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Supplementary Note 1: Further examples of tunnel-enabled photoresponse

Supplementary Figure 1 shows further examples of our tunnel detector responsivity Rv as a function of Vtg recorded
in response to f = 0.13 THz radiation for varying Vbg. For all Vbg 6= 0, Rv(Vtg) dependencies are highly asymmetric.
With increasing Vbg, Rv is increasing and for Vbg = 2.6 V reaches 4.5 kV/W overcoming zero Vbg value by more than
an order of magnitude. A similar behaviour was observed if the polarity of Vbg is reversed (blue curve in Supplementary
Figure 1). These observations highlights a drastic difference between the field-effect-enabled intraband (black curve)
rectification and its interband tunneling counterpart (all other curves).

Supplementary Figure 1. Tunneling-enabled THz detection. Rv as a function of Vtg for given Vbg recorded in response
to 0.13 THz radiation. T = 10 K.
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Supplementary Note 2: Frequency dependence of tunnelling-enabled photoresponse

We have also studied the response of our detectors at higher frequency and found consistent tunnelling-enabled
highly-asymmetric behaviour when the top and bottom gates are biased with opposite polarity. Examples of Rv(Vtg)
are shown in Supplementary Figure 2a for two characteristic f from sub-THz and THz domains. Note, due to the
limitation of our measurements (See Methods) we only present a relative comparison between Rv(Vtg) recorded at
f = 0.13 THz and f = 2 THz. However, our modelling which provides remarkable agreement with experiment at
f = 0.13 THz predicts that TFET detectors are expected to perform equivalently well at both sub-THz and THz
frequencies as we show in Supplementary Figures 2b,c.

Supplementary Figure 2. Frequency dependence of tunnelling-assisted THz detection. a Rv as a function of Vtg

for Vbg = 1.2 V obtained under illumination with THz radiation of given frequency. The data normalized to their maximum
value. Peaks in Rv correspond to the excitation of plasmon-resonances in the detector channelS1. b, c Theoretical Rv(Vtg)
dependencies for given f : as-calculated (c) and normalized to their maximum value (b).
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Supplementary Note 3: Comparison with existing technology

In Supplementary Figure 3 we compare the performance of our tunnel device with other THz detectors and recti-
fiers; some of them are available on the market (underlined labels). To this end, we plot their noise equivalent power
(NEP) versus temperature, T , at which they operate. The comparison is made for the frequency range 0.1 − 2 THz
and for the NEP calculated via extrinsic responsivity, i.e. which takes into account the full power delivered to the
device. The devices of different types are compared: cooled superconducting bolometersS2,S3, cooled semiconducting
bolometersS4–S6, kinetic inductance sensorsS7,S8, cooled quantum dot devicesS9,S10, as well as transistor-based detec-
torsS1,S11–S18, Schottky diodesS19–S21, and heterostructure backward diodesS22,S23. One of the primary tasks for the
next-generation THz technology is to produce low-NEP sensors operating at elevated temperatures as indicated by
the yellow shaded area in Supplementary Figure 3. However, whereas the cooled devices feature exceptionally low
NEP, room-T devices are usually characterized by much higher NEP. Our BLG TFET offers a compromise to this
enquiry: it features relatively low NEP and operates above liquid helium T . Furthermore, our model suggests that
TFETs with optimized parameters can feature even lower NEP at room temperature (magenta star in Supplementary
Figure 3) and thus offer a route to the next-generation THz technology. The details are given in Supplementary Note
5.

Supplementary Figure 3. Overview of THz detectors. NEP for THz detectors of various types plotted against the
temperature at which they operate. Vertical error bars represent the spread of the detectors’ performance over the frequency
range 0.1− 2 THz. Horizontal error bars show the temperature range at which the detectors operate. Underlined labels denote
commercial technology.
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Supplementary Note 4: Theoretical model of a BLG TFET photodetector

Supplementary Note 4.1: Modelling of tunneling-assisted THz detection

S

s d

D

0 xL = 2.8 µm

I←s Is←Is← I←D = 0

G

V

VGS

VDS

dt = 80 nm

db = 50 nm

κt = 3.76

κb = 3.76

V

...

...

...

...

S s d D

(a)

(b)

G

Supplementary Figure 4. Equivalent circuit. a, Detailed equivalent circuit of a TFET-based detector. Different colors
show the origins of different contributions to responsivity: nonlinear current-voltage characteristic of the tunnel junction
between source and channel (red), its gate-controlled conductance (represented as an equivalent current source, green), and the
gate-controlled channel conductance (represented as a distributed current source, blue). b, Schematic view of our photodetector
showing some of the notation used throughout the Supplementary Information.

In this section, we derive a general expression for the responsivity of a TFET. The relevant circuit is shown in
Supplementary Figure 4a. We will treat the TFET as if it was single-gated, since the bottom gate is held at a
constant potential and its only function is to open a bandgap in BLG.

A TFET consists of two rectification units: a tunnel junction between the source and the channel, and the channel
itself. (The drain tunnel junction is effectively excluded from the circuit by the zero drain current assumption, at
least if the junction is too short to accommodate any spatial inhomogenities of the current.)

When a small ac voltage Vin cos(ωt) is applied between the gate and source, it induces voltages and currents in
different parts of the detector, having the general form (δV, δI)(t) = Re

(
(V, I)(1)e−iωt

)
+(V, I)(2) + ... ·e±2iωt+o(V 2

in),
where we are interested in the first-order and dc second-order components.

We use a non-distributed model for the source junction, meaning current can flow through the junction only in
presence of a nonzero voltage drop across the junction and not solely under the action of ac gate voltage. Keeping
this is mind, the second-order expansion of its current-voltage characteristic I←s(VsS , VGS) reads

I(1)
←s = GS(ω)V

(1)
sS ,

I(2)
←s = GS,dc

V (2)
sS −RTJ,i

∣∣∣V (1)
sS

∣∣∣2
2

−RTG,i

Re
(
V

(1)
GS V

(1)∗
sS

)
2

 , (S1)

whereGS,dc andGS(ω) are the dc and ac conductance of the junction, RTJ,i is the intrinsic tunnel junction responsivity,
and RTG,i is the intrinsic “tunnel-gate” responsivity.

When writing similar expressions for the current Is← flowing to the source from the channel, we make advantage

of the linear dependence between V
(1)
ds and V

(1)
Gs arising from zero drain current condition, and use only V

(1)
Gs and V

(2)
ds

as independent variables (remember that dc gate voltage V
(2)
Gs does not produce any current by itself):
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I(1)
s← = G̃ch(ω)V

(1)
Gs ,

I(2)
s← = Gch,dc

V (2)
ds −Rch,i

∣∣∣V (1)
Gs

∣∣∣2
2

 , (S2)

where Gch,dc is the dc channel conductance, G̃ch(ω) ≡ (∂Is←(ω)/∂VGs(ω)) |I←d=0 is the ac channel conductance
measured between source and gate, and Rch,i is the intrinsic channel responsivity.

From continuity of current, I
(1)
←s = I

(1)
s← and I

(2)
←s = I

(2)
s← = I

(2)
←D = 0, we find that the ac voltage V

(1)
GS ≡ Vin applied

between the gate and source is divided into voltage V
(1)
sS at the source tunnel junction and voltage V

(1)
Gs between the

gate and the beginning of the channel:

V
(1)
sS =

G̃ch(ω)

GS(ω) + G̃ch(ω)
Vin,

V
(1)
Gs =

GS(ω)

GS(ω) + G̃ch(ω)
Vin,

(S3)

which are subsequently rectified by the tunnel junction and the channel:

V
(2)
sS = RTJ,i

∣∣∣V (1)
sS

∣∣∣2
2

+RTG,i

Re
(
V

(1)
GS V

(1)∗
sS

)
2

,

V
(2)
ds = Rch,i

∣∣∣V (1)
Gs

∣∣∣2
2

.
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These rectified voltages sum together to yield the output voltage V
(2)
DS ≡ Vout of the photodetector (remember that

the voltage at the drain junction V
(2)
Dd = 0 because of zero drain current). Total responsivity of the TFET is given by

the sum of tunnel junction responsivity, coming from the nonlinear current-voltage characteristic of the source tunnel
junction, tunnel-gate responsivity, coming from resistive self-mixing in the gate-controlled source tunnel junction, and
channel responsivity, coming from resistive self-mixing in the channel:

RTFET ≡
Vout

V 2
in/2

≡
V

(2)
DS(

V
(1)
GS

)2

/2
= RTJ +RTG +Rch,

RTJ ≡

∣∣∣∣∣ G̃ch(ω)

GS(ω) + G̃ch(ω)

∣∣∣∣∣
2

RTJ,i,

RTG ≡ Re
G̃ch(ω)

GS(ω) + G̃ch(ω)
RTG,i,

Rch ≡
∣∣∣∣ GS(ω)

GS(ω) + G̃ch(ω)

∣∣∣∣2Rch,i.

(S5)

We will neglect the frequency dependence of the tunnel junction current-voltage characteristic. With this assump-
tion, intrinsic tunnel junction and tunnel-gate responsivities are given by the logarithmic derivatives of the junction
conductance with respect to appropriate voltages:

RTJ,i = −1

2

(
∂ lnGS
∂VsS

)
VGS

,

RTG,i = −
(
∂ lnGS
∂VGS

)
VsS

.

(S6)
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Due to the distributed nature of the channel, its current-voltage characteristics are inherently frequency-dependent.
Nevertheless, the intrinsic channel responsivity can also be expressed in terms of the logarithmic derivative of its dc
conductance, see Supplementary Note 4.6:

Rch,i ≈ −
1

2

db
dt + db

(
∂ lnGch,dc

∂VGs

)
Vds=0

. (S7)

A similar expression was originally derived in Ref. S24 for a single-gated FET. The extra prefactor represents the gate
voltage division in a double-gated structure with top and bottom gate dielectrics of thicknesses dt, db.

TFET responsivity (S5) describes its response to the ac voltage at the gate, while the experimentally measured
photodetector responsivity Rv describes response to the power Pin incident on the antenna. The relation between
these responsivities can be obtained by considering the complete circuit of the photodetector, including the antenna
radiation resistance Zrad(ω) (Supplementary Figure 4a). Assuming the incident radiation is focused within the

antenna’s effective aperture, the incident power can be converted into the effective voltage Vant =
√

8Zrad(ω)Pin
S25,

which is divided between Zrad(ω) and the TFET gate-to-source ac impedance

ZGS(ω) = G−1
S + G̃−1

ch (ω), (S8)

yielding

Rv ≡
Vout

Pin
= 8Zrad(ω)

Vout

|Vant|2
= 4Zrad(ω)

∣∣∣∣ ZGS(ω)

ZGS(ω) + Zrad(ω)

∣∣∣∣2RTFET. (S9)

Supplementary Note 4.2: Bandstructure and charge density in bilayer graphene

BLG in external electric field is described by the HamiltonianS26,S27

Ĥ (k) =

 −eϕt ~v0(±kx − iky) 0 0
~v0(±kx + iky) −eϕt γ1 0

0 γ1 −eϕb ~v0(±kx − iky)
0 0 ~v0(±kx + iky) −eϕb

 , (S10)

in the vicinity of K,K ′ points of the Brillouin zone, where ϕt, ϕb are the electric potentials at top and bottom
graphene layers, γ1 = 0.38 eV, v0 = 106 m/s, and the signs depend on the valley.

The corresponding conduction and valence band dispersions are

Ec,v(k) = −eϕ+ ± E(k),

E(k) =

√√√√√E2
g

4
+

√γ2
1 − E2

g

4
+ (~v0k)

2 − γ2
1

2
√
γ2

1 − E2
g

2

(S11)

with a bandgap

Eg (ϕ−) =
γ1√

γ2
1 + e2ϕ2

−

|eϕ−| , (S12)

where ϕ+ ≡ (ϕt + ϕb)/2 is the average potential of graphene layers, and ϕ− ≡ ϕt − ϕb is the interlayer voltage. The
bands have a “Mexican hat” shape with circular extrema around the corners of the Brillouin zone (Supplementary
Figure 5).

The inverse dispersion relation is

k±(E − eϕ+) =
1

~v0

√√√√E2 +
e2ϕ2
−

4
±

√(
γ2

1 + e2ϕ2
−
)(

E2 −
E2
g

4

)
. (S13)

It is double-valued within the “Mexican hat” region, Eg/2 < |E| ≤ |eϕ−|, while only a single solution k+ remains
above the hat, |E| > |eϕ−|.
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Supplementary Figure 5. Bilayer graphene bandstructure. Bandstructure of biased bilayer graphene described by
Hamiltonian (S10) (only the conduction and valence bands are shown). Circular band extrema are highlighted in yellow.

Given the dispersion relation (S11), we can express the charge density ρ+ ≡ ρt + ρb in BLG at zero temperature
through the chemical potential measured from the midgap, µ̃ ≡ µ+ eϕ+, and vice versa:

ρ+ (µ̃) =


0 if |µ̃| < Eg

2 ,

−ek
2
F

π sgn µ̃, kF = k+ (µ̃) if |µ̃| ≥ |eϕ−|2 ,

−ek
2
F+−k

2
F−

π sgn µ̃, kF± = k± (µ̃) if
Eg

2 < |µ̃| < |eϕ−|
2 ,

µ̃ (ρ+) =


−E (kF ) sgn ρ+, kF =

√
π|ρ+|
e if |ρ+| ≥ ρhat,

−

√
E2

g

4 + 1

4(γ2
1+e2ϕ2

−)

(
~v0

√
π|ρ+|
e

)4

sgn ρ+ if 0 < |ρ+| < ρhat

(S14)

where ρhat = (e/π)(eϕ−/~v0)2 is the charge density corresponding to µ̃ = ±eϕ−/2 (the Fermi level positioned at the
tip of the “Mexican hat”). We have taken into account the double valley degeneracy in BLG.

Supplementary Note 4.3: Electrostatics of double-gated bilayer graphene

To calculate the band diagram of our TFET, we seek approximate analytical solution of electrostatic equations for
double-gated BLG.

Let Vtg, Vbg be the potentials of the top and bottom gate, dt, db the thicknesses of dielectric layers separating BLG
from the gates, κt, κb the dielectric constants of these layers, and d the interlayer distance in BLG. Then, the total
charge density ρ+ ≡ ρt + ρb and interlayer charge transfer ρ− ≡ (ρt − ρb)/2 are related to the electric potentials ϕt,
ϕb of top and bottom graphene layers by

ρ+ = −Ct (Vtg − ϕt)− Cb (Vbg − ϕb) ,

ρ− = −Ct (Vtg − ϕt)
2

+
Cb (Vbg − ϕb)

2
+ Ccl

− (ϕt − ϕb) ,
(S15)

where we introduced capacitances per unit area Ccl
− ≡ ε0/d, Ct ≡ κtε0/dt, Cb ≡ κbε0/db.

The potentials of graphene layers stay close to the Fermi level (compared to the gate voltages), and we can substitute
Vt/b −ϕt/b → Vt/b + µ/e in the second equation. We cannot do the same in the first equation, otherwise it would not
work properly in the undoped case. Instead, in the first equation we approximate ϕt ≈ ϕb ≈ ϕ+ to decouple ρ+, ϕ+

and ρ−, ϕ−:



S8

ϕ- = 10 meV
ϕ- = 30 meV
ϕ- = 100 meV

ϕ- = 10 meV
ϕ- = 30 meV
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T = 0 K T = 77 K

Supplementary Figure 6. Accuracy of the constant interlayer quantum capacitance approximation. Ratio
between the interlayer charge transfer calculated using a constant interlayer quantum capacitance Cq

− = 3e2γ1/(4π~2v20) and

the exact interlayer charge transfer ρ− calculated from Hamiltonian (S10) as described inS26. Left panel: zero temperature,
right panel: T = 77 K.

ρ+ ≈ −CtVtg − CbVbg + (Ct + Cb)ϕ+,

ρ− = −Ct (Vtg + µ/e)

2
+
Cb (Vbg + µ/e)

2
+ Ccl

−ϕ−.
(S16)

The introduced approximations essentially amount to a minor shift of gate voltages, by the order of magnitude equal
to ϕt, ϕb.

These equations have to be supplemented with explicit expressions for ρ±(µ̃, ϕ−) in BLG (µ̃ ≡ µ+eϕ+ is the chemical
potential with respect to the midgap). To facilitate analytical treatment, we use zero-temperature expression for the
total charge density (S14) and a constant quantum capacitance model for the interlayer charge transfer:

ρ+ =

{
0 if |µ̃| ≤ Eg(ϕ−)

2 ,

ρ+ (µ̃) if |µ̃| > Eg(ϕ−)
2 ,

ρ− ≈ −Cq−ϕ−.
(S17)

The constant interlayer quantum capacitance Cq− = 3e2γ1/(4π~2v2
0) approximates the interlayer charge transfer in

BLG over a wide range of bangaps and doping levels within 50% accuracy (see Supplementary Figure 6).
Now, the equation for ρ− becomes trivial to solve, while the equation for ρ+ requires some additional simplifications

to allow analytical solution. We consider two opposite cases: (1) Fermi level lies within the bandgap, (2) Fermi level
lies outside the gap. In the first case, ρ+ = 0 at zero temperature, and ϕ+ is readily obtained from (S16). In the
second case, we can pick some initial guess for ϕ+, find ρ+ from (S16), and find a better approximation for ϕ+ from
(S17). Since the quantum capacitance Cq+ ∼ ε0/d is much larger than Ct + Cb, the precise value of the initial guess
is unimportant, and we initially assume the Fermi level is pinned at the band edge, µ̃ = ±Eg/2 (this choice avoids
spurious discontinuities in ϕ+(Vtg, Vbg)).

The overall procedure is summarized in the following equations:

ϕ− ≈
Ct (Vtg + µ/e)− Cb (Vbg + µ/e)

2C−
, C− ≡ Ccl

− + Cq−,

Eg = Eg (ϕ−) ,

µ̃0 = e
Ct (Vtg + µ/e) + Cb (Vbg + µ/e)

Ct + Cb
,

µ̃ ≈

{
µ̃0 if |µ̃0| ≤ Eg

2 ,

µ̃ (ρ+) , ρ+ = −Ct+Cb

e

(
µ̃0 − Eg

2 sgn µ̃0

)
if |µ̃0| > Eg

2 ,

(S18)
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where Eg (ϕ−), µ̃ (ρ+) are given by (S12) and (S14).
In our calculations, we used dt = 80 nm, db = 50 nm, d = 0.335 nm, and κt = κb = 3.76 (out-of-plane static

dielectric constant of hexagonal boron nitrideS28).
We use this parallel-plate capacitor model to find the electric potentials ϕ+S , ϕ+C and interlayer voltages ϕ−S ,

ϕ−C in the source region and in the channel in absence of ac signal, and also to calculate the channel response to an
ac signal, see Supplementary Note 4.6. In the source region, there is only the bottom gate, while the role of a top
gate is played by infinity, held at zero potential. This means Ct = 0, and the top gate disappears from the equations.

Supplementary Note 4.4: Tunneling field

In a TFET based on double-gated BLG, a tunnel juntion is formed under the top gate edge, where the parallel-
plate capacitor model of Supplementary Note 4.3 cannot be applied, and an accurate calculation of the tunneling field
requires solving a two-dimensional electrostatic problem. This problem can be solved analytically in the absence of
BLGS29, and the answer is

Ẽx =
1− ϕ̃

[1 + ỹ (1− ϕ̃) cot ỹϕ̃]
2

+ ỹ2 (1− ϕ̃)
2 , (S19)

where

Ẽx ≡
Exdtb

π [ϕ (x = −∞)− ϕ (x = +∞)]
, ỹ ≡ πy

dtb
, ϕ̃ ≡ ϕ− ϕ (x = −∞)

ϕ (x = +∞)− ϕ (x = −∞)
(S20)

are the dimensionless field in the plane of BLG, dimensionless position of BLG with respect to the gates (ỹ = 0 at
the bottom gate and π at the top gate), and dimensionless electric potential at the point where the field is calculated.
dtb = dt + db + d is the distance between gates, ϕ (x = −∞) = Vbg and ϕ (x = +∞) = Vbg + (y/dtb)(Vtg − Vbg) are
the electric potential in the source region and in the channel. The top and bottom dielectrics are assumed to be the
same, as in our experiment.

Across a wide range of ỹ, Ẽx is close to its low-ỹ limit

top gate

bo�om gate

BLG
0

dt

y

x

ϕ+S

ϕ+C

BLG poten�al

(b)

(a)

Supplementary Figure 7. Electric field in the tunnel junction. a Color map showing the distribution of electric
potential near the source-channel junction. Black lines: equipotential lines and field lines. Dashed red line: fictitious conductor
introduced to obtain the correct potential in the source and the channel without explicitly considering screening by BLG.
Potential above the fictitious conductor was calculated as prescribed in Ref. S29, potential below the fictitious conductor was
calculated in the parallel-plate capacitor model. b Electric potential ϕ+(x) inside BLG.
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Ẽx ≈ ϕ̃2 (1− ϕ̃) . (S21)

In the presence of BLG, exact calculation of the tunneling field would require solving the two-dimensional elec-
trostatic problem numerically. To avoid this, we notice that adding BLG into the system reduces ϕ (x = +∞) −
ϕ (x = −∞) from several volts to tens or hundreds of millivolts. This suggests to approximate the screening by BLG
via introducing a fictitious perfect conductor placed very close to the BLG. The potential of this conductor and its
distance from the BLG are chosen so as to reproduce the correct potentials in the source and channel regions of BLG.

The resulting electric potential distribution in the system is shown in Supplementary Figure 7. Introducing the
fictitious conductor allows us to keep Eq. (S21) for the electric field in BLG, if dtb is replaced with dt in the definition
of (Eq. (S20)), and ϕ (x = ±∞) are calculated in the parallel-plate capacitor model described in Supplementary Note
4.3.

Knowing the distribution of electric potential in BLG, we can calculate the tunnel current though the source-
channel junction. Before we actually do this, we introduce two additional simplifications. First, we neglect field
variations inside the barrier and assume tunneling through uniform field. This field is calculated at the point where
the tunneling electron crosses the midgap (E + eϕ = 0, where E is the electron energy). Second, instead of using
different values of the tunneling field for electrons of different energies, we use a single value calculated for energy
E = (Etun,min + Etun,max)/2. Etun,min and Etun,max are the boundaries of the energy region where tunneling is
possible. Assuming zero temperature and both quasi-Femi levels µS , µC in the source and the channel (near its
beginning) lying within the band overlap region, we can write Etun,min = min {µS , µC} and Etun,max = max {µS , µC}.
(Remember that we are interested in the small-signal case, when the quasi-Fermi levels are close to each other and
either lie both inside the band overlap region, or both outside. In the latter case, tunneling is impossible.)

To summarize, we use the following expression for the tunneling field:

Ftun ≈
π |ϕ+C − ϕ+,tun|

dt

(
ϕ+,tun − ϕ+S

ϕ+C − ϕ+S

)2

, (S22)

where ϕ+S , ϕ+C are calculated as described in Supplementary Note 4.3, and −eϕ+,tun = (µS + µC) /2.

Supplementary Note 4.5: Responsivity of the source-channel junction

A zero-temperature ballistic expression for the tunnel current through the source-channel junction is

I←s,tun = 8eW

∫ µS

µC

dE

2π~

∫ k⊥max(E)

−k⊥max(E)

dk⊥
2π
D (E, k⊥) (S23)

if µS > µC (the opposite case is treated similarly). Here, W = 6.2 µm is the channel width, D (E, k⊥) is the barrier
transparency, the wavevector integral is taken up to the maximum possible transverse wavevector k⊥max(E) that an
electron with energy E can have both in the source and in the channel, and the factor of 8 results from two spin
projections, two valleys, and two tunneling paths in the imaginary k-space (interference between themS30 is neglected).

An analytical approximation can be derived by expanding the WKB barrier transparency in powers of k⊥ up to
second order and extending the wavevector integration up to infinityS31:

I←s,tun ≈
2e

π3/2~
Dtunk⊥tunW (µS − µC) ,

Dtun ≈ exp

−π
√
γ1E3

g,tun

4~v0eFtun

 ,

k⊥tun ≈

√
4

π

√
γ1

Eg,tun

eFtun

~v0
.

(S24)

We assume that the transition between the source and the channel has the same shape for both the interlayer voltage
and the electric potential and, therefore, the tunnel current flows through the bandgap Eg,tun ≈ |ϕ−,tun|, where

ϕ−,tun − ϕ−S
ϕ−C − ϕ−S

=
ϕ+,tun − ϕ+S

ϕ+C − ϕ+S
. (S25)
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At experimental conditions, the bandgap does not exceed 60 meV, so we use Eg ≈ |ϕ−| instead of a more accurate
expression (S12).

Expressions (S23), (S24) require that the chemical potentials µS , µC are taken at the points where the deviations
of the carrier distributions from the Fermi-Dirac form are negligible. Since we consider the tunnel junction connected
in series with the channel, we need an expression for the tunnel current in terms of the voltage directly at the junction,
otherwise a certain part of the channel would be counted twice. This can be achieved by introducing a 1 − Dtun

correction in the denominator:

I←s,tun ≈
2e

π3/2~
Dtun

1−Dtun
k⊥tunW (µS − µC) , (S26)

similarly to the one-dimensional Landauer formula containing D/(1−D)S32,S33.
The idealistic model that led to Eq. (S26) gives very small barrier transparency and huge tunnel resistance, orders

of magnitude larger than in our experiment. This suggests there is some mechanism affecting the junction resistance,
most likely electron-hole puddles, that create field fluctuations and may increase the average tunneling field. We take
this effect into account phenomenologically, introducing a single fitting parameter Ffluct, which represents the average
fluctuating field and is added to the tunneling field (S22) calculated without disorder:

I←s,tun ≈
2e

π3/2~
Dtun

1−Dtun
k⊥tunW (µS − µC) ,

Dtun ≈ exp

− π
√
γ1E3

g,tun

4~v0e (Ftun + Ffluct)

 ,

k⊥tun ≈

√
4

π

√
γ1

Eg,tun

e (Ftun + Ffluct)

~v0
.

(S27)

This is the final expression for the tunnel current that we used in our calculations. The value Ffluct = 8 kV/cm was
found by fitting the experimental resistance in the tunnel regime and simultaneously gave responsivity in reasonable
agreement with the experiment.

Assuming grounded source, µS = 0, we identify µC with −eVsS and Vtg with VGS from Supplementary Note 4.1.
Now, we can calculate the junction conductance as GS = −e∂I←s,tun/∂µC and the intrinsic tunnel junction and
tunnel-gate responsivities through (S6). When the doping types of source and channel are the same, or channel is
undoped, there is no tunnel junction. In this case, we set the junction conductance to infinity and tunnel junction
and tunnel-gate responsivities to zero.

Supplementary Note 4.6: Responsivity of a long double-gated channel

In this section, we consider resistive self-mixing in a longS34 double-gated channel and find its responsivity. Our
derivation closely follows that of Ref. S24, but extends it by (1) allowing the carrier density to depend separately on
the top gate voltage and the Fermi level (because ρ+ = ρ+ (µ+ eVtg) is no longer true in the presence of a bottom
gate), (2) using frequency-dependent channel conductivity.

The basic assumptions of our model are that the dc channel conductivity σdc(x, t) is instantaneously related to
the local charge density ρ+(x, t), which, in turn, is related (also locally and instantaneously) to the top gate voltage
Vtg(t) and the Fermi level µ(x, t). Response to ac perturbations is described within the Drude model. Together with
the charge conservation, we get a system of four equations:

ρ+(x, t) = ρ+ (Vtg(t), µ(x, t)) ,

∂J←(x, t)

∂t
= −1

e

σdc(x, t)

τ

∂µ(x, t)

∂x
− J←(x, t)

τ
,

σdc(x, t) = σdc [ρ+(x, t)] ,

∂ρ+(x, t)

∂t
=
∂J←(x, t)

∂x
,

(S28)

with the boundary conditions of grounded source and zero drain current:

µ(0, t) = 0, J←(+∞, t) = 0. (S29)
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The top gate voltage consists of a constant bias and an ac signal, Vtg(t) = V
(0)
tg + Vin cos (ωt). (Hereafter, quantities

in the absence of the ac signal will be denoted by the (0) superscript, while next orders in Vin will be denoted by (1)

and (2), as in Supplementary Note 4.1.)
To the first order in Vin, we obtain

ρ
(1)
+ =

∂ρ+

∂Vtg
Vin +

∂ρ+

∂µ
µ(1),

J (1)
← = −1

e

σ
(0)
dc

1− iωτ
∂µ(1)

∂x
,

σ
(1)
dc =

dσdc

dρ+
ρ

(1)
+ ,

−iωρ(1)
+ =

∂J (1)
←
∂x

.

(S30)

Using the boundary conditions (S29), we get the following solution

µ(1)(x) = −
(
∂ρ+

∂µ

)−1
∂ρ+

∂Vtg
Vin

[
1− eiqplx

]
,

ρ
(1)
+ (x) =

∂ρ+

∂Vtg
Vine

iqplx,

J (1)
← (x) = −1

e

σ
(0)
dc

1− iωτ
iqpl

(
∂ρ+

∂µ

)−1
∂ρ+

∂Vtg
Vine

iqplx,

qpl ≡
√
iω(1− iωτ)

σ
(0)
dc

∂ρ+

∂ (−µ/e)
.

(S31)

Having found the first-order current, we can write the channel “source-gate” conductance (W is the channel width):

G̃ch(ω) ≡ J (1)
← (0)W

Vin
= −

σ
(0)
dc

1− iωτ
iqplW

(
∂ (−µ/e)
∂Vtg

)
ρ+

. (S32)

(Note that we use exp(−iωt) for the time dependence of harmonic signals instead of exp(+jωt) convention prevalent
in electrical engineering, resulting in reactances having unconventional signs.)

The equation on the second order dc current results from the zero dc drain current condition,

J (2)
← = −1

e
σ

(0)
dc

∂µ(2)

∂x
− 1

2e
Re

(
σ

(1)
dc

∂µ(1)∗

∂x

)
= 0, (S33)

yielding the intrinsic channel responsivity

Rch,i ≡
Vout

|Vin|2 /2
≡
[
µ(2)(+∞)− µ(2)(0)

]
/(−e)

|Vin|2 /2

= −1

2

(
∂ lnσdc

∂Vtg

)
µ

(
∂ (−µ/e)
∂Vtg

)
ρ+

.

(S34)

The expressions (S32), (S34), and the definition of qpl (S31) differ from the results of Ref. S24 by two extra factors.
The first factor (∂ (−µ/e) /∂Vtg)ρ+ is unity in a single-gated FET and reduces to approximately Ct/(Ct + Cb) =

d̃b/(d̃t+ d̃b) in the presence of a bottom gate. The second factor 1/(1− iωτ) appears due to the frequency dependence
of conductivity.
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Calculations show that the difference between (∂ (−µ/e) /∂Vtg)ρ+ and d̃b/(d̃t + d̃b) is minor and can be neglected

within the accuracy of our model, so we used the following expressions for the channel “source-gate” conductance and
intrinsic channel responsivity:

G̃ch(ω) = −
σ

(0)
dc

1− iωτ
iqplW

d̃b

d̃t + d̃b
,

Rch,i = −1

2

(
∂ lnσdc

∂Vtg

)
µ

d̃b

d̃t + d̃b
,

qpl ≡
√
iω(1− iωτ)

σ
(0)
dc

∂ρ+

∂ (−µ/e)
.

(S35)

The derivatives in (S35) were evaluated with the help of the approximate electrostatic model presented in Supple-
mentary Note 4.3 and the constant-mobility approximation for the channel dc conductivity:

σ
(0)
dc = |ρ+|µBLG + σresidual(Vbg), (S36)

where we take µBLG = 105 cm2/(V·s) (according to measurements performed on similar devicesS1). The transport
relaxation time τ was taken to be 2 ps according to the relation µBLG = eτ/m∗, where m∗ = γ1/2v

2
0 (this is the

carrier effective mass in the band extrema of gapless BLG; in gapped BLG band dispersion is similar to the gapless
case except in close vicinity of the band edges, so we neglect the bandgap dependence of m∗).

The residual conductivity σresidual due to potential fluctuations in the channel was obtained by fitting the following
formula to the experimental dc resistance at the channel neutrality point:

L

W
σ−1

residual(Vbg) =
r∞V

2
bg + r0V

2
0

V 2
bg + V 2

0

. (S37)

The fitting procedure yielded r0 = 200 Ω, r∞ = 150 kΩ, V0 = 5.5 V.
Using the intrinsic channel responsivity and channel “source-gate” conductance, together with the intrinsic tunnel

junction and tunnel-gate responsivities and the tunnel junction conductance found in Supplementary Note 4.5, we
can obtain the total responsivity of our transistor through Eq. (S5) and convert it to the photodetector responsivity
through Eq. (S9).
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Supplementary Note 5: Performance limits of BLG TFET photodetectors

Vbg = 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0 V

Supplementary Figure 8. Responsivity of an ideal device. Calculated responsivity of our photodetector in absence of
electric potential fluctuations.

The theory described in the previous Supplementary Sections was used to calculate the theoretical responsivity of
our photodetector, which is shown in Fig. 4 of the main text. The detector responsivity in our theory is limited
by the electric potential fluctuations and could be substantially improved in devices with reduced density of charged
impurities. Supplementary Figure 8 shows the theoretical responsivity of our photodetector in absence of potential
fluctuations (that is, with Ffluct = 0), which reaches hundreds kV/W.

Another way to increase detector responsivity is to exploit large nonlinearity of the tunnel junction at small values
of band overlap (when the tunnel current is about to be switched off). This requires that the conduction band edge
in the source region is simultaneously aligned with the valence band edge in the channel (or vice versa) and with the
Fermi level.

Such kind of band alignment can be realized by introducing an additional gate above the source region and could
potentially result in a very large nonlinearity even at room temperatureS31, which would yield infinite responsivity in
the idealized model (no potential fluctuations, no leakage currents). This is easy to show by considering a power-law
dependence of the tunnel conductance on the gate voltage, GS ∝ (Vtg−Vth)α for Vtg > Vth and zero otherwise, which
results from the power-law dispersion k(E) near the band edges. Taking the logarithmic derivative of GS with respect
to the gate voltage, we obtain |RTG,i| = α/(Vtg − Vth) for nonzero α, or a δ-peak at Vtg = Vth for α = 0. A similar
argument holds for |RTJ,i|, since the band alignment is affected not only by the gate voltage, but also by the Fermi
level in the channel.

In practice, the maximum achievable responsivity will be limited by potential fluctuations and leakage currents.
Thermionic leakage hinders the performance of our detector at non-cryogenic temperatures because of the small
bandgap (< 60 meV) realized in our TFET, but this problem can be mitigated by increasing the bandgap, either by
applying a larger vertical field to BLG, or by using larger-gap materials, such as black phosphorus. Electric potential
fluctiations present a more fundamental issue and limit the logarithmic derivatives of the tunnel conductance to
∼ 1/Vfluct, where Vfluct is the magnitude of these fluctuations.

Assuming the total responsivity is dominated by RTJ (as in our photodetector) and using equations (S5), (S6), and
(S9), we can estimate the achievable room-temperature noise equivalent power as

NEPmin =

√
4r2ptkBT

|Rv|
=

√
4r2ptkBT

4Zrad

∣∣∣ ZGS

ZGS+Zrad

∣∣∣2 |RTFET|
≈

√
4rSkBT

4Zrad

(
rS

rS+Zrad

)2
1
2

∣∣∣∂ lnGS

∂VsS

∣∣∣
≈ 16

9

√
3Vfluct

√
kBT

Zrad
,

(S38)

where rS = G−1
S is the resistance of the source tunnel junction. To minimize the noise equivalent power, we assumed

rS = 3Zrad, the drain junction is absent, and the channel resistance is negligible.
Taking Zrad = 75 Ω and Vfluct = 1 mV (an experimentally achievable valueS35), we estimate that the room-

temperature noise equivalent power in TFET-based photodetectors can be made as low as 0.02 pW/
√

Hz (shown in
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Supplementary Figure 3).



S16

SUPPLEMENTARY REFERENCES

S1. Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nature Communications 9, 1–8 (2018).
S2. SCONTEL. http://www.scontel.ru.
S3. QMC Instruments Ltd. http://www.terahertz.co.uk.
S4. Infrared Laboratories, Inc. https://www.infraredlaboratories.com.
S5. Alsop, D. C., Inman, C., Lange, A. E. & Wilbanks, T. Design and construction of high-sensitivity, infrared bolometers

for operation at 300 mK. Applied Optics 31, 6610–6615 (1992).
S6. Tanaka, S. T. et al. 100-mK bolometric receiver for low-background astronomy. In Infrared Detectors and Instrumentation,

vol. 1946, 110–115 (International Society for Optics and Photonics, 1993).
S7. Hubmayr, J. et al. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors. Applied Physics

Letters 106, 073505 (2015).
S8. Monfardini, A. et al. A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope. The Astro-

physical Journal Supplement Series 194, 24 (2011).
S9. Kleinschmidt, P. et al. A highly sensitive detector for radiation in the terahertz region. IEEE Transactions On Instru-

mentation and Measurement 56, 463–467 (2007).
S10. Dai, J.-H., Lee, J.-H., Lin, Y.-L. & Lee, S.-C. In(Ga)As quantum rings for terahertz detectors. Japanese Journal of

Applied Physics 47, 2924 (2008).
S11. Terasense Group, Inc. https://terasense.com/.
S12. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials 11, 865–871

(2012).
S13. Generalov, A. A., Andersson, M. A., Yang, X., Vorobiev, A. & Stake, J. A 400-GHz graphene FET detector. IEEE

Transactions on Terahertz Science and Technology 7, 614–616 (2017).
S14. Bandurin, D. A. et al. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors.

Appl. Phys. Lett. 112, 141101 (2018).
S15. Bauer, M. et al. A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna.

IEEE Transactions on Terahertz Science and Technology 9, 430–444 (2019).
S16. Zagrajek, P. et al. Time resolution and dynamic range of field-effect transistor-based terahertz detectors. Journal of

Infrared, Millimeter, and Terahertz Waves 40, 703–719 (2019).
S17. FerrerasMayo, M., Cibiraite-Lukenskiene, D., Lisauskas, A., Grajal, J. & Krozer, V. Broadband sensing around 1 THz via

a novel biquad-antenna-coupled low-NEP detector in CMOS. IEEE Transactions on Terahertz Science and Technology
(2020).

S18. Qin, H. et al. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors.
Applied Physics Letters 110, 171109 (2017).

S19. Virginia Diodes, Inc. https://www.vadiodes.com/.
S20. ACST GmbH. https://acst.de/.
S21. Retzloff, S. A., Young, A. & Hesler, J. L. A 1.46 THz Schottky receiver at cryogenic temperatures. In 2014 39th

International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1–2 (IEEE, 2014).
S22. Zhang, Z., Rajavel, R., Deelman, P. & Fay, P. Sub-Micron Area Heterojunction Backward Diode Millimeter-Wave

Detectors With 0.18 pW/Hz1/2 Noise Equivalent Power. IEEE Microwave and Wireless Components Letters 21, 267–269
(2011).

S23. Rahman, S. M., Jiang, Z., Shams, M. I. B., Fay, P. & Liu, L. A G-band monolithically integrated quasi-optical zero-bias
detector based on heterostructure backward diodes using submicrometer airbridges. IEEE Transactions on Microwave
Theory and Techniques 66, 2010–2017 (2017).

S24. Sakowicz, M. et al. Terahertz responsivity of field effect transistors versus their static channel conductivity and loading
effects. Journal of Applied Physics 110, 054512 (2011).

S25. Sanchez, A., Davis Jr, C. F., Liu, K. C. & Javan, A. The MOM tunneling diode: Theoretical estimate of its performance
at microwave and infrared frequencies. Journal of Applied Physics 49, 5270–5277 (1978).

S26. Castro, E. V. et al. Electronic properties of a biased graphene bilayer. Journal of Physics: Condensed Matter 22, 175503
(2010).

S27. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Reports on Progress in Physics 76, 056503
(2013).

S28. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition
metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications 2, 1–7 (2018).

S29. Maxwell, J. C. A Treatise on Electricity and Magnetism, vol. 1 (Clarendon press, 1873). Art. 202.
S30. Nandkishore, R. & Levitov, L. Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions.

Proceedings of the National Academy of Sciences 108, 14021–14025 (2011).
S31. Alymov, G., Vyurkov, V., Ryzhii, V. & Svintsov, D. Abrupt current switching in graphene bilayer tunnel transistors

enabled by van Hove singularities. Scientific Reports 6, 24654 (2016).
S32. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge university press, 1997).
S33. Strictly speaking, a proper averaging of D (E, k⊥) is required in the two-dimensional case. This is not an easy task,

especially because we need not only linear, but also quadratic response, and the result will depend on the precise form of
scattering that drives the carrier distributions toward equilibrium. This would anyway exceed the accuracy of our model,

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-018-07848-w/MediaObjects/41467_2018_7848_MOESM1_ESM.pdf#page=1
http://www.scontel.ru/data/uploads/manuals/heb-configurations.pdf
http://www.terahertz.co.uk/qmc-instruments-ltd/thz-detector-systems/superconducting-bolometer
https://www.infraredlaboratories.com/uploads/IRLabs-Bolometers-WEB.pdf#page=3
https://doi.org/10.1364/AO.31.006610
https://doi.org/10.1364/AO.31.006610
https://doi.org/10.1117/12.158665
https://arxiv.org/pdf/1406.4010.pdf#page=3
https://iopscience.iop.org/article/10.1088/0067-0049/194/2/24/pdf
https://doi.org/10.1109/TIM.2007.891146
https://pdfs.semanticscholar.org/d34c/361ae665fc4ad226ac75f6e2d950764623bf.pdf#page=2
https://terasense.com/products/sub-thz-imaging-cameras/
https://arxiv.org/pdf/1203.3232.pdf#page=4
https://ieeexplore.ieee.org/ielx7/5503871/8036332/07981343.pdf#page=3
https://arxiv.org/pdf/1712.02144.pdf#page=7
https://ieeexplore.ieee.org/ielx7/5503871/8752102/08734725.pdf#page=8
https://arxiv.org/pdf/1905.08602.pdf#page=3
https://doi.org/10.1109/TTHZ.2020.3031483
https://doi.org/10.1109/TTHZ.2020.3031483
https://arxiv.org/pdf/1703.03128.pdf#page=4
https://www.vadiodes.com/en/products/detectors#zero-bias-detector
https://acst.de/products/quasi-optical-detectors/a0/
https://doi.org/10.1109/IRMMW-THz.2014.6956176
https://doi.org/10.1109/LMWC.2011.2123878
https://doi.org/10.1109/LMWC.2011.2123878
https://doi.org/10.1109/TMTT.2017.2779133
https://doi.org/10.1109/TMTT.2017.2779133
https://hal.archives-ouvertes.fr/file/index/docid/635960/filename/Sakowicz-JApplPhys_110_054512.pdf#page=4
https://hal.archives-ouvertes.fr/file/index/docid/635960/filename/Sakowicz-JApplPhys_110_054512.pdf#page=4
https://doi.org/10.1063/1.324426
https://doi.org/10.1063/1.324426
https://arxiv.org/pdf/0807.3348.pdf#page=5
https://arxiv.org/pdf/1205.6953.pdf#page=7
https://www.nature.com/articles/s41699-018-0050-x.pdf#page=2
https://www.nature.com/articles/s41699-018-0050-x.pdf#page=2
https://books.google.ru/books?id=92QSAAAAIAAJ&pg=246
https://www.pnas.org/content/pnas/108/34/14021.full.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fsrep24654/MediaObjects/41598_2016_BFsrep24654_MOESM1_ESM.pdf#page=6
https://static-content.springer.com/esm/art%3A10.1038%2Fsrep24654/MediaObjects/41598_2016_BFsrep24654_MOESM1_ESM.pdf#page=6
https://books.google.ru/books?id=28BC-ofEhvUC&pg=65


S17

so we resort to this simple substitution. Its only role in our model is to provide smooth interpolation between the gapless
case (unit transparency, there is essentially no tunnel junction, its conductance should become infinite), and the gapped
case (small transparency, (S24) is applicable).

S34. Our use of the long-channel approximation is motivated by the fact that the experimentally obtained plasmon resonances
in responsivity are not as prominent as they are in the finite-channel theory. This suggests there are additional plasmon
damping mechanisms not taken into account in our model, like interband absorption or effects of electron viscosity. Instead
of complicating the model by considering them explicitly, we take into account the extra plasmon damping approximately,
not by using a shorter decay length, but by setting the channel length to infinity.

S35. Uwanno, T., Taniguchi, T., Watanabe, K. & Nagashio, K. Electrically inert h-BN/bilayer graphene interface in all-two-
dimensional heterostructure field effect transistors. ACS Applied Materials & Interfaces 10, 28780–28788 (2018).

https://arxiv.org/ftp/arxiv/papers/1809/1809.05803.pdf#page=7
https://arxiv.org/ftp/arxiv/papers/1809/1809.05803.pdf#page=7

	Supplementary information
	Further examples of tunnel-enabled photoresponse
	Frequency dependence of tunnelling-enabled photoresponse
	Comparison with existing technology
	Theoretical model of a BLG TFET photodetector
	Modelling of tunneling-assisted THz detection
	Bandstructure and charge density in bilayer graphene
	Electrostatics of double-gated bilayer graphene
	Tunneling field
	Responsivity of the source-channel junction
	Responsivity of a long double-gated channel

	Performance limits of BLG TFET photodetectors

	Supplementary references

