European Journal of Organic Chemistry

Supporting Information

Triptycene End-Capped Indigo Derivatives – Turning Insoluble Pigments to Soluble Dyes

Bahiru P. Benke, Leif Hertwig, Xuan Yang, Frank Rominger, Michael Mastalerz*

Table of Contents

1.	General methods	S2
2.	Synthesis and analytical data	S3
3.	Spectra	S7
4.	Single crystal data	S23
5.	References	S25

General Methods:

All reagents for synthesis were purchased from commercial suppliers and used without further purification. All air-sensitive reactions were performed using oven-dried glassware under an inert atmosphere of argon. Syringe or cannula was used to transfer air-sensitive solvents, reagents and solutions. Analytical thin layer chromatography (TLC) was performed on MERCK precoated silica gel 60 F_{254} TLC plates. All the compounds were visualized using UV light.

For flash column chromatography silica gel 60 (40-63 µm/230-400 mesh ASTM) or basic alumina (Type IV) was used. NMR spectra were recorded on a Bruker Avance III 300 (300 MHz) or Bruker Avance DRX 300 (300 MHz) or Bruker Avance III 400 (400 MHz) or Bruker Avance III 500 (500 MHz) or Bruker Avance III 600 (600 MHz) spectrometer. The NMR spectra were referenced using residual solvent peak as the standard. Chemical shift values are denoted in parts per million (δ), coupling constants (J) are reported in Hertz (Hz), and spin multiplicities are reported as singlet (s), broad singlet (bs), doublet (d), triplet (t), quartet (q), and multiplet (m). For HRMS measurement, Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer solariX (Bruker Daltonik GmbH, Bremen, Germany) equipped with a 7.0 T superconducting magnet and interfaced to an Apollo II Dual ESI/MALDI source was used. MALDI-TOF MS spectra were collected from a Bruker Daltonik Reflex III, on a Bruker ApexQe or on a Bruker AutoFlex Speed TOF with DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as a matrix. Elemental analysis was performed in Microanalytical Laboratory of the University of Heidelberg using an Elementar Vario EL machine. Melting points were measured using a Büchi Melting Point B-545 instrument. Crystal structure analysis was performed on a STOE Stadivari diffractometer with a copper source (Cu K α λ = 1.54178 Å) All crystallographic information files (CCDC No. 2022650 (4) and CCDC No. 2023711 (5)) have been deposited in the Cambridge Crystallographic Data Centre and can be downloaded free of charge via www.ccdc.camac.uk/data_request/cif.

2-aminotriptycene $(1)^{[S1]}$ and parent bay annulated indigo $(7)^{[S2]}$ were prepared according to the literature procedures.

Synthesis of compound 2:

A solution of chloral hydrate (1.79 g, 10.8 mmol, 2.7 eq.) and anhydrous sodium sulphate (9.2 g, 64.8 mmol, 16 eq.) in water (48 mL) was added to a preheated (50 °C) suspension of 2-aminotriptycene **1** (1.08 g, 3.6 mmol) in water (144 mL). Concentrated hydrochloric acid (1.6 mL) was added and the resulting suspension stirred for 5 minutes before addition of a solution of hydroxylamine hydrochloride (2.26 g, 64.8 mmol, 16 eq.) in water (48 mL). The suspension was stirred for 20 h at 80 °C. After cooling the reaction mixture down to room temperature, the product was extracted with dichloromethane (4 x 50 mL) and the organic layers combined, dried over sodium sulphate and solvent was removed under reduced pressure. The crude product was suspended in n-pentane (20 mL) and ultrasonicated for 5 minutes before the beige colored powder was collected by filtration, giving **2** in 95% yield (1.30 g, 0.38 mmol).

*R*_f (DCM/EE, 20:1): 0.21; **Mp:** 243-244 °C (decomposed); ¹**H** NMR (400MHz, DMSO-*d*6, 295 K): δ = 12.11 (s, 1H, OH), 10.06 (s, 1H, N*H*), 7.86 (d, *J* = 1.8 Hz, 1H, Ar*H*), 7.62 (s, 1H, NC*H*), 7.46-7.41 (m, 4H, Ar*H*), 7.37 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.21 (dd, *J* = 8.0 Hz, *J* = 2.0 Hz, 1H, Ar*H*), 7.01-6.97 (m, 4H, Ar*H*), 5.62 (s, 1H, C*H*), 5.59 (s, 1H, C*H*).; ¹³C NMR (101MHz, DMSO-*d*6, 295K): δ = 160.0, 145.8, 145.3, 145.1, 144.0, 140.9, 135.3, 125.0, 124.9. 123.6, 123.69, 123.66, 116.1, 116.0, 52.7, 52.0; **IR** (neat, ATR): $\tilde{\nu}$ (cm⁻¹) = 3344 (w), 3138 (br), 3007 (m), 2958 (m), 2859 (m), 2755 (w), 51 1652 (m), 1598 (m), 1537 (s), 1457 (s), 1420 (m), 1337 (w), 1284 (m), 1250 (m), 1156 (w), 1030 (s), 997 (m), 945 (w), 819 (w), 718 (w), 744 (s), 665 (w), 655 (w), 614 (m). **HRMS** (ESI-MS): *m*/*z* [M-H]⁻ calcd. for C₂₂H₁₅N₂O₂: 339.1139, found: 339.1138: **Elemental Analysis:** calcd. for C₂₂H₁₆N₂O₂·H₂O: C 73.73, H 5.06, N 7.82; found C 73.75, H 5.01, N 7.66;

Synthesis of compound 3:

Isonitrosoacetanilide **2** (1.36 g, 4.0 mmol) was added to preheated (50 °C) methane sulfonic acid (100 mL). After the addition was complete, the reaction temperature was increased to 80 °C and n the resulting deep red solution stirred for 3.5 h. The reaction mixture was cooled down to room temperature and poured into a water/ice mixture (800 mL) and the orange suspension stirred at ambient temperature for 30 minutes. The aqueous suspension was extracted with DCM (5 x 75 mL) and the combined organic layers were dried over sodium sulphate and solvent removed under reduced pressure. The product was purified by flash column chromatography (SiO₂, DCM) followed by drying in a Kugelrohr (2.7 x 10^{-1} mbar, 10 h) to give pure isatin **3** as a red, crystalline solid in 95% yield (1.2 g, 0.37 mmol).

*R*_f (DCM/EE, 20:1): 0.21; **Mp**: 205-208°C; ¹**H** NMR (400MHz, CDCl₃, 295K): δ = 8.07 (s, 1H, N*H*), 7.50 (s, 1H, Ar*H*), 7.41-7-37 (m, 4H, Ar*H*), 7.07-7.04 (m, 4H, Ar*H*), 6.97 (s, 1H, Ar*H*), 5.44 (s, 1H, C*H*), 5.42 (s, 1H, C*H*).;¹³C NMR (101MHz, CDCl₃, 295K): δ = 182.4, 160.0, 157.4, 148.9, 144.3, 142.7, 141.5, 126.0, 125.8, 124.1, 123.8, 120.1, 114.5, 109.2, 54.9, 53.2; **IR** (neat, ATR): $\tilde{\nu}$ (cm⁻¹) = 3174 (br), 3062 (br), 2957 (m), 2849 (w), 2809 (s), 2359 (w), 2336 (w), 1727 (s), 1618 (s) 1603 (s), 1481 (m), 1454 (s), 1308 (m), 1290 (m), 1190 (m), 1171 (m), 1153 (m), 1105 (m), 1071 (s), 1022 (s, br), 952 (s), 915 (w) 859 (w), 869 (w), 802 (w), 741 (s), 626 (m), 561 (m).; **UV-VIS** (CH₂Cl₂): λ (log ε) = 317 nm (3.78), 264 nm (4.29), 252 nm (4.47); **HRMS (ESI-MS)**: *m*/*z* [M+Na]⁺ calcd. for C₂₂H₁₃NO₂Na: 346.0841, found: 346.0838; *m*/*z* [M+K]⁺ calcd. for C₂₂H₁₃NO₂K: 362.0581, found: 362.0578; *m*/*z* [2M+Na]⁺ calcd. for (C₂₂H₁₃NO₂)₂Na: 669.1791 found: 669.1791. **Elemental Analysis:** Calcd. for C₂₂H₁₃NO₂·0.9 H₂O: C 77.82, H 4.39, N 4.12; found C 77.76, H 4.45, N 3.98

Synthesis of compound 4:

To a mixture of isatin **3** (500 mg, 1.547 mmol) and PCl₅ (338 mg, 1.623 mmol, 1.05 eq.), anhydrous toluene (15 mL) was added and the reaction mixture stirred under argon atmosphere for 5 hours at 100 °C. The reaction mixture was cooled down to 50 °C and then a solution of thiophenol (374 mg, (347 μ L), 3.401, mmol, 2.2 eq) in toluene (5 mL) was added and stirred 24 h at 50 °C. After cooling down to room temperature, the reaction mixture was diluted with DCM to a total volume of 250 mL, washed with aq. K₂CO₃ (0.25 M) solution (3 x 30 mL) and dried over sodium sulphate. Solvents were removed under reduced pressure and crude product was purified by column chromatography (Type IV basic alumina, DCM/pentane = 4:6), giving 270 mg (57%) of compound **4** as a deep blue solid.

*R*_f (DCM/PE, 3:2): 0.35; **Mp**: > 350 °C; ¹**H NMR** (600 MHz, CDCl₃, 300K): δ = 8.66 (s, 1H, N*H*), 7.60 (s, 1H, Ar*H*), 7.40-7.37 (m, 8H, Ar*H*), 7.04-7.01 (m, 10H, Ar*H*), 5.41 (s, 2H, C*H*), 5.39 (s, 2H, C*H*). ¹³**C NMR** (125 MHz, CDCl₃, 300K): 188.1, 154.5, 151.6, 144.9, 143.5, 138.3, 126.0, 125.7, 124.0, 123.7, 122.1, 118.7, 116.8, 108.5, 54.9, 53.4; **IR** (neat, ATR): $\tilde{\nu}$ (cm⁻¹) = 3355 (br, w), 3066 (w), 3045 (w), 3020 (w), 2958 (w), 1618 (s), 1575 (w), 1481 (s), 1444 (m), 1398 (w), 1344 (w), 1278 (w), 1253 (w), 11990 (w), 1161 (m), 1151 (m), 1105 (s), 1091 (s), 1029 (w), 1024 (w), 891 (w), 831 (w), 764 (w), 736 (s), 700 (w), 642 (w), 624 (m).; **UV-VIS** (CHCl₃): λ (log ε) = 299 nm (4.04), 372 nm (3.75), 612 nm (3.64). **MALDI-TOF** (DCTB): *m/z* [M]⁺ calcd. for C₄₄H₂₆N₂O₂: 614.1994, found: 614.990. **Elemental Analysis:** Calcd. for C₄₄H₂₆N₂O₂: 1.5 CH₂Cl₂: C 73.64, H 3.94, N 3.77; found C 73.38, H 4.28, N 3.60;

Synthesis of compound 5:

To a refluxing solution of compound 4 (100 mg, 0.163 mmol, 1 eq.) in anhydrous O-xylene (10 mL) a solution of 2-thiopheneacetyl chloride (104.6 mg, 0.652 mmol, 4 eq.) in O-xylene (4 mL) was added dropwise over a period of ten minutes following which reaction mixture was stirred under argon atmosphere for 48 hours at 155 °C. Afterwards, reaction mixture was cooled down to room temperature and passed through the basic alumina column (Type IV, pentane/DCM 1:0 to 7:3). Pink coloured fraction was collected in round bottom flask and solvents were removed under reduced pressure. The solid was dissolved in small amount of DCM (~ 1 mL) and precipitated with the addition of pentane (~10 mL). The precipitate was separated by centrifugation technique. The precipitation was repeated thrice afforded 40 mg of compound **5** as a purple solid in 30% yield.

Mp: >350 °C; ¹**H NMR** (600 MHz, CD₂Cl₂): δ = 8.59 (s, 1H, Ar*H*), 8.08 (s, 1H, Ar*H*), 7.75 (dd, J = 5.4 Hz, J = 1.2 Hz, 2H), 7.71 (dd, J = 5.4 Hz, J = 1.2 Hz, 2H), 7.45-7.39 (m, 8H, Ar*H*), 7.36 (dd, J = 5.4 Hz, J = 5.4 Hz, 2H), 7.04-7.02 (m, 8H, Ar*H*), 5.61 (s, 2H, C*H*), 5.39 (s, 2H, C*H*). ¹³**C NMR** (125 MHz, CD₂Cl₂): 158.9, 151.0, 145.0, 144.6, 144.2, 142.7, 135.5, 130.9, 130.3, 130.2, 126.9, 126.0, 124.3, 124.2, 124.1, 122.92, 122.86, 120.2, 114.0, 54.8; ¹³**C DEPT NMR** (125 MHz, CD₂Cl₂): 130.3, 130.2, 126.8, 126.0, 124.3, 124.1, 120.2, 114.0, 54.8; ¹³**C DEPT NMR** (125 MHz, CD₂Cl₂): 130.3, 130.2, 126.8, 126.0, 124.3, 124.1, 120.2, 114.0, 54.8, 54.2, 54.0, 53.8; **IR** (1, ATR): $\tilde{\nu}$ (cm⁻¹) = 3120 (w), 3064 (w), 3020 (w), 2958 (w), 1620 (m), 1560 (w), 1471 (w), 1458 (w), 1438 (w), 1413 (s), 1379 (w), 1292 (w), 1257 (w), 1193 (w), 1141 (w), 1097 (w), 1037 (w) 937 (w), 893 (w), 858 (w), 835 (w), 823 (w), 802 (w), 784 (w), 740 (m), 700 (w), 653 (w), 624 (w); **UV-VIS** (CH₂Cl₂): λ (log ε) = 301 nm (4.91), 378 nm (4.13), 552 nm (4.48), 585 nm (4.59). **Elemental Analysis:** Calcd. for C₅₆H₃₀N₂O₂S₂: 2.5 H₂O: C 77.13, H 4.05, N 3.21; found C 77.17, H 4.01, N 2.86; **MALDI-TOF** (DCTB): *m/z* [M+H]⁺ calcd. for C₅₆H₃₁N₂O₂S₂: 827.1827, found: 827.1817.

Figure S4. ¹H-¹³C HSQC NMR (400 MHz, DMSO-d₆) spectrum of compound **2**.

Figure S5. ¹H-¹³C HMBC NMR (400 MHz, DMSO-d₆) spectrum of compound 2.

Figure S6. FT-IR (ATR) spectrum of compound 2.

Figure S8. ¹³C NMR (400 MHz, CDCl₃) spectrum of compound 3.

Figure S9. ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃) of compound 3.

Figure S10. ¹H-¹³C HSQC NMR (400 MHz, CDCl₃) spectrum of compound 3.

Figure S11. ¹H-¹³C HMBC NMR (400 MHz, CDCl₃) spectrum of compound **3**.

Figure S12. FT-IR (ATR) spectrum of compound 3.

Figure S14. ¹³C NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S17. UV/vis spectrum (CHCl₃) of compound 4 at different concentrations.

Figure S18. Overlapped simulated and experimental UV-Vis spectra (solvent: chloroform) of end capped indigo 4.

Figure S19. FT-IR (ATR) spectrum of compound 4.

Figure S20. a) and b) cyclic voltammograms of **4** (20 cycles). (DCM, nBu_4NPF_6 (0.10M) measured at room temperature with a Pt electrode and Fc/Fc⁺ as internal reference (scanning speed: 100 mV/s).

Figure S21. ¹H NMR (600 MHz, CD₂Cl₂) spectrum of compound 5.

Figure S22. ¹³C NMR (125 MHz, CD₂Cl₂) spectrum of compound 5.

10 9 8 7 6 5 4 3 2 1 0

. :

Figure S24. ¹H-¹H COSY NMR spectrum (600 MHz, CD₂Cl₂) of compound 5.

6

7

8

9

10

ppm

Figure S26. ¹H-¹³C HMBC NMR (600 MHz, CD₂Cl₂₃) spectrum of compound 5.

Figure S27. UV/vis spectrum (CH₂Cl₂) of compound 5 at different concentrations.

Figure S28. FT-IR (ATR) spectrum of compound 5.

Figure S29. a) and b) cyclic voltammograms of **5** (20 cycles). (DCM, nBu_4NPF_6 (0.10M) measured at room temperature with a Pt electrode and Fc/Fc⁺ as internal reference (scanning speed: 100 mV/s).

Entry	PPA (eq.)	Time (h)	T (°C)	Color
1	106	0.5	70	brown
2	106	2	70	brown
3	106	5	70	brown
4	106	2.5	55	red
5	106	7	55	red

 Table S1. Screened reaction conditions using PPA as a cyclization reagent for isatin 3

Solubility studies for 4, 5, 6 and 7 at 25 °C: For solubility studies saturated solution of each compound was stirred for 18 hours at RT in the different solvents. Afterwards, the solutions were filtered through the 0.2 μ M PTFE membrane filter and solvents were evaporated under reduced pressure. All the compounds were dried under high vacuum for 12 hours and then weight of each sample was measured. (Microbalance was used to measure the weight of all samples.)

Identification code	4		
Empirical formula	C47H29Cl9N2O2		
Formula weight	972.77		
Temperature	200(2) K		
Wavelength	1.54178 Å		
Crystal system	triclinic		
Space group	Pī		
Z	2		
Unit cell dimensions	a = 11.4556(6) Å	$\alpha = 85.222(4)^{\circ}$	
	b = 11.5347(5) Å	$\beta = 81.492(4)^{\circ}$	
	c = 17.3049(9) Å	$\gamma = 87.129(4)^{\circ}$	
Volume	2251.94(19) Å ³	• • • • •	
Density (calculated)	1.43 g/cm^3		
Absorption coefficient	5.45 mm ⁻¹		
Crystal shape	plank		
Crystal size	0.173 x 0.042 x 0.020 mm ³		
Crystal colour	metallic blue		
Theta range for data collection	3.8 to 57.9°		
Index ranges	-11≤h≤12, −8≤k≤12, −18≤l≤19		
Reflections collected	17845		
Independent reflections	6233 (R(int) = 0.0558)		
Observed reflections	3899 (I > $2\sigma(I)$)		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.97 and 0.50		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	6233 / 183 / 567		
Goodness-of-fit on F ²	1.02		
Final R indices (I>2sigma(I))	R1 = 0.084, wR2 = 0.220		
Largest diff. peak and hole	0.50 and -0.82 eÅ ⁻³		

 Table S2: Crystal data and structure refinement for compound 4.

Figure S30. structure of compound 4.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system	5 C ₅₆ H ₃₀ N ₂ O ₂ S ₂ 826.94 200(2) K 1.54178 Å triclinic		
Z	2		
Unit cell dimensions	a = 11.9534(8) Å b = 11.8453(7) Å c = 15.9243(10) Å	$\alpha = 90.701(5)^{\circ}$ $\beta = 96.272(5)^{\circ}$ $\gamma = 93.946(5)^{\circ}$	
Volume	2235.5 (2) Å ³	•	
Density (calculated)	1.23 g/cm^3		
Absorption coefficient	1.43 mm^{-1}		
Crystal shape	plank		
Crystal size	0.096 x 0.053 x 0.035 mm ³		
Crystal colour	violet		
I neta range for data collection	3./ to 62.1°	2 17 - 1 - 17	
Index ranges	$-13 \le h \le 13$, $-13 \le k \le 13$, $-1/\le l \le 1/$		
Reflections collected	25052		
Independent reflections	6764 (R(int) = 0.03	60)	
Observed reflections	4159 (I > $2\sigma(I)$)		
Absorption correction	Absorption correction Semi-empirical from equivale		
Max. and min. transmission	1.37 and 0.71		
Refinement method	Full-matrix least-squares on F^2		
Data/restraints/parameters	23032 / 896 / 597		
Goodness-of-fit on F^2	1.Uð D1 0.079 D2 0.209		
Largest diff, peak and hole	$K_1 = 0.078$, $WK_2 = 0.208$ 0.54 and $-0.36 \text{ e}^{A^{-3}}$		
Lugest ant. peak and note			

Table S3:Crystal data and structure refinement for compound 5.

Figure S31. structure of compound 5.

References:

[S1] W. Huang, M. Einzinger, T. Zhu, H. S. Chae, S. Jeon, S.-G. Ihn, M. Sim, S. Kim, M. Su, G. Teverovskiy, T. Wu, T. Van Voorhis, T. M. Swager, M. A. Baldo, S. L. Buchwald, *Chem. Mater.* 2018, *30*, 1462–1466.

[S2] B. He, A. B. Pun, D. Zherebetskyy, Y. Liu, F. Liu, L. M. Klivansky, A. M. McGough,

B. A. Zhang, K. Lo and T. P. Russell, J. Am. Chem. Soc. 2014, 136, 15093-15101.