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Supplementary Results 6 

Supplementary Fig. 1 Learning curve. a-b are the learning curves of the pre- and post-velocity 7 

field datasets. c-d are the learning curves of the pre- and post-pressure field datasets. For 8 

velocity, the learning curve reaches a minimum when Epoch is about 50K. For pressure, the 9 

learning curve reaches a minimum when Epoch is about 40K.  10 
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Supplementary Discussion 11 

Comparison against Previous Deep Learning Approaches 12 

We reviewed studies using deep learning or machine learning for prediction of flow fields or 13 

clinical parameters related to CHD treatment (e.g., FFR), as shown in Supplementary Table 1. Itu's 14 

machine learning method was only suitable for the calculation of FFR value1, and its application 15 

range was extremely limited. Lee's convolutional neural network could be used for vortex flow 16 

prediction in the 2D plane2, which might lead to loss of information (such as the flow field 17 

component perpendicular to the 2D plane). Guo's deconvolution network is only suitable for 3D 18 

regular and simple flow field3. Because the network structure is relatively simple, the above studies 19 

all need a large number of data samples to support in order to achieve high prediction accuracy. 20 

Although Liang realizes the internal hemodynamic prediction of the ideal thoracic aortic model4, 21 

the spatial resolution of its samples is still low, which could not accurately characterize the 22 

geometric characteristics of complex cardiovascular system. Liang's network only accepts the 23 

input data with prefix array-size. This means, patient geometry should be normalized into template 24 

(fixed number of meshes). Then, if the geometry cannot fit into that template, Liang's network 25 

cannot accept that input. Under the premise of more extensive information, our deep learning 26 

method uses limited data to achieve prediction accuracy similar to previous studies. However, our 27 

prediction objects are far more complex. Our network can predict the flow on any kind of geometry 28 

owing to using the point cloud format. Even the number of point cloud (nodes) varies, our network 29 

can accept that unfixed input. Combined with the universality analysis of the network, our deep 30 

learning method has many advantages. 31 

 32 
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Supplementary Table 1 Comparison analysis of our deep learning method against previous 33 

studies 34 

Network or method Prediction output Data set size Input data format 
Error function or 

accuracy 

Our Deep Learning 

Method 

3D Patient Personalized 

Cardiovascular 

Hemodynamics  

1100 
High resolution 

flexible point cloud 

NMAE<6.5%, 

MRE<10% 

Itu's Machine Learning 

Approach1 
FFR Value 12,000 

Geometric 

parameters 

Accuracy= 

99.7% 

Lee's Adversarial and 

Convolutional Neural 

Networks2 

2D Vortex Flow 500000 
Grid cells with 

fixed number 
32.8%<Error<1% 

Guo's Deconvolution 

Network3 

3D Regular and Simple 

Flow 
400000 

Low resolution 

pixels with fixed 

number 

MRE<3% 

Liang's DNNs4  
3D Ideal Thoracic Aorta 

Hemodynamics 
729 

Low resolution 

meshes with fixed 

number 

NMAE<6.5% 

 35 

Supplementary Method 36 

Model geometric parameters modification 37 

In order to visually show the difference between the models in the training set and the test set, and 38 

to clearly show the modification of the model's geometric structure, we selected a model from the 39 

training set and the test set, and showed the modification results of its geometric structure, as 40 

shown in Supplementary Fig. 2. 41 
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 43 

Supplementary Fig. 2 Examples of models in the training and test sets. Examples of models in 44 

the training and test sets. i) and iii) is the original model. ii) and iv) is the corresponding modified 45 

model. a and f: overall model; b and g: ascending aorta and aortic arch angulation; c and h: 46 
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descending aorta; d and i: coronary artery details (LAD and LCX); e and j: stenosis. All model 47 

modifications follow the provisions of Table 3 in the main text. 48 

Simulated operation of CABG and CFD simulation 49 
Among these patient-specific models, except for a few patients who had undergone CABG surgery, 50 

the vast majority of patient data had not undergone CABG surgery. Therefore, virtual CABG 51 

bypass surgery was performed on these models. According to the recommendations of existing 52 

patients and doctors, we chose the left internal mammary artery (LIMA) as the bypass graft. The 53 

diameter of the blood vessel was 2 mm following the advice of the doctors. In Supplementary Fig. 54 

3, we chose one of the models as an example to show before and after CABG surgery. The 55 

operation of virtual surgery was done using the commercially available software Mimics 56 

(Materialize NV, BE). Before generating the computational models, the reconstructed 3D models 57 

needed to be preprocessed, including surface smoothing and inlet/outlets processing by using the 58 

commercially available software Geomagic Wrap (3D system, US). After model preprocessing, 59 

tetrahedron-dominant mesh computational models were generated, with maximal sizes of 1.6 mm 60 

for the element, for each patient model before and after the CABG procedure using ANSYS-61 

Meshing (ANSYS, Canonsburg, USA). To better capture the flow behaviors, close to the vascular 62 

wall, five prismatic boundary layers were generated with a growing ratio of the prism thickness at 63 

1.2 mm5-8.  64 

The vascular wall was assumed to be rigid and a non-slip condition was assigned at all boundaries. 65 

We assumed the blood to be an incompressible Newtonian fluid, with density and viscosity of 66 

1050 kg/m3 and 0.0035 Pa s, respectively, and performed steady flow simulations using solver 67 

ANSYS-CFX (ANSYS, Canonsburg, USA). Since the FFR calculation needed to be in the state 68 

of maximum congestion, a peak wave velocity of 1.125 m/s was imposed as the boundary 69 

condition at the inlet9. And for the outlets, a fixed static reference zero pressure was applied. The 70 
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convergence criteria for simulations were chosen as 10-4 (Root Mean Square) for the normalized 71 

continuity, pressure, and velocity residuals. Upon convergence of each simulation, we extracted 72 

four groups of results including preoperative velocity fields and pressure distributions and 73 

postoperative velocity fields and pressure distributions and saved them as a CSV file, for further 74 

processing and construction of the dataset to be used in deep learning. 75 

 76 

 77 

Supplementary Fig. 3 Simulated operation of CABG. 78 

Mesh Independence Test 79 
In this study, the number of nodes ranged from 2.83 to 3.01 million in total across different cases. 80 

In order to reduce errors and make the simulation results stable and reliable, a mesh independence 81 

test of computational grids was performed. As shown in Supplementary Fig. 4, the relationship 82 

between the mass-flow of LIMA and the number of grids. When the number of meshes exceeds 83 

one million, the calculation results can be considered to be stable. Therefore, it is confirmed that 84 

the number of grids set in this study was appropriate. 85 
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 86 

Supplementary Fig. 4 Mesh independence test. It confirms that the mesh setting of this study is 87 

suitable. 88 
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