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Materials and Methods 

1. Transmission model 
The transmission dynamics are depicted by the following equations. 

Daytime transmission: 

𝑆!"(𝑡 + 𝑑𝑡#) = 𝑆!"(𝑡) −
𝛽!𝑆!"(𝑡)∑ 𝐼$!% (𝑡)$

𝑁!&(𝑡)
𝑑𝑡# −

𝜇𝛽!𝑆!"(𝑡) ∑ 𝐼!$'$ (𝑡)
𝑁!&(𝑡)

𝑑𝑡#

+ 𝜃𝑑𝑡#
𝑁!" − 𝐼!"% (𝑡)
𝑁!&(𝑡)

/
𝑁0!$ ∑ 𝑆$((𝑡)(

𝑁$&(𝑡) − ∑ 𝐼($% (𝑡)($)!

− 𝜃𝑑𝑡#
𝑆!"(𝑡)

𝑁!&(𝑡) − ∑ 𝐼(!%(𝑡)(
/𝑁0$!
$)!

		(1) 

𝐸!"(𝑡 + 𝑑𝑡#) = 𝐸!"(𝑡) +
𝛽!𝑆!"(𝑡) ∑ 𝐼$!% (𝑡)$

𝑁!&(𝑡)
𝑑𝑡# +

𝜇𝛽!𝑆!"(𝑡)∑ 𝐼!$'$ (𝑡)
𝑁!&(𝑡)

𝑑𝑡# −
𝐸!"(𝑡)
𝑍 𝑑𝑡#

+ 𝜃𝑑𝑡#
𝑁!" − 𝐼!"% (𝑡)
𝑁!&(𝑡)

/
𝑁0!$ ∑ 𝐸$((𝑡)(

𝑁$&(𝑡) − ∑ 𝐼($% (𝑡)($)!

− 𝜃𝑑𝑡#
𝐸!"(𝑡)

𝑁!&(𝑡) − ∑ 𝐼(!%(𝑡)(
/𝑁0$!
$)!

		(2) 

𝐼!"% (𝑡 + 𝑑𝑡#) = 𝐼!"% (𝑡) + 𝛼
𝐸!"(𝑡)
𝑍 𝑑𝑡# −

𝐼!"% (𝑡)
𝐷 𝑑𝑡#		(3) 

𝐼!"'(𝑡 + 𝑑𝑡#) = 𝐼!"'(𝑡) + (1 − 𝛼)
𝐸!"(𝑡)
𝑍 𝑑𝑡# −

𝐼!"'(𝑡)
𝐷 𝑑𝑡#

+ 𝜃𝑑𝑡#
𝑁!" − 𝐼!"% (𝑡)
𝑁!&(𝑡)

/
𝑁0!$ ∑ 𝐼$(' (𝑡)(

𝑁$&(𝑡) − ∑ 𝐼($%( (𝑡)
$)!

− 𝜃𝑑𝑡#
𝐼!"'(𝑡)

𝑁!&(𝑡) − ∑ 𝐼(!%(𝑡)(
/𝑁0$!
$)!

	(4) 

𝑁!&(𝑡) = 𝑁!! +/𝐼$!% (𝑡)
$)!

+/(𝑁!$ − 𝐼!$% (𝑡)
$)!

)		(5) 

Nighttime transmission: 

𝑆!"(𝑡 + 1) = 𝑆!"(𝑡 + 𝑑𝑡#) −
𝛽"𝑆!"(𝑡 + 𝑑𝑡#)∑ 𝐼$"% (𝑡 + 𝑑𝑡#)$

𝑁"*
𝑑𝑡+

−
𝜇𝛽"𝑆!"(𝑡 + 𝑑𝑡#) ∑ 𝐼$"' (𝑡 + 𝑑𝑡#)$

𝑁"*
𝑑𝑡+ + 𝜃𝑑𝑡+

𝑁!"
𝑁"*

/
𝑁0"$ ∑ 𝑆($(𝑡 + 𝑑𝑡#)(

𝑁$* −∑ 𝐼($% (𝑡 + 𝑑𝑡#)($)"

− 𝜃𝑑𝑡+
𝑆!"(𝑡 + 𝑑𝑡#)

𝑁"* − ∑ 𝐼$"% (𝑡 + 𝑑𝑡#)$
/𝑁0$"
$)"

		(6) 

𝐸!"(𝑡 + 1) = 𝐸!"(𝑡 + 𝑑𝑡#) +
𝛽"𝑆!"(𝑡 + 𝑑𝑡#)∑ 𝐼$"% (𝑡 + 𝑑𝑡#)$

𝑁"*
𝑑𝑡+

+
𝜇𝛽"𝑆!"(𝑡 + 𝑑𝑡#)∑ 𝐼$"' (𝑡 + 𝑑𝑡#)$

𝑁"*
𝑑𝑡+ −

𝐸!"(𝑡 + 𝑑𝑡#)
𝑍 𝑑𝑡+

+ 𝜃𝑑𝑡+
𝑁!"
𝑁"*

/
𝑁0"$ ∑ 𝐸($(𝑡 + 𝑑𝑡#)(

𝑁$* −∑ 𝐼($% (𝑡 + 𝑑𝑡#)($)"

− 𝜃𝑑𝑡+
𝐸!"(𝑡 + 𝑑𝑡#)

𝑁"* − ∑ 𝐼$"% (𝑡 + 𝑑𝑡#)$
/𝑁0$"
$)"
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𝐼!"% (𝑡 + 1) = 𝐼!"% (𝑡 + 𝑑𝑡#) + 𝛼
𝐸!"(𝑡 + 𝑑𝑡#)

𝑍 𝑑𝑡+ −
𝐼!"% (𝑡 + 𝑑𝑡#)

𝐷 𝑑𝑡+		(8) 

𝐼!"'(𝑡 + 1) = 𝐼!"'(𝑡 + 𝑑𝑡#) + (1 − 𝛼)
𝐸!"(𝑡 + 𝑑𝑡#)

𝑍 𝑑𝑡+ −
𝐼!"'(𝑡 + 𝑑𝑡#)

𝐷 𝑑𝑡+

+ 𝜃𝑑𝑡+
𝑁!"
𝑁"*

/
𝑁0"$ ∑ 𝐼($' (𝑡 + 𝑑𝑡#)(

𝑁$* − ∑ 𝐼($% (𝑡 + 𝑑𝑡#)($)"

− 𝜃𝑑𝑡+
𝐼!"'(𝑡 + 𝑑𝑡#)

𝑁"* − ∑ 𝐼$"%$ (𝑡 + 𝑑𝑡#)
/𝑁0$"
$)"

			(9) 

𝑁!* =/𝑁$!
$

		(10) 

Here, 𝑆!", 𝐸!", 𝐼!"% , 𝐼!"'  and 𝑁!" are the susceptible, exposed, reported infected, unreported infected 
and total populations in the subpopulation commuting from county 𝑗 to county 𝑖 (𝑖 ← 𝑗); 𝛽! is the 
transmission rate of reported infections in county 𝑖; 𝜇 is the relative transmissibility of 
unreported infections; 𝑍 is the average latency period (from infection to contagiousness); 𝐷 is the 
average duration of contagiousness; 𝛼 is the fraction of documented infections; 𝜃 is a 
multiplicative factor adjusting random movement; 𝑁0!" = (𝑁!" + 𝑁"!)/2 is the average number of 
commuters between counties 𝑖 and 𝑗; 𝑑𝑡# and 𝑑𝑡+ are the durations of daytime and nighttime 
transmission; and 𝑁!& and 𝑁!* are the daytime and nighttime populations of county 𝑖. We assume 
the 𝐼!"%  population is immobile and does not participate in human movement. We integrate Eqs. 
S1-S10 using a Poisson process to represent the stochasticity of the transmission process. 
In the transmission model, we consider two types of movement: daily work commuting and 
random movement. For daily work commuting, during the daytime, 𝑁!" individuals living in 
location 𝑗 commute to work place 𝑖 and mix with the population present there. During the 
nighttime, those commuters return to their home and mix with other residents who live in 
location 𝑗. For random movement, individuals may travel among locations for reasons other than 
work. These random visitors circulate among subpopulations following a Markov process, 
causing a population exchange in all locations. 

Daily work commuting: During the daytime, the population in location 𝑖, 𝑁!&(𝑡) = 𝑁!! +
∑ 𝐼$!% (𝑡)$)! + ∑ (𝑁!$ − 𝐼!$% (𝑡)$)! ), is the sum of individuals who both live and work in location 𝑖, 
reported infected individuals who would otherwise commute to other locations 𝑘	(𝑘 ≠ 𝑖), and 
individuals who work in location 𝑖 from other locations 𝑘	(𝑘 ≠ 𝑖) but are not reported infections. 
Within the subpopulation 𝑁!", new infections derive from two processes: contact with reported 
and unreported infections in location 𝑖. For each susceptible individual in 𝑆!"(𝑡), the chance of 
contact with reported infections is ∑ 𝐼$!% (𝑡)$ /𝑁!&(𝑡), where ∑ 𝐼$!% (𝑡)$  is the total number of 
reported infections who would commute to all locations 𝑘 but have to stay in location 𝑖, and the 
chance of contact with unreported infections is ∑ 𝐼!$'$ (𝑡)/𝑁!&(𝑡), where ∑ 𝐼!$'$ (𝑡) is the total 
number of unreported infections in location 𝑖. Those contacts lead to new infections 

𝛽!𝑆!"(𝑡) ∑ 𝐼$!% (𝑡)$

𝑁!&(𝑡)
𝑑𝑡# +

𝜇𝛽!𝑆!"(𝑡)∑ 𝐼!$'$ (𝑡)
𝑁!&(𝑡)

𝑑𝑡# 

during a period of 𝑑𝑡# day. Note this term captures the mixing of populations from different 
locations due to work commuting, and represents intra-county transmission during the daytime in 
location 𝑖.  
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Random movement: Apart from work commuting, during the daytime, 𝜃𝑑𝑡#𝑁0!$ persons, drawn 
uniformly from the population present in location 𝑘 (𝑘 ≠ 𝑖) (except for reported infections) 
move to location 𝑖 and are randomly redistributed into the subpopulation there. Such population 
exchange exists for all pairs of locations. For example, for the susceptible population, we first 
compute the number of susceptible individuals entering into subpopulation 𝑆!"(𝑡). In other 
locations 𝑘	(𝑘 ≠ 𝑖), the probability of a random visitor is susceptible is ∑ 𝑆$((𝑡)( /(𝑁$&(𝑡) −
∑ 𝐼($% (𝑡)( ), where ∑ 𝑆$((𝑡)(  is the number of susceptible individuals present in location 𝑘 from all 
locations 𝑙, and 𝑁$&(𝑡) − ∑ 𝐼($% (𝑡)(  is the total number of mobile population (i.e., total population 
minus reported infected population) in location 𝑘. Therefore, the total susceptible population 
entering location 𝑖 is 𝜃𝑑𝑡#𝑁0!$ ∑ ∑ 𝑆$((𝑡)( /(𝑁$&(𝑡) − ∑ 𝐼($% (𝑡)( )$)! . Those individuals are 
redistributed into subpopulations present in location 𝑖, where the fraction of people in 
subpopulation 𝑁!" is (𝑁!" − 𝐼!"% (𝑡))/𝑁!&(𝑡). Finally, the number of susceptible individuals 
entering 𝑆!"(𝑡) is 

𝜃𝑑𝑡#
𝑁!" − 𝐼!"% (𝑡)
𝑁!&(𝑡)

/
𝑁0!$ ∑ 𝑆$((𝑡)(

𝑁$&(𝑡) − ∑ 𝐼($% (𝑡)($)!

. 

We then compute the number of susceptible individuals leaving 𝑆!"(𝑡). The total number of 
individuals leaving location 𝑖 is 𝜃𝑑𝑡#∑ 𝑁0$!$)! ; the fraction of susceptible people from 𝑁!" is 
𝑆!"(𝑡)/(𝑁!&(𝑡) − ∑ 𝐼(!%(𝑡)( ). As a result, the number of susceptible persons leaving 𝑆!"(𝑡) is 

𝜃𝑑𝑡#
𝑆!"(𝑡)

𝑁!&(𝑡) − ∑ 𝐼(!%(𝑡)(
/𝑁0$!
$)!

. 

Population exchange for other compartments can be computed similarly. Note there is no random 
movement in Eq. (3) as we assume reported infections, 𝐼!"% , are immobile. We can write Eqs. (6-
10) for nighttime transmission similarly. 

2. The Ensemble Adjustment Kalman Filter 
Originally developed for use in weather prediction, the ensemble adjustment Kalman filter 
(EAKF) assumes a Gaussian distribution of both the prior and likelihood and adjusts the prior 
distribution to a posterior using Bayes’ rule deterministically. To represent the state-space 
distribution, the EAKF maintains an ensemble of system state vectors acting as samples from the 
distribution. In particular, the EAKF assumes that both the prior distribution and likelihood are 
Gaussian, and thus can be fully characterized by their first two moments (mean and variance). 
The update scheme for ensemble members is computed using Bayes’ rule (posterior ∝ prior × 
likelihood) via the convolution of the two Gaussian distributions. For observed state variables, 
the posterior of the 𝑖th ensemble member is updated through 

𝑜,,./0,! =
𝜎,,/10+

𝜎,,/10+ + 𝜎,,.%!/%+ 𝑜̅,,.%!/% +
𝜎,,.%!/%+

𝜎,,/10+ + 𝜎,,.%!/%+ 𝑦, +N
𝜎,,/10+

𝜎,,/10+ + 𝜎,,.%!/%+ O𝑜,,.%!/%! − 𝑜̅,,.%!/%P. 

Here 𝑜,,./0,!  and 𝑜,,.%!/%!  are the posterior and prior of the observed variable (i.e., daily confirmed 
case or death in each county) for the 𝑖th ensemble member at time 𝑡; 𝑜̅,,.%!/% is the mean of the 
prior observed variable; 𝜎,,/10+  and 𝜎,,.%!/%+  are the variances of the observation and the prior 
observed variable; and 𝑦, is the observation at time 𝑡. Unobserved variables and parameters are 
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updated through their covariability with the observed variable, which can be computed directly 
from the ensemble. In particular, the 𝑖th ensemble member of unobserved variable or parameter 
𝑥! is updated by 

𝑥,,./0,! = 𝑥,,.%!/%! +
𝜎 RS𝑥,,.%!/%T*, S𝑜,,.%!/%T*V

𝜎,,.%!/%+ O𝑜,,./0,! − 𝑜,,.%!/%! P. 

Here 𝑥,,./0,!  and 𝑥,,.%!/%!  are the posterior and prior of the unobserved variable or parameter for 
the 𝑖th ensemble member at time 𝑡; and 𝜎 RS𝑥,,.%!/%T*, S𝑜,,.%!/%T*V is the covariance between the 
prior of the unobserved variable or parameter S𝑥,,.%!/%T* and the prior of the observed variable 
S𝑜,,.%!/%T* at time 𝑡. In the EAKF, variables and parameters are updated deterministically such 
that the higher moments of the prior distribution are preserved in the posterior. 
To account for the reporting delay of confirmed case and death, we modified the original EAKF 
implementation by adjusting model states using observations in the near future, when the effects 
of parameter change are manifested in observations. Specifically, for data assimilation at day 𝑡, 
we ran the transmission model forward to day 𝑡 + 16 using prior model state, and used the 
confirmed case at day 𝑡 + 9 and death at day 𝑡 + 16 to update model variables and parameters at 
day 𝑡. This look-ahead data assimilation considered an average delay of 9 days for infection 
confirmation and an average delay of 16 days for death reporting. For dates within 16 (9) days of 
May 3, we used reported death (case) numbers after May 3 to constrain the model. 

In the EAKF, we assume a heuristic form of observation error variance (OEV) 𝜎,,/10+ . For 
confirmed cases, we used 𝜎,,2304+ = max	(25, 𝑦(𝑐𝑎𝑠𝑒),+/100), where 𝑦(𝑐𝑎𝑠𝑒), is the number of 
new confirmed cases averaged over day 𝑡 − 6 to day 𝑡; for death, we used 𝜎,,&43,5+ =
max	(25, 𝑦(𝑑𝑒𝑎𝑡ℎ),+/100), where 𝑦(𝑑𝑒𝑎𝑡ℎ), is the number of deaths averaged over day 𝑡 − 6 
to day 𝑡. Similar forms of OEV have been successfully used for inference and forecasting for a 
range of infectious diseases (38-40). In this study, this OEV setting yields satisfactory fitting. 
  



 
 

6 
 

 
Fig. S1. Intercounty commuting, selected counties, and daily confirmed cases and deaths in 
focus metropolitan areas. (A) Visualization of inter-county commuting data from US census 
survey in 48 continental US states. Line thickness represents the intensity of human movement. 
(B) The 311 counties with cumulative cases >=400 as of May 3 2020. Color indicates cumulative 
cases on a log scale. Daily confirmed cases (C) and deaths (D) in six metropolitan areas as of 
May 3, 2020. 
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Fig. S2. Posterior fitting at county level. Posterior fitting to daily confirmed cases (A) and 
deaths (B) in 9 counties. 
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Fig. S3. Inferred basic reproductive number for six metropolitan areas and the reduction 
of transmission rates in counties with increasing confirmed cases. (A) We show the estimated 
𝑅, in the six metropolitan areas and the dates on which local social distancing orders were 
announced (vertical black dash lines). (B) We selected segments of increasing cases for counties 
with a maximum daily case level above 200 (right panel) and inspected the estimated 
transmission rates in those counties during the same period (left panel). The average weekly 
reduction of the transmission rate is 25% in those counties in response to increasing confirmed 
cases. 
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Fig. S4. Sensitivity of model fitting to the duration of daytime and nighttime transmission. 
Model fitting and parameter inference using a model with 12-hour daytime and nighttime 
transmission. 
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Fig. S5. The estimated effective reproductive numbers in 3142 US counties. The estimated 
effective reproductive numbers in 3142 US counties on March 15, March 29, April 12 and April 
26. 
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Fig. S6. The estimated fraction of susceptible population in the US and six metropolitan 
areas. Blue line is the median estimate and grey dotted lines are 95% CIs. 
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Fig. S7. Reporting delay and cumulative number of tests per 100,000. (A) The reporting 
delay from symptom onset to confirmation follows a gamma distribution (𝑎 = 2.6, 𝑏 = 4.9, 
mean= 12.9 days). (B) National daily confirmed cases and deaths. The dotted red line is the 
death time series shifted 7 days backwards. A 7-day delay between the curves of confirmed cases 
and deaths is observed. (C) The cumulative number of viral tests per 100,000 persons in states 
available at the COVID tracking project (https://covidtracking.com/). RI has a higher per capita 
testing rate possibly due to its small population. 
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Fig. S8. Effects of response time after control measures are relaxed in six counties. We 
implement control relaxation (a weekly 5% increase of the transmission rate) starting on May 4 
in all US counties. If local weekly case numbers in a county increases for 3 consecutive weeks, a 
weekly 25% reduction of the transmission rate is imposed for that county. Daily cases and 
transmission rates in the six counties are shown. 
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Fig. S9. Effects of reopening in Florida on daily cases and deaths in Georgia and Alabama. 
We compare the daily cases and deaths in GA and AL under two scenarios: with and without FL 
reopening on May 4, 2020. For the reopening scenario, we assume the transmission rates in FL 
counties increase by 20% after reopening and remain at this level until the end of the simulation. 
Projections were generated for 30 days beginning May 4, 2020. 
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Table S1. Goodness of fit at county level. Percentage absolute error (PAE) and percentage error 
(PE) for case (death) numbers in 100 counties with the most reported cases (deaths) through May 
3. Numbers are proportions. 

county case PAE PE county case PAE PE 
Queens County NY 53640 0.19 0.04 Riverside County CA 4180 0.15 -0.04 
Kings County NY 46839 0.24 0.16 Lake County IL 4161 0.13 -0.11 
Cook County IL 42322 0.17 -0.17 Delaware County PA 4113 0.11 -0.07 

Bronx County NY 38916 0.17 0.1 Hampden County MA 4067 0.15 -0.03 
Nassau County NY 36780 0.2 -0.19 Bristol County MA 4019 0.24 -0.14 
Suffolk County NY 34855 0.25 -0.24 Camden County NJ 3975 0.14 -0.12 

Westchester County NY 29884 0.2 -0.18 San Diego County CA 3925 0.17 -0.12 
Los Angeles County CA 25661 0.15 -0.08 Dallas County TX 3899 0.14 -0.09 
New York County NY 22745 0.19 0.07 Erie County NY 3710 0.16 -0.07 

Wayne County MI 17298 0.22 0.05 Somerset County NJ 3703 0.13 -0.08 
Bergen County NJ 16185 0.14 -0.07 DuPage County IL 3611 0.12 -0.08 
Hudson County NJ 15769 0.14 -0.07 Denver County CO 3345 0.38 -0.29 

Middlesex County MA 15370 0.12 -0.04 St. Louis County MO 3325 0.16 -0.13 
Essex County NJ 14521 0.15 0 Baltimore County MD 3301 0.17 -0.11 

Suffolk County MA 13777 0.14 -0.06 Bucks County PA 3286 0.1 -0.05 
Passaic County NJ 13364 0.13 -0.11 Milwaukee County WI 3244 0.11 -0.06 
Union County NJ 13225 0.18 -0.09 Palm Beach County FL 3130 0.12 -0.05 

Philadelphia County PA 13179 0.18 -0.15 Dutchess County NY 3086 0.2 -0.14 
Miami-Dade County FL 12775 0.19 -0.18 Burlington County NJ 3043 0.15 -0.1 
Middlesex County NJ 12597 0.13 -0.12 Fulton County GA 2978 0.13 -0.05 
Richmond County NY 12195 0.12 -0.06 Lehigh County PA 2924 0.27 -0.21 
Rockland County NY 12025 0.23 -0.18 Franklin County OH 2905 0.19 -0.13 
Fairfield County CT 11801 0.23 0.02 Davidson County TN 2904 0.14 -0.07 
Essex County MA 9542 0.12 -0.09 Berks County PA 2886 0.2 -0.07 
Orange County NY 8967 0.23 -0.18 Will County IL 2868 0.2 -0.13 

New Haven County CT 8024 0.15 -0.06 Shelby County TN 2815 0.16 -0.12 
Oakland County MI 7499 0.14 -0.03 Orange County CA 2742 0.12 -0.09 

Prince George's County MD 7333 0.14 -0.12 Salt Lake County UT 2707 0.08 -0.06 
Providence County RI 7028 0.17 -0.15 Arapahoe County CO 2706 0.12 -0.02 

Ocean County NJ 6871 0.16 -0.13 Snohomish County WA 2510 0.18 -0.1 
Harris County TX 6708 0.25 -0.2 Tarrant County TX 2503 0.16 -0.09 
Orleans Parish LA 6538 0.33 0.04 Sussex County DE 2461 0.17 -0.09 
King County WA 6448 0.12 -0.04 Cuyahoga County OH 2338 0.12 -0.06 

Jefferson Parish LA 6388 0.28 -0.09 Marion County OH 2329 1.18 0.58 
Monmouth County NJ 6290 0.16 -0.1 Baltimore city MD 2319 0.16 -0.08 
Worcester County MA 6288 0.12 -0.06 Luzerne County PA 2240 0.35 -0.24 
Norfolk County MA 6280 0.15 -0.03 Santa Clara County CA 2228 0.19 -0.15 
Marion County IN 6176 0.15 -0.1 Northampton County PA 2214 0.21 -0.15 

Hartford County CT 6112 0.15 0.06 San Bernardino County CA 2182 0.21 0 
Macomb County MI 5736 0.14 -0.03 DeKalb County GA 2181 0.15 -0.06 
Morris County NJ 5517 0.14 -0.08 Hennepin County MN 2151 0.56 -0.33 

Plymouth County MA 5507 0.2 -0.09 Minnehaha County SD 2142 0.28 -0.06 
Broward County FL 5312 0.11 -0.07 East Baton Rouge Parish LA 2086 0.29 -0.15 

Montgomery County MD 5150 0.13 -0.09 Lake County IN 2036 0.14 -0.07 
District of Columbia DC 5016 0.14 -0.09 Prince William County VA 2027 0.1 -0.08 

Maricopa County AZ 4584 0.12 -0.09 Gwinnett County GA 1974 0.12 -0.04 
Montgomery County PA 4552 0.15 -0.05 Anne Arundel County MD 1960 0.12 -0.08 

Mercer County NJ 4504 0.16 -0.12 Lancaster County PA 1936 0.14 -0.08 
Fairfax County VA 4340 0.13 -0.08 Kane County IL 1935 0.11 -0.05 
Clark County NV 4274 0.18 -0.09 New Castle County DE 1903 0.14 -0.06 

county death PAE PE county death PAE PE 
Kings County NY 5508 0.28 -0.25 Clark County NV 218 0.4 0.11 

Queens County NY 5279 0.31 -0.31 Broward County FL 207 0.34 0.02 
Bronx County NY 3710 0.52 -0.47 Bristol County MA 198 0.33 0.32 
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New York County NY 2258 0.25 0.2 Palm Beach County FL 197 0.72 0.43 
Wayne County MI 1893 0.18 0.09 Genesee County MI 196 0.45 0.15 
Cook County IL 1786 0.22 -0.06 Milwaukee County WI 195 0.63 0.2 

Nassau County NY 1770 0.47 -0.16 DuPage County IL 192 0.2 -0.09 
Essex County NJ 1282 0.34 -0.01 Fairfax County VA 184 0.53 -0.26 

Suffolk County NY 1256 0.39 0.38 St. Louis County MO 177 0.38 0.32 
Los Angeles County CA 1229 0.31 0.03 Maricopa County AZ 168 0.54 0.39 

Bergen County NJ 1210 0.23 -0.09 Baltimore County MD 168 0.3 0.14 
Westchester County NY 1086 0.36 -0.29 Denver County CO 166 0.53 -0.47 
Middlesex County MA 972 0.17 -0.08 Camden County NJ 163 0.37 0.35 

Fairfield County CT 886 0.09 0.03 Will County IL 162 0.51 0.33 
Hudson County NJ 845 0.31 -0.25 Riverside County CA 161 0.54 0.45 

Richmond County NY 776 0.39 -0.14 Arapahoe County CO 156 0.4 -0.03 
Oakland County MI 757 0.34 0 East Baton Rouge Parish LA 153 0.73 0.73 
Hartford County CT 756 0.34 -0.19 Burlington County NJ 149 0.58 0.3 

Union County NJ 737 0.21 -0.08 Lake County IL 145 0.45 0.32 
Middlesex County NJ 639 0.17 0.08 San Diego County CA 139 0.2 -0.06 

Passaic County NJ 632 0.51 0.21 Providence County RI 132 1.26 0.43 
Macomb County MI 628 0.22 -0.06 Harris County TX 129 0.3 -0.12 
Suffolk County MA 588 0.35 0.35 Dougherty County GA 125 0.62 -0.02 

New Haven County CT 580 0.14 -0.02 Baltimore city MD 124 0.72 0.72 
Norfolk County MA 550 0.48 -0.27 Fulton County GA 122 0.47 0.17 
Essex County MA 499 0.15 0.12 Cuyahoga County OH 121 0.32 0.12 
King County WA 459 0.57 0.09 Lucas County OH 119 0.65 0.17 
Morris County NJ 449 0.38 -0.26 Berks County PA 118 0.53 -0.04 
Orleans Parish LA 441 0.77 -0.18 Chester County PA 117 0.33 0.13 
Ocean County NJ 440 0.22 0.14 Caddo Parish LA 115 0.66 0 

Philadelphia County PA 425 0.62 -0.38 Sussex County NJ 115 0.27 -0.09 
Rockland County NY 411 0.35 -0.11 St. Tammany Parish LA 114 1.12 0.82 
Hampden County MA 398 0.58 -0.2 Santa Clara County CA 113 0.51 0.24 
Monmouth County NJ 382 0.31 0.01 Lancaster County PA 112 1.65 1.28 

Montgomery County PA 381 0.58 0.06 Dallas County TX 110 0.4 0.18 
Jefferson Parish LA 371 0.73 -0.04 Snohomish County WA 109 1.23 0.62 

Miami-Dade County FL 369 0.33 0.18 Henrico County VA 106 0.81 -0.13 
Marion County IN 360 0.44 -0.19 Weld County CO 104 0.66 0.53 

Plymouth County MA 323 0.5 0.5 Allegheny County PA 102 0.3 0.15 
Worcester County MA 312 0.59 0.29 San Bernardino County CA 97 0.32 0.06 
Somerset County NJ 295 0.32 0.28 Cobb County GA 97 0.28 -0.15 

Hennepin County MN 277 0.31 0.21 Luzerne County PA 97 0.36 0.25 
Montgomery County MD 275 0.57 0.13 Lake County IN 95 0.55 0.21 

Prince George's County MD 268 0.17 0.09 Jefferson County KY 95 0.7 0.33 
District of Columbia DC 256 0.28 -0.1 Middlesex County CT 94 0.35 -0.23 

Mercer County NJ 255 0.32 -0.12 Warren County NJ 94 0.31 -0.18 
Delaware County PA 255 0.54 0.28 Northampton County PA 94 0.56 0.16 
Orange County NY 252 0.46 0.03 Litchfield County CT 92 0.45 0.45 
Bucks County PA 240 0.24 -0.1 Pima County AZ 89 0.71 -0.01 
Erie County NY 235 0.25 -0.14 Anne Arundel County MD 89 0.34 0.34 


