed by the GWAS Catalog database, 
we found that only 4 of 27 RINT vQTLs and 1 of 26 dQTLs were also genome-wide significant 
(P < 5 x 10-8) mean QTLs (Figure 3h). As well, roughly half of the RINT vQTLs and dQTLs 
overlap (13 of 27 RINT vQTLs and 13 of 26 dQTLs), but there are several SNPs only identified 
in one analysis or the other. 

Overall, by analyzing the RINT phenotype, we found loci that are not associated with 
phenotypic means but have some of the most significant variance effects, in contrast to analysis 
on the untransformed phenotype where muQTLs and vQTLs frequently overlap (Figure 3b-c). 
This allows identification of SNPs associated with variance distinct from the full set of raw vQTL 
and mean QTLs. Since RINT vQTLs and dQTLs had more conservative p-values compared to 
the untransformed vQTL analysis, we used a relaxed significance threshold (P < 10-5) for the 
RINT vQTLs to enable identification of a greater number of loci. We include these RINT vQTLs 
and dQTLs in our downstream analyses as potential candidates for an interaction. 
 
 
Supplemental Note 6: RINT vQTLs reflect SNPs associated with the rank phenotype. 
 To analyze how a RINT decorrelates the mean and variance effects, we simulated 
200,000 data points, consisting of 100,000 values from a chi-square distribution with df = 4 and 
100,000 values from a chi-square distribution with df = 8 that were combined into a single 
dataset. The first distribution has variance = 4, and the second distribution has variance = 8.  
 Next, we applied a rank inverse normal transformation to the N = 200,000 samples and 
separately analyzed the data from the df=4 distribution and the data from the df=8 distribution. 
We found that the data from the df=4 distribution had variance = 0.77, and the data from the 



df=8 distribution had variance = 0.67. This conflicts with the variance of the untransformed data, 
where the df=8 data has double the variance of the df=4 data. 
 To better understand, we transformed the data into ranks and did not include an inverse 
normal transformation. In the rank transformation, we found the new data to have variance = 2.5 
x 109 from the df = 4 data and variance = 2.2 x 109 from the df = 8 data, which matches the 
observations from the RINT data. This data suggests that an analysis of vQTLs on ranked data 
is distinct from an analysis of vQTLs on untransformed data due to ranked vQTLs representing 
SNPs associated with the variance in rank, which can paint a very different picture from the 
original distribution. 
 
 
Supplemental Note 7: Differences in MAF and genotype missingness between QTLs. 
 We aimed to determine whether minor allele frequency (MAF) and missing genotype 
data are factors that may artificially increase variance. It is possible that a lack of genotyped 
individuals which are minor homozygotes may lead to an increase in variance in the minor 
homozygote bin, and this could be one factor that leads to detecting variance QTLs. 
 We calculated three population-level statistics for each SNP associated through the QTL 
analyses: MAF, the number of individuals with non-missing genotype data, and the number of 
individuals that are minor homozygotes. We then performed a t-test between the different sets 
of QTLs (for example, compared the MAF between the set of muQTLs and the set of vQTLs). 
Overall, we found no difference in the mean for any population-level statistic between muQTLs, 
raw vQTLs, RINT vQTLs, or dQTLs (P > 0.05 between all set-set combinations). 
 In our analyses, we used these population-level statistics to match 10 genome-wide 
SNPs to each QTL. Given that there is no significant difference between QTL types in these 
attributes, we use the matched SNPs from all QTLs in analyses. By having a larger number of 
matched SNPs, we have greater precision in null distribution estimates. 
 
 
Supplemental Note 8: False positive vQTLs do not create false positive interactions. 

Using simulations, we show how a non-causal SNP associated (by chance) with the 
variance of a phenotype does not have inflated false positive rates when testing for interactions 
(compared to SNPs not associated with variance). 

We generated 10,000 simulations of 10,000 individuals, consisting of two SNPs with 
MAF = 0.3 (using a binomial distribution) and a normally distributed phenotype (with mean = 0 
and variance = 1). We used the DRM to test for association between one of the SNPs and the 
variance of the phenotype, and a linear regression with a SNP-SNP interaction term to test for 
association between a pairwise-SNP interaction and the phenotype. There was no true causal 
effect of either SNP on the phenotype; the genotypes and phenotype were simulated 
independently. 
 We were interested in whether a SNP associated with the variance of the phenotype 
(false positive) had an increased probability for having a significant GxG interaction. Overall, we 
found a false positive rate = 0.053 across 526 simulations where a variance association was 
detected (DRM-based P < 0.05), which was not significantly different from the expected false 
positive rate = 0.05 (binomial test P-value = 0.69). Furthermore, the variance and GxG effect 
sizes and P-values did not correlate across the simulations (r = 0.004, P = 0.70 for effects; r = 
0.005, P = 0.63 for P-values) or when limited to the subset of simulations with a false positive 
vQTL (r = 0.009, P = 0.82 for effects; r = 0.027, P = 0.532 for P-values) (Figure S5a-d). In 
conclusion, our simulations did not suggest that the GxG false positive rate increases for false 
positive vQTLs. 



 
 
Supplemental Note 9: Evidence for weak epistatic interactions associated with BMI 

While the primary goal of this study was the discovery of GxE interactions, we 
hypothesized that a similar approach could be used to discover gene-gene (GxG) interactions in 
relation to BMI. We first tested for GxG interactions associated with BMI levels by performing 
all-pairwise interaction testing between 502 QTLs (125,751 tests). We found no departure from 
the -log10(p-values) expected under the null distribution and there was no correlation between 
interaction effects estimated in the 80% discovery cohort versus 20% replication cohort (r = -
0.003, P = 0.30) (Figure S6a-b). Most importantly, unlike GxE interactions, leveraging mean, 
variance, or dispersion effects did not provide a reliable inroad to discovering GxG interactions 
(Supplemental Materials and Methods Section 10; Figure S6e). However, when considering the 
more significant interactions (PD < 0.001), we observed a weak correlation between effects 
estimated in each cohort (r = 0.17, P = 0.04) and found that statistical replication rates 
increased slightly above the theoretical null, 2.5-3% (Figure S6c-d). Our results in BMI suggest 
that any potential underlying epistatic effects are small and would be difficult to detect, 
concordant with a recent search for epistasis in three biologically simpler molecular traits4. 
 
 
Supplemental Note 10: Searching for GxG effects by leveraging QTL effects. 
 As discussed in the Supplemental Note 9, there was no correlation between interaction 
effects estimated in the 80% discovery set and the interaction effects estimated in the 20% 
replication set (r = -0.003, P = 0.30) (Figure S6b). To further investigate this finding, we subset 
the GxG interactions and examined this correlation using 14 different criteria: (1) at least 1 
muQTL involved, (2) at least 1 raw vQTL involved, (3) at least 1 RINT vQTL involved, (4) at 
least 1 dQTL involved, (5) both SNPs are muQTLs, (6) both SNPs are raw vQTLs, (7) both 
SNPs are RINT vQTLs, (8) both SNPs are dQTLs, (9) at least 1 RINT vQTL with P < 5 x 10-8 
significance, (10) at least 1 dQTL with P < 5 x 10-8 significance, (11) at least 1 SNP that is both 
a muQTL and a raw vQTL, (12) both SNPs are muQTLs and raw vQTLs, (13) at least 1 SNP 
that is both a raw vQTL and a RINT vQTL, or (14) at least 1 SNP is the rs56094641 
polymorphism in the FTO region. In all criteria settings, we found no significant correlation 
between estimated effects in the discovery and replication cohorts (95% confidence interval of 
the Spearman’s rho includes 0 and P > 0.05) (see Figure S8e). Therefore, leveraging QTL 
evidence did not provide an inroad to discovering epistatic interactions influencing BMI.  
 
 
Supplemental Note 11: Prevalence of winner’s curse. 

When only the same direction of effect was required, the replication rate was also 
significantly higher in the QTL set compared to the genome-wide SNP set (73.7% versus 
63.8%; P = 0.045). Using the discovery and replication cohorts, we assessed the prevalence of 
“winner’s curse”. Winner’s curse describes an upward bias in the estimated magnitude of 
significant SNP effects in a genome-wide association study5,6. To calculate the prevalence in 
our own results, we estimated the proportion of GxE interactions where |bD| > |bR|, given the 
direction of effect was replicated [ sign(bD) = sign(bR) ]. For the GxE interactions from the 502 
unique QTLs, we found the winner’s curse prevalence to be consistently steady, between 66% 
and 72%, as the GxE significance threshold became increasingly significant past PD < 0.05. In 
comparison, when assessing the matched SNPs, we found that the winner’s curse prevalence 
progressively increased from 73% to 90% as the threshold ranged from PD = 0.05 to PD < 0.001 
(Figure S5e). To statistically test for a difference between the prevalence of winner’s curse in 



QTLs versus genome-wide SNPs, we used a two-sided exact binomial test to find significance P 
= 5.1 x 10-5 at FDRD < 0.1 interactions (where the theoretical success rate was equal to 
observed winner’s curse prevalence in the matched SNPs and the success and number of trials 
were from the QTL-derived interactions). 
 This indicates there is less bias of GxE estimates within the QTL results compared to 
genome-wide SNPs results. This could be due to a lower false positive rate for QTL-derived 
GxE or less reliability on needing to detect the GxE effect in the right context such that statistical 
significance can be achieved. 
 
 
Supplemental Note 12: Impact of BMI transformations on GxE discovery. 

We explored our GxE analysis across BMI transformations. We analyzed age, sex, 
alcohol intake, sedentary behavior, smoking, and physical activity interactions. We do not 
consider diet, since the diet score is slightly different between BMI transformations due to the 
pre-processing steps involved in its computation (and we wanted to purely test the impact of 
transformation on the interaction term significance). We tested each gene-environment 
interaction for its association with untransformed BMI (such as in Wang et al.7), log-BMI (such 
as in Kerin & Marchini8), or RINT BMI (such as in Young et al.3). Any gene-environment 
interactions appearing as a multiplicative effect in untransformed BMI may disappear under log 
or RINT transformations. Overall, we found that estimated interaction effects and significance 
values correlated very strongly across transformations, as seen in Supplemental Tables 1-2. 

However, we observed that the greatest number of significant interactions (FDR < 0.1) 
were detected for untransformed BMI. While 2.2% of the tested GxE interactions were 
significant in the untransformed BMI analysis, 1.7% were significant in the log BMI analysis and 
1.3% in the RINT BMI analysis. The discovery rates are lower, although similar, to the 
untransformed analysis, suggesting that many discovered interactions are robust to 
transformation but power is attenuated when transformations are applied. 

Importantly, raw vQTLs drove GxE discovery rates, regardless of statistical 
transformation. In the untransformed BMI analysis, 0.8% of tested GxE interactions from RINT 
vQTLs that were not raw vQTLs were significant; for dQTLs that were not raw vQTLs, this was 
1.4%. In the RINT BMI or log BMI analyses, 0% of tested GxE interactions using these loci were 
significant. In contrast, 15.1%, 8.7%, and 11.9% of GxE using raw vQTLs were significant in the 
untransformed, RINT, and log BMI analyses respectively. For muQTLs with no raw vQTL 
evidence, we found 1.7%, 1.0%, and 1.3% discovery rate in untransformed, RINT, and log BMI 
analyses.  

In conclusion, we found that untransformed BMI recovered a greater number of 
significant interactions than when analyzing BMI using data transformations. Furthermore, 
regardless of transformation to the phenotype, SNPs associated with the variance of 
untransformed BMI provided the greatest discovery rate for gene-environment interactions. 
 
 
Supplemental Note 13: GxE vQTL replication using a more stringent set of muQTLs. 

When considering a more stringent set of the 28 most significant pure muQTLs (Pmean < 
6.2 x 10-17, Pvar > 5 x 10-8) with a similar median mean-based p-value to the set of vQTLs 
(median Pmean = 1.0 x 10-21 in both the vQTL set and this stringent pure muQTL set), we 
observed a 2.7-fold enrichment for the vQTL-derived GxE replication rate (38.1% in the vQTL 
set versus 14.3% in the stringent pure muQTL set; P = 0.006). Therefore, the higher replication 
rate for GxE interactions at vQTLs do not appear to be due to more significant marginal mean-
based P-values.  



 
 
Supplemental Note 14: Omitting the MHC region in GeneMania. 
 The MHC region is quite complex, with high gene density, large linkage disequilibrium, 
extensive inter-individual variation, and codominance. As a result, it is difficult to map genetic 
loci in the MHC to genes. We decided to remove the genes from the MHC region for the 
purposes of annotated-gene-based functional analyses in GeneMania9. 
 
 
Supplemental Note 15: Cell-type heritability enrichments. 
 Using stratified linkage disequilibrium score regression10, we found that the cell-type 
heritability enrichment for the “A03.556.875.875.Stomach” category was statistically significant 
in the BMI variance analysis but not significant in the BMI mean analysis. In Figure S9b, we 
highlight this finding in red.  

The “A03.556.875.875.Stomach” annotation is derived from data by the Franke lab. Our 
partitioned heritability analysis using the “Multi_tissue_gene_expr” flag also considered publicly 
available GTEx data11. We looked at the “Stomach” category, which is based on GTEx data, 
and found no statistical signal. However, we note that the enrichment was higher in the variance 
analysis compared to the mean analysis, with the enrichment positive for variances but negative 
for the means. (In Figure S9b, we highlight the GTEx-based “Stomach” cell-type enrichment in 
orange.) Furthermore, we note that no GTEx annotations were significant in the variance 
analysis. All the different annotations shown in Main Text Figure 5f are derived from the Franke 
Lab. 
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