Supplemental Material

(p)ppGpp-dependent regulation of the nucleotide hydrolase PpnN confers complement resistance in *Salmonella enterica* serovar Typhimurium

N. Y Elizabeth Chau^{a, b}, Deyanira Pérez-Morales^c, Wael Elhenawy^{a, b}, Víctor H. Bustamante^c, Yong E. Zhang^d, Brian K. Coombes^{a, b*}

^aDepartment of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON ^bMichael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON

°Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México

^dDepartment of Biology, University of Copenhagen, 2200 Copenhagen, Denmark

*Corresponding author: Brian K. Coombes, coombes@mcmaster.ca

Running title: PpnN confers complement resistance

1	Figure S1. RelA-SpoT is required for growth in minimal medium. Growth curves of
2	wild type S. Typhimurium, $\Delta relA$, $\Delta relA \Delta spoT$, and $\Delta ppnN$ in (A) LB and (B) M9-
3	glucose media. Data are the means \pm SEM (error bars) of three independent experiments.
4	
5	Figure S2. PpnN from <i>E. coli</i> str. K-12 and <i>S</i> . Typhimurium str. SL1344 share
6	significant amino acid sequence homology. (A) PpnN has two domains of unknown
7	function, DUF4478 and DUF3412, and a lysine decarboxylase (LDC)-like domain. The
8	LDC-like domain contains a conserved "PGG _x GT _{xx} E" motif characteristic of the Lonely
9	Guy (LOG) protein family. (B) Amino acid sequence alignment of PpnN from E. coli str.
10	K-12 and S. Typhimurium str. SL1344. Protein sequences share 94% pairwise identity in
11	amino acid sequences. DUF4478, DUF3412, and LDC-like domains are highlighted. The
12	conserved "PGG _x GT _{xx} E" motif found in LOG homologues is underlined in red. Asterisks
13	indicate the amino acid residues involved in (p)ppGpp binding.
14	
15	Figure S3. PpnN from <i>E. coli</i> str. K-12 is a pyrimidine/purine nucleosidase. PpnN
16	hydrolyzes uridine 5'-monophosphate (UMP) to uracil and ribose 5'-phosphate. Heat-
17	inactivation of PpnN abrogates protein function. Data are representative of two replicates.
18	
19	Figure S4. PpnN from <i>S</i> . Typhimurium str. SL1344 is a pyrimidine/purine
20	nucleosidase. PpnN hydrolyzes guanosine 5'-monophosphate (GMP) to guanine and
21	ribose 5'-phosphate. Introduction of an E264Q mutation in PpnN abrogates protein
22	function. Data are representative of two replicates.

23 Figure S5. PpnN does not contribute to the protein composition of the outer

- 24 **membrane.** Outer membrane protein composition of the $\Delta ppnN$ mutant is similar to wild
- 25 type S. Typhimurium str. SL1344, whereas, the $\Delta relA \Delta spoT$ mutant shows significant
- 26 differences. Data are representative of two replicates.

Figure S2

Figure S4

Figure S5