Supplementary information for

Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress

Authors and affiliations:

Stefan Rudloff^{1,2}, Mathilde Janot^{1,2}, Stephane Rodriguez^{1,2,4}, Kevin Dessalle^{1,2}, Willi Jahnen-Dechent³ and Uyen Huynh-Do^{1,2*}

¹ Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, CH-3010 Bern, Switzerland

² Department of Biomedical Research, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland

³Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen

University Medical Faculty, Pauwelsstrasse 30, 52074 Aachen, Germany

^{4Present address:} Department of Onco-haematology, Geneva Medical University, Geneva,

Switzerland

*corresponding author: <u>uyen.huynh-do@insel.ch</u>

Supplementary Figure 1:

Chronic fetal hypoxia induces intra-uterine growth restriction in mice

Supplementary Figure 2: Kidneys of IUGR fetuses have fewer nephrons

Supplementary Figure 4: Localization of fetuin-A transcripts and protein in fetal kidneys

Supplementary Figure 5: Identification of putative HIF binding sites of the fetuin-A gene locus

Alignment of predicted murine HRE with enhancer marks

Supplementary Figure 6: Increased expression of fetuin-A and fibrotic markers in hypoxia

Supplementary Figure 8:

Fetuin-A attenuates hypoxia-induced expression of fibrotic markers

Vim

3-

С

3-

Supplementary Figure 10: Apoptosis in hypoxic Ahsg KO kidneys

Ahsg KO

Supplementary Figure 11:

Translation of our IUGR model results into a clinical perspective

Translation of renal insufficiency in				Proteinuria categories (mg/mmol Cr) Description and sex-specific ranges						
groups in human				P1		P2		Р3		
				Normal to mild increase		Mild to moderate increase		Severe increase		
			F: <90 M: <190		F: 90-120 M: 190-220		F: >120 M: >220			
BW)	G1	Norr	mal to high	>900	No wt F	No wt M	No KO F	Hy wt F	Hy wt M	No KO M
/100g ange	G2	Mil	d decrease	600-899					Ну КО Г	Ну КО М
ul/min, and r	G3a	Mild t d	to moderate lecrease	450-599						
ories (µ	G3b	Moder d	rate to severe lecrease	300-449						
catego Desc	G4	Severe decrease		150-299						
GFR	G5	Kidney failure		<150						
KDIGO 2012 risk low risk			modera	ate risk	high	risk	very h	gh risk		

Supplementary Figure 12: FACS gating strategy

Supplementary Figure legends

Supplementary Figure 1 Chronic fetal hypoxia induces intra-uterine growth restriction in mice. a Weight of E18.5 placentae (n = 24 No, 23 Hy, and 19 Cc placentae). b Number of pups per litter (n = 10 No, 10 Hy, and 11 Cc litters). c E18.5 fetal/maternal weight ratio (n = 3 ratios for each condition). d Litter size throughout the suckling phase did not differ for normoxic and hypoxic pups. e,f Postnatal growth of female (e) and male offspring (f). Hypoxic offspring (*Ahsg* KO – bold grey line, wild-type – thin grey line) and normoxic offspring (*Ahsg* KO – bold black dotted line, wild-type – thin black dotted line). KOs weighed less than wild-types, catch-up growth was observed for hypoxic offspring during the third week after birth. Grey circles denote significance (P < 0.05) between hypoxic offspring, white circles between normoxic offspring, large asterisks between KOs, and small asterisks between wild-types. Data are presented as mean \pm SEM (a-c) or mean only (d-f). Ordinary one-way ANOVA with Tukey's multiple comparison test (a-c), Multiple 2-sided t tests (d-f). (ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 2 Kidneys of IUGR fetuses have fewer nephrons. a,b 9 Z-stack images of a tissue cleared E18.5 normoxic (a) or hypoxic (b) kidney using the same magnification, taken at 100μm distance. Purple circles enclose glomeruli stained for nephrin. Images are representative of at least 6 iDisco-stained kidneys. Scale bar = 500 μm.

Supplementary Figure 3 Hypoxia-induced gene expression in the kidney. a Relative *Epo* mRNA levels in E18.5 fetal livers (n = 5 No, 9 Hy, and 5 Cc fetal livers). **b-f** Relative mRNA values of *Apoa2* (**b**), *Apoh* (**c**), *Fgb* (**d**), *Fgb* (**e**) and *Gys2* (**f**) in E18.5 kidneys (circles) or

liver samples (squares). N = 6 kidneys for each condition or 5 livers for each condition. Kidney and liver samples are analyzed separately. Note the logarithmic scale on the Y-axis. Data are presented as mean \pm SEM (**a-f**) or mean only (**d-f**). Ordinary one-way ANOVA with Tukey's multiple comparison test (**a-f**). (*** P < 0.001; ** P < 0.01; * P < 0.05; ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 4 Localization of fetuin-A transcript and protein in fetal kidneys. **a**,**b** *In situ* hybridization for *Ahsg* in normoxic (**a**) or hypoxic (**b**) E18.5 whole-mount kidneys. **c** Immunofluorescent staining for Fetuin-A revealed that the protein was present in the outer renal cortex, just below the nephrogenic zone, forming an arch running along the circumference of the kidney, exactly where mature PTs are located in an E18.5 kidney. No staining was found in the inner cortex or the medulla. Images are representative of at least 3 independent experiments (**a**-**c**). Scale bar = 500 μ m.

Supplementary Figure 5 Identification of putative HIF binding sites of the fetuin-A locus. a Genome browser image of human *AHSG* (top) illustrating the proximity of putative HIF binding sites (hypoxia response element – HRE) with epigenetic markers of active regulatory elements (H3K27Ac and H3K4Me1, middle) and open chromatin (DNaseI hypersensitivity, bottom). The orange bars traversing the image highlight two HREs overlapping with these epigenetic markers. **b** Location of potential HREs for fetuin-A of 15 different species. The upper panel shows the average distribution of these sites per 1kb window relative to the ATG (green line) of the fetuin-A genes. The lower panel depicts the exact locations of the predicted HREs for each species. The species are sorted (from top to bottom) according to the number of predicted HREs, Zebrafish has two *Ahsg* genes. HREs with a relative score >0.9 are shown in red, >0.93 in orange and >0.97 in yellow. **c** Genome browser image of mouse *Ahsg* (top) illustrating the proximity of predicted HREs with H3K27Ac, H3K4Me1 and DNaseI hypersensitivity in heart (brown), kidney (purple) or liver (orange). The orange bars traversing the image highlight HREs with a relative score >0.93.

Supplementary Figure 6 Increased expression of fetuin-A and fibrotic markers in hypoxia. a,b Expression of fetuin-A protein in the rat cell line NRK (a) or in the human cell line HK-2 (b) cultured under normoxic or hypoxic conditions. Images are representative of two independent Western blots. Uncropped blots in Source Data. c,d Relative mRNA expression levels of collagens (*Collal*, *Col3a1*, and *Col6a1*), α -smooth muscle actin (*Acta2*), fibronectin (*Fn1*), and vimentin (*Vim*) in lungs (c) or hearts (d) from normoxic (white circles) or hypoxic fetuses (grey circles). Data were analyzed from n = 9-10 No and 17-18 Hy fetal lungs, or 10-11 No and 17-19 Hy fetal hearts and are shown as mean ± SEM. Unpaired 2-sided t test (with Welch's correction for lung *Col1a1*, *Col3a1*, *Col6a*, and Acta2). (**** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05; ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 7 Increased expression of fibrosis markers in kidneys of hypoxic *Ahsg* KO adult offspring. a-f Relative mRNA expression levels of *Acta2* (a), *Fn1* (b), *Vim* (c), *Lama1* (d), *Lamb1* (e), and *Lamc1* (f) were markedly enhanced in kidneys of hypoxic *Ahsg* KO offspring. Data were analyzed from n = 7 No wt, 8 No KO, 7 Hy wt, and 8 Hy KO offspring and are presented as mean \pm SEM. Ordinary one-way ANOVA with Tukey's multiple comparisons test. (**** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05; ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 8 Fetuin-A attenuates hypoxia-induced expression of fibrotic markers in vitro. a-c Fetuin-A supplementation (downward pointing triangles) attenuated the hypoxia-induced mRNA expression of *Collal* (a), *Fn1* (b), and *Vim* (c) in pPTCs. N = 14-15No wt, 13-17 Hy wt, 10-13 No Ahsg KO and 10-11 Hy Ahsg KO samples without fetuin-A supplementation, and 11-13 Hy wt and 5 Hy Ahsg KO samples with fetuin-A supplementation. Wt and Ahsg KO samples are analyzed separately. Unpaired 2-tailed t test with Welch's correction (only for comparison of normoxic wt and normoxic Ahsg KO samples). d-f BSA supplementation (upward pointing triangles), did not reduce the expression of Collal (d), Fnl (e), and Vim (f) in wt pPTCs. N = 5-6 No samples without treatment, 11 No samples with fetuin-A treatment, 4-5 No and 4-5 Hy samples with BSA treatment. g Simultaneous treatment with TGF-B1 and fetuin-A reduced the phosphorylation of Smad3 in pPTCs. Images are representative of 2 Western blots. Uncropped blots in Source Data. Data were analyzed from n = pPTCs derived from kidneys of wt or *Ahsg* KO mice and are presented as mean \pm SEM (**a**-**f**). Ordinary one-way ANOVA with Tukey's multiple comparisons test (a-f). (**** P < 0.0001; ** P < 0.01; * P < 0.05; ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 9 Fetuin-A mitigates the polarization of pro-inflammatory M1 macrophages in fetal hypoxic kidneys. a-d Quantification of the 4 quadrants of the FACS blots shown in Figs. 7g-j. e-h Graphical presentation of the data shown in Table 1. Data were analyzed from n = 4 No wt, 3 No KO, 3 Hy wt, and 3 Hy KO fetal kidneys and are presented as mean \pm SEM (a-h). Unpaired 2-tailed t test (with Welch's correction if required) (a-h). (**** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05; ns = P > 0.05). Source data are provided as a Source Data file.

Supplementary Figure 10 Apoptosis in hypoxic *Ahsg* KO kidneys. a-c TUNEL staining on E18.5 kidney sections of normoxic wt (a), hypoxic wt (b) or hypoxic *Ahsg* KO mice (c). The black arrowhead points towards TUNEL positive cells. d-f Cleaved caspase-3 on E18.5 kidney sections of hypoxic *Ahsg* KO mice. The white arrowhead highlights a cell with a fragmented nucleus. Images are representative of at least 3 independent experiments. Scale bar = $100 \mu m$ (a-c) or 50 μm (d-f).

Supplementary Figure 11 Translation of our IUGR mouse model results into a clinical perspective, using KDIGO 2012 classification of CKD. Mouse data is written in bold. Wt mice (males and females) have no or only a low risk for CKD (green). Normoxic *Ahsg* KO females and hypoxic wt females have a moderate risk for disease (yellow), whereas all remaining males and hypoxic *Ahsg* KO females are staged into a high risk category (orange). F, female; M, male; No, normoxic; Hy, hypoxic; wt, wild type; KO, Ahsg KO.

Supplementary Figure 12 FACS gating strategy. Strategy used to gate the cells.

Supplementary Tables

Gene symbol	Fold change	Induced by hypoxia	CPP component
Ahsg	9.12		x ^{1, 2}
Fgg	5.84	Vij, 2009 ³	
Alb	5.21	Suresh, 2018 ⁴	x ^{1, 2}
Apoh	5.18		
Hbb-y	4.86		
Fgb	4.21		
Trf	3.95	Rolfs, 1997 ⁵	x ^{1, 2}
Pzp	3.93		
Apoa2	3.79		x ^{1, 2}
Apoal	3.68	Padhy, 2013 ⁶	x ^{1, 2}
Kng1	3.48		x ²
Angptl3	2.97		
Plg	2.91		x ²
F2	2.87	Tripathy, 2013 ⁷	x ^{1, 2}
Serpind1	2.64		
Cps1	2.60		
Rbp4	2.58		
Fga	2.56	Vij, 2009 ³	x ⁵²
Itih3	2.50		
Apoc2	2.48		
Gys2	2.46		
Apob	2.45		
Serpinc1	2.41		x ^{1, 2}
Itih2	2.39		
Hpd	2.30		
Serpina1d	2.22	Wenger, 1995 ⁸	x ^{1, 2}
Нрх	2.20	Tan, 2016 ⁹	
A2m	2.18	Zhang, 2017 ¹⁰	x ^{1, 2}
C8b	2.13		
Nrn1	2.03	Le Jan, 2006 ¹¹	
Serpina3n	2.00	Wenger, 1995 ⁸	
Itih4	1.97		
Hba-x	1.96		
Carl	1.96		
Apof	1.94		
Uox	1.84		
Apoc4	1.75		
Rgn	1.75		
Cirbp	1.74	Wellmann, 2004 ¹²	
Apoc1	1.70		
Crp	1.70		
Lect2	1.69		
Scd1	1.69	Zhang, 2014 ¹³	
Pemt	1.57		
Aox3	1.52		
Lcat	1.50		
Vstm2b	1.45		

Supplementary Table 1 Induced genes (Hypoxia vs. Control groups).

Lss	1.45		
Tff3	1.41	Hernández, 200914	
St6gal2	1.41		
Apoa4	1.40		\mathbf{x}^2
Hal	1.38		
F12	1.38	Liangos, 201015	
Akr1c18	1.38	Saraf, 2018 ¹⁶	
Marcks11	1.37		
Sc4mol	1.36		
Hc	1.36	Kelly, 2015 ¹⁷	
Tubb4	1.35		
Zfp395	1.33		
Hmgcr	1.33		
Itih1	1.32		
Txnrd3	1.31		

Supplementary Table 2 Repressed genes (Hypoxia vs. Control groups).

Gene symbol	Fold change
Napsa	-1.71
Fmo2	-1.68
Ccl3	-1.64
Acot11	-1.59
Pappa2	-1.59
Slc10a5	-1.55
Ugt2b37	-1.54
Pof1b	-1.53
Cntn4	-1.53
Lrrc19	-1.51
Glipr1	-1.49
Gcet2	-1.49
Gbp2	-1.44
Clra	-1.44
Kenj15	-1.42
Cxcl13	-1.40
Emr1	-1.40
Asah2	-1.40
Zfp760	-1.38
Scn7a	-1.38
Xpnpep2	-1.37
Prkaa2	-1.36
Pfn3	-1.35
Dpp7	-1.34
Slc25a45	-1.34
Sord	-1.34
Hsph1	-1.33
Pdk4	-1.32

induced genes (62)								
Category	Term	Count	%	P-Value	Fold Enrichment			
UP_KEYWORDS	Secreted	35*	57.4%	2.90E-23	7.7			
UP_TISSUE	Plasma	16*	26.2%	1.40E-22	57.0			
UP_TISSUE	Liver	43*	70.5%	6.80E-18	3.7			
KEGG_PATHWAY	PATHWAY Complement and coagulation cascades			3.40E-16	35.7			
GOTERM_MF_ALL	Endopeptidase inhibitor activity	13*	21.3%	2.00E-12	19.3			
GOTERM_BP_ALL	M BP ALL Acute inflammatory response		16.4%	3.60E-10	23.0			
UP_KEYWORDS	DS Lipid transport		11.5%	9.90E-08	30.6			
GOTERM_BP_ALL	Acute-phase response	6*	9.8%	4.30E-07	38.0			
UP_KEYWORDS	Lipid metabolism	10	16.4%	1.40E-06	8.9			
GOTERM_BP_ALL	Regulation of response to stress	16*	26.2%	4.40E-06	4.0			
	repressed genes	(28)						
Category	Term	Count	%	P-Value	Fold Enrichment			
GOTERM BP_ALL	Lymphocyte migration	3	10.7	5.50E-03	25.8			
GOTERM_MF_ALL	Peptidase activity	5	17.9	1.70E-02	4.8			
UP TISSUE	Kidney	9	32.1	2.30E-02	2.4			

Supplementary Table 3 Functional annotation using standard settings provided by DAVID.

Supplementary Table 4 qPCR assays and primers.

TaqMan Gene Expression Assays						
(ThermoFisher)						
Gene						
Symbol	AssayID					
18s	Mm03928990_g1					
Ahsg	Mm01145470_m1					
Apoa2	Mm00442687_m1					
Apoc2	Mm00437571_m1					
Apoh	Mm00496516_m1					
Fgb	Mm00805336_m1					
Fgg	Mm00513575_m1					
Gys2	Mm01267381_g1					

Universal Probe Library (Roche)							
Gene			Probe				
Symbol	Forward primer	Reverse Primer	Number				
Acta2	actctcttccagccatctttca	ataggtggtttcgtggatgc	58				
Actb	ctaaggccaaccgtgaaaag	accagaggcatacagggaca	64				
Collal	aggcaagcctggtgaaca	accagggaaacctctctcg	80				
Col3a1	tggaccccaaggtcttcc	catctgatccagggtttcca	64				
Col6a1	accggttgagcaaggatg	tccacgtgctcttgcatct	5				
Fn1	tgccctgaagaacaatcaga	aaccagttggggaagctcat	69				
Ppia	acgccactgtcgcttttc	ctgcaaacagctcgaagga	46				
Lama1	cccgacaacctcctcttcta	catctccactgcgagaaagtc	74				
Tgfb1	tggagcaacatgtggaactc	gtcagcagccggttacca	72				
Vim	gtaccggagacaggtgcagt	ttctcttccatctcacgcatc	1				

	Cat						Human				
Site	Score	Rel. score	Start	Strand	Sequence	Site	Score	Rel. score	Start	Strand	Sequence
1	8.275	0.91277	-9791	-1	GAACGTGA	1	8.037	0.90567	-6273	1	GTGCGTGA
2	9.739	0.95644	-9703	1	GCACGTGG	2	9.148	0.93881	-3959	-1	AGACGTGG
3	10.232	0.97115	-9703	-1	CCACGTGC	3	9.605	0.95245	-3186	1	GCACGTGA
4	8.984	0.93392	-8483	-1	CCACGTGG	4	8.295	0.91337	-2413	-1	GGGCGTGG
5	8.984	0.93392	-8483	1	CCACGTGG	5	8.295	0.91337	-1762	-1	GGGCGTGG
6	8.295	0.91337	-7932	1	GGGCGTGG	6	8.740	0.92664	-30	-1	AGGCGTGC
7	8.850	0.92992	-4713	1	CCACGTGA	7	8.891	0.93115	556	-1	ATACGTGA
8	8.409	0.91677	-1376	1	GAACGTGG	8	9.951	0.96277	2912	1	GGACGTGG
9	9.951	0.96277	-148	-1	GGACGTGG	9	8.850	0.92992	3280	-1	CCACGTGA
10	8.409	0.91677	150	-1	GAACGTGG	10	11.199	1.00000	4056	1	GGACGTGC
11	9.605	0.95245	1086	-1	GCACGTGA	11	8.788	0.92807	4119	-1	CGGCGTGC
12	8.161	0.90937	2537	1	GGGCGTGA	12	9.828	0.95910	4269	1	GTACGTGG
13	9.739	0.95644	2671	-1	GCACGTGG	13	9.196	0.94024	4526	-1	CGACGTGG
14	10.232	0.97115	2671	1	CCACGTGC	14	8.161	0.90937	5749	-1	GGGCGTGA
15	9.148	0.93881	3007	-1	AGACGTGG	15	9.419	0.94690	8512	1	GTGCGTGC
16	8.664	0.92437	3604	-1	CTGCGTGC	16	9.014	0.93482	9651	1	AGACGTGA
17	9.148	0.93881	4038	-1	AGACGTGG						
18	8.850	0.92992	4502	-1	CCACGTGA		-		Mouse	-	
19	9.148	0.93881	4979	-1	AGACGTGG	Site	Score	Rel. score	Start	Strand	Sequence
20	8.984	0.93392	6976	-1	CCACGTGG	1	8.575	0.92172	-7181	1	CCGCGTGC
21	8.984	0.93392	6976	1	CCACGTGG	2	8.409	0.91677	-3376	1	GAACGTGG
22	10.987	0.99367	8812	-1	GCACGTGC	3	9.196	0.94024	-2167	-1	CGACGTGG
23	10.987	0.99367	8812	1	GCACGTGC	4	8.850	0.92992	-390	-1	CCACGTGA
24	9.196	0.94024	9487	1	CGACGTGG	5	10.321	0.97381	1386	1	CTACGTGC
						6	9.605	0.95245	2318	1	GCACGTGA
			Chicken			7	8.711	0.92578	4143	-1	CTACGTGT

8

9

8.936

8.623

8.984

8.275

10

11

Supplementary Table 5 Location of putative HREs for the fetuin-A genes of 15 species. HREs with a relative score >0.9 are shown in red, >0.93 in orange and >0.97 in yellow.

	Chicken									
Site	Score	Rel. score	Start	Strand	Sequence					
1	8.616	0.92294	-9959	-1	ATGCGTGC					
2	8.711	0.92578	-6227	-1	CTACGTGT					
3	9.148	0.93881	-4055	1	AGACGTGG					
4	8.047	0.90597	-3633	1	GAACGTGT					
5	9.014	0.93482	-3076	1	AGACGTGA					
6	8.854	0.93004	-363	-1	AAACGTGC					
7	8.575	0.92172	189	1	CCGCGTGC					
8	8.984	0.93392	5197	-1	CCACGTGG					
9	8.984	0.93392	5197	1	CCACGTGG					
10	8.663	0.92434	6173	-1	ATACGTGT					

Chimp									
Site	Score	Rel. score	Start	Strand	Sequence				
1	8.037	0.90567	-6262	1	GTGCGTGA				
2	9.148	0.93881	-3952	-1	AGACGTGG				
3	9.605	0.95245	-3178	1	GCACGTGA				
4	8.295	0.91337	-2429	-1	GGGCGTGG				
5	8.295	0.91337	-1774	-1	GGGCGTGG				
6	8.740	0.92664	-30	-1	AGGCGTGC				
7	8.984	0.93392	58	-1	CCACGTGG				
8	8.984	0.93392	58	1	CCACGTGG				

0.275	0.71557			00000100	
8.295	0.91337	-1762	-1	GGGCGTGG	
8.740	0.92664	-30	-1	AGGCGTGC	
8.891	0.93115	556	-1	ATACGTGA	
9.951	0.96277	2912	1	GGACGTGG	
8.850	0.92992	3280	-1	CCACGTGA	
11.199	1.00000	4056	1	GGACGTGC	
8.788	0.92807	4119	-1	CGGCGTGC	
9.828	0.95910	4269	1	GTACGTGG	
9.196	0.94024	4526	-1	CGACGTGG	
8.161	0.90937	5749	-1	GGGCGTGA	
9.419	0.94690	8512	1	GTGCGTGC	
9.014	0.93482	9651	1	AGACGTGA	
		>001	-		-
		2001	-		
		Mouse]
Score	Rel. score	Mouse Start	Strand	Sequence]
Score 8.575	Rel. score 0.92172	Mouse Start -7181	Strand	Sequence CCGCGTGC	
Score 8.575 8.409	Rel. score 0.92172 0.91677	Mouse Start -7181 -3376	Strand 1 1	Sequence CCGCGTGC GAACGTGG	
Score 8.575 8.409 9.196	Rel. score 0.92172 0.91677 0.94024	Mouse Start -7181 -3376 -2167	Strand 1 1 -1	Sequence CCGCGTGC GAACGTGG CGACGTGG	
	8.295 8.740 8.891 9.951 8.850 11.199 8.788 9.828 9.196 8.161 9.419 9.014	8.2950.913378.7400.926648.8910.931159.9510.962778.8500.9299211.1991.000008.7880.928079.8280.959109.1960.940248.1610.909379.4190.946909.0140.93482	8.2950.91337-17628.7400.92664-308.8910.931155569.9510.9627729128.8500.92992328011.1991.0000040568.7880.9280741199.8280.9591042699.1960.9402445268.1610.9093757499.4190.9469085129.0140.934829651	8.2950.91337-1762-18.7400.92664-30-18.8910.93115556-19.9510.96277291218.8500.929923280-111.1991.00000405618.7880.928074119-19.8280.95910426919.1960.940244526-18.1610.909375749-19.4190.94690851219.0140.9348296511	8.295 0.91337 -1762 -1 GGGCGTGG 8.740 0.92664 -30 -1 AGGCGTGC 8.891 0.93115 556 -1 ATACGTGA 9.951 0.96277 2912 1 GGACGTGG 8.850 0.92992 3280 -1 CCACGTGA 11.199 1.00000 4056 1 GGACGTGC 8.788 0.92807 4119 -1 CGGCGTGC 9.828 0.95910 4269 1 GTACGTGG 9.196 0.94024 4526 -1 CGACGTGG 8.161 0.90937 5749 -1 GGGCGTGA 9.419 0.94690 8512 1 GTGCGTGC 9.014 0.93482 9651 1 AGACGTGA

10	8.575	0.92172	9190	-1	ACACGTGT				
11	8.575	0.92172	9190	1	ACACGTGT				
Pig									
Site	Score	Rel. score	Start	Strand	Sequence				
1	9.466	0.94830	-6362	-1	GTACGTGT				
2	9.739	0.95644	-1879	1	GCACGTGG				
3	10.232	0.97115	-1879	-1	CCACGTGC				
4	8.788	0.92807	-464	1	CGGCGTGC				
5	8.295	0.91337	2185	-1	GGGCGTGG				
6	9.739	0.95644	2780	-1	GCACGTGG				
7	10.232	0.97115	2780	1	CCACGTGC				
8	10.321	0.97381	3020	1	CTACGTGC				
9	8.984	0.93392	6520	-1	CCACGTGG				

4368

4368

-1

1

ACACGTGG

CCACGTGT

CCACGTGG

GAACGTGA

0.93249

0.92315

0.93392

0.91277 0.93004

Rabbit						
12	8.854	0.93004	7165	-1	AAACGTGC	

6520

7140

1

1

9	9.828	0.95910	250	1	GTACGTGG
10	8.891	0.93115	556	-1	ATACGTGA
11	8.902	0.93147	2810	-1	CAACGTGC
12	9.951	0.96277	2916	1	GGACGTGG
13	8.850	0.92992	3281	-1	CCACGTGA
14	11.199	1.00000	4057	1	GGACGTGC
15	8.788	0.92807	4120	-1	CGGCGTGC
16	9.828	0.95910	4270	1	GTACGTGG
17	9.196	0.94024	4527	-1	CGACGTGG
18	8.161	0.90937	5750	-1	GGGCGTGA
19	9.419	0.94690	8525	1	GTGCGTGC
20	9.014	0.93482	9665	1	AGACGTGA

20	9.014	0.93482	9665	1	AGACGTGA	12	10.184	
						13	9.073	
			Cow			14	9.657	
Site	Score	Rel. score	Start	Strand	Sequence	15	9.739	
1	9.739	0.95644	-9399	-1	GCACGTGG	16	10.232	
2	10.232	0.97115	-9399	1	CCACGTGC	17	9.014	
3	8.275	0.91277	-7624	1	GAACGTGA	18	8.575	
4	8.295	0.91337	-2242	1	GGGCGTGG			
5	9.025	0.93514	-1847	-1	ATACGTGG		-	
6	8.575	0.92172	-1077	1	CCGCGTGC	Site	Score	
7	9.828	0.95910	2370	-1	GTACGTGG	1	7.933	
8	8.295	0.91337	2384	-1	GGGCGTGG	2	8.902	
9	9.605	0.95245	2424	1	GCACGTGA	3	10.184	
10	8.295	0.91337	2656	-1	GGGCGTGG	4	9.377	
11	9.014	0.93482	2694	1	AGACGTGA	5	10.396	
12	9.739	0.95644	2768	-1	GCACGTGG	6	8.000	
13	10.232	0.97115	2768	1	CCACGTGC	7	9.073	
14	11.199	1.00000	3206	1	GGACGTGC	8	9.542	
15	8.664	0.92437	3269	-1	CTGCGTGC	9	9.148	
16	8.409	0.91677	3414	1	GAACGTGG	10	9.419	
17	8.854	0.93004	4390	-1	AAACGTGC	11	9.014	
18	8.939	0.93258	4417	1	CTACGTGA			
19	8.902	0.93147	5570	-1	CAACGTGC			
20	8.984	0.93392	6443	-1	CCACGTGG	Site	Score	
21	8.984	0.93392	6443	1	CCACGTGG	1	11.199	
22	8.802	0.92849	6941	-1	ACACGTGA	2	9.739	
23	9.817	0.95877	7287	-1	GGACGTGA	3	10.232	Í
24	10.987	0.99367	9222	-1	GCACGTGC	4	8.623	
								-

1	8.575	0.92172	-9898	1	CCGCGTGC
2	8.854	0.93004	-4033	-1	AAACGTGC
3	8.984	0.93392	-2804	-1	CCACGTGG
4	8.984	0.93392	-2804	1	CCACGTGG
5	8.788	0.92807	-1640	-1	CGGCGTGC
6	8.161	0.90937	653	-1	GGGCGTGA
7	8.939	0.93258	1709	1	CTACGTGA
8	8.295	0.91337	2190	-1	GGGCGTGG
9	8.171	0.90967	2327	-1	GTGCGTGG
10	9.951	0.96277	3402	-1	GGACGTGG
11	9.377	0.94564	4726	1	GCACGTGT
12	10.184	0.96972	4726	-1	ACACGTGC
13	9.073	0.93658	4754	1	CTACGTGG
14	9.657	0.95400	6992	1	GAACGTGC
15	9.739	0.95644	7020	1	GCACGTGG
16	10.232	0.97115	7020	-1	CCACGTGC
17	9.014	0.93482	7081	-1	AGACGTGA
18	8.575	0.92172	8660	-1	CCGCGTGC

	Rat							
Site	Score	Rel. score	Start	Strand	Sequence			
1	7.933	0.90257	2510	-1	GGGCGTGT			
2	8.902	0.93147	3739	1	CAACGTGC			
3	10.184	0.96972	4487	-1	ACACGTGC			
4	9.377	0.94564	4487	1	GCACGTGT			
5	10.396	0.97604	6401	1	AGACGTGC			
6	8.000	0.90456	6587	-1	GAGCGTGC			
7	9.073	0.93658	6887	-1	CTACGTGG			
8	9.542	0.95057	8038	-1	GGGCGTGC			
9	9.148	0.93881	9238	1	AGACGTGG			
10	9.419	0.94690	9333	1	GTGCGTGC			
11	9.014	0.93482	9955	-1	AGACGTGA			

Sheep						
Site	Score	Rel. score	Start	Strand	Sequence	
1	11.199	1.00000	-9703	1	GGACGTGC	
2	9.739	0.95644	-9385	-1	GCACGTGG	
3	10.232	0.97115	-9385	1	CCACGTGC	
4	8.623	0.92315	-8196	-1	CCACGTGT	
5	8.936	0.93249	-8196	1	ACACGTGG	
6	8.275	0.91277	-7591	1	GAACGTGA	
7	11.199	1.00000	1103	1	GGACGTGC	
8	9.828	0.95910	2340	-1	GTACGTGG	
9	8.295	0.91337	2354	-1	GGGCGTGG	
10	9.605	0.95245	2394	1	GCACGTGA	
11	8.295	0.91337	2591	-1	GGGCGTGG	
12	9.739	0.95644	2703	-1	GCACGTGG	
13	10.232	0.97115	2703	1	CCACGTGC	
14	9.817	0.95877	3157	-1	GGACGTGA	
15	11.199	1.00000	3311	1	GGACGTGC	
16	8.788	0.92807	3374	-1	CGGCGTGC	
17	8.409	0.91677	3519	1	GAACGTGG	
18	8.939	0.93258	4530	1	CTACGTGA	

23	9.817	0.95877	7287	-1	GGACGTGA
24	10.987	0.99367	9222	-1	GCACGTGC
25	10.987	0.99367	9222	1	GCACGTGC
26	9.657	0.95400	9333	-1	GAACGTGC
	-		Dog		
Site	Score	Rel. score	Start	Strand	Sequence
1	9.196	0.94024	-8321	1	CGACGTGG
2	9.951	0.96277	-4021	-1	GGACGTGG
3	8.409	0.91677	-310	-1	GAACGTGG
4	9.951	0.96277	-149	-1	GGACGTGG
5	8.409	0.91677	150	-1	GAACGTGG
6	8.835	0.92948	1391	1	CGACGTGT
7	8.295	0.91337	2508	-1	GGGCGTGG
8	9.148	0.93881	2824	-1	AGACGTGG
9	8 295	0.91337	3321	1	GGGCGTGG

10	11.199	1.00000	3397	1	GGACGTGC
11	8.788	0.92807	3460	-1	CGGCGTGC
12	9.951	0.96277	3944	-1	GGACGTGG
13	8.000	0.90456	4919	1	GAGCGTGC
14	9.025	0.93514	5038	-1	ATACGTGG
15	8.295	0.91337	6587	1	GGGCGTGG
16	11.199	1.00000	7863	1	GGACGTGC
17	10.396	0.97604	8913	-1	AGACGTGC
18	9.739	0.95644	9035	1	GCACGTGG
19	10.232	0.97115	9035	-1	CCACGTGC

Γ

19	8.984	0.93392	6589	-1	CCACGTGG
20	8.984	0.93392	6589	1	CCACGTGG
21	8.787	0.92804	8640	1	AGACGTGT
22	9.377	0.94564	8662	-1	GCACGTGT
23	10.184	0.96972	8662	1	ACACGTGC

Xenopus

GTGCGTGG

GTACGTGT

GCACGTGG

CCACGTGC

CTACGTGT

GCACGTGT

ACACGTGC

GTGCGTGC

GCACGTGG CCACGTGC

13	-1	AGACGTGC	Site	Score	Rel. score	Start	Strand	Sequence
35	1	GCACGTGG	1	8.171	0.90967	-5880	1	GTGCGT
35	-1	CCACGTGC	2	9.466	0.94830	-3541	1	GTACGT
		<u> </u>	3	9.739	0.95644	223	1	GCACGT
harl	K		4	10.232	0.97115	223	-1	CCACGT
·t	Strand	Sequence	5	8.711	0.92578	1837	-1	CTACGT
59	1	CGACGTGA	6	9.377	0.94564	2416	1	GCACGT
59	-1	GTGCGTGA	7	10.184	0.96972	2416	-1	ACACGT
28	-1	CCACGTGT	8	9.419	0.94690	6455	1	GTGCGT
28	1	ACACGTGG	9	9.739	0.95644	7947	1	GCACGT
23	1	AGACGTGT	10	10.232	0.97115	7947	-1	CCACGT
92	-1	GCACGTGT	11	8.850	0.92992	8780	-1	CCACGT
92	1	ACACGTGC	12	9.605	0.95245	9031	-1	GCACGT
95	-1	ATACGTGT	13	8.711	0.92578	9180	1	CTACGT
70	1	AGACGTGA	14	10.396	0.97604	9707	-1	AGACGT
73	-1	GTACGTGT						
39	1	GGGCGTGA			Ze	ebrafish	1	
81	-1	GAACGTGA	Site	Score	Rel. score	Start	Strand	Sequence
30	-1	AGACGTGC	1	9.148	0.93881	-9246	-1	AGACGT

11	8.850	0.92992	8780	-1	CCACGTGA
12	9.605	0.95245	9031	-1	GCACGTGA
13	8.711	0.92578	9180	1	CTACGTGT
14	10.396	0.97604	9707	-1	AGACGTGC
		Ze	ebrafish	1	
Sito	Score	Rel score	Start	Strand	Sequence
Site	BUIL	Kell Scole	Start	Stranu	Sequence
1	9.148	0.93881	-9246	-1	AGACGTGG
1 2	9.148 8.891	0.93881 0.93115	-9246 -7075	-1 1	AGACGTGG ATACGTGA
1 2 3	9.148 8.891 9.694	0.93881 0.93115 0.95510	-9246 -7075 -2150	-1 1 1	AGACGTGG ATACGTGA GTACGTGA
1 2 3 4	9.148 8.891 9.694 7.933	0.93881 0.93115 0.95510 0.90257	-9246 -7075 -2150 -1072	-1 1 1 -1	AGACGTGG ATACGTGA GTACGTGA GGGCGTGT
1 2 3 4 5	9.148 8.891 9.694 7.933 8.295	0.93881 0.93115 0.95510 0.90257 0.91337	-9246 -7075 -2150 -1072 -532	-1 1 1 -1 -1	AGACGTGG ATACGTGA GTACGTGA GGGCGTGT GGGCGTGG
1 2 3 4 5 6	9.148 8.891 9.694 7.933 8.295 9.817	0.93881 0.93115 0.95510 0.90257 0.91337 0.95877	-9246 -7075 -2150 -1072 -532 2510	-1 1 1 -1 -1 1	AGACGTGG ATACGTGA GTACGTGA GGGCGTGT GGGCGTGG GGACGTGA

Ghost shark								
Site	Score	Rel. score	Start	Strand	Sequence			
1	9.062	0.93625	-9459	1	CGACGTGA			
2	8.037	0.90567	-8059	-1	GTGCGTGA			
3	8.623	0.92315	-4328	-1	CCACGTGT			
4	8.936	0.93249	-4328	1	ACACGTGG			
5	8.787	0.92804	-3823	1	AGACGTGT			
6	9.377	0.94564	-2892	-1	GCACGTGT			
7	10.184	0.96972	-2892	1	ACACGTGC			
8	8.663	0.92434	1695	-1	ATACGTGT			
9	9.014	0.93482	2970	1	AGACGTGA			
10	9.466	0.94830	3273	-1	GTACGTGT			
11	8.161	0.90937	4639	1	GGGCGTGA			
12	8.275	0.91277	5381	-1	GAACGTGA			
13	10.396	0.97604	5530	-1	AGACGTGC			
14	10.396	0.97604	7044	-1	AGACGTGC			
15	9.739	0.95644	7115	-1	GCACGTGG			
16	10.232	0.97115	7115	1	CCACGTGC			
17	8.047	0.90597	7684	1	GAACGTGT			
18	9.062	0.93625	8196	-1	CGACGTGA			
19	8.664	0.92437	9888	-1	CTGCGTGC			
19	8.664	0.92437	9888	-1	CIGCGIGC			

Horse								•
Site	Score	Rel. score	Start	Strand	Sequence	Site	Score	Rel. scor
1	9.605	0.95245	-6498	-1	GCACGTGA	1	8.575	0.92172
2	11.199	1.00000	-2058	1	GGACGTGC	2	8.575	0.92172
3	8.575	0.92172	-559	-1	ACACGTGT	3	8.575	0.92172
4	8.575	0.92172	-559	1	ACACGTGT	4	8.663	0.9243
5	8.409	0.91677	-293	-1	GAACGTGG	5	8.711	0.9257
6	10.396	0.97604	171	-1	AGACGTGC	6	9.014	0.93482
7	8.295	0.91337	2505	-1	GGGCGTGG	7	8.295	0.9133
8	9.605	0.95245	2545	1	GCACGTGA	8	8.037	0.9056
9	11.199	1.00000	3299	1	GGACGTGC	9	7.933	0.9025
10	8.788	0.92807	3362	-1	CGGCGTGC	10	8.295	0.9133
11	9.828	0.95910	3505	1	GTACGTGG	11	8.037	0.9056
12	8.984	0.93392	6636	-1	CCACGTGG	12	7.933	0.9025
13	8.984	0.93392	6636	1	CCACGTGG	13	7.933	0.9025
14	9.148	0.93881	6792	-1	AGACGTGG	14	9.542	0.9505
15	8.984	0.93392	6840	-1	CCACGTGG	15	9.419	0.9469
16	8.984	0.93392	6840	1	CCACGTGG	16	9.419	0.9469
17	9.073	0.93658	7917	-1	CTACGTGG	17	9.330	0.94424

Zebrafish 2								
Site	Score	Rel. score	Start	Strand	Sequence			
1	8.575	0.92172	-9260	-1	CCGCGTGC			
2	8.575	0.92172	-6523	-1	ACACGTGT			
3	8.575	0.92172	-6523	1	ACACGTGT			
4	8.663	0.92434	1373	-1	ATACGTGT			
5	8.711	0.92578	1406	1	CTACGTGT			
6	9.014	0.93482	1413	-1	AGACGTGA			
7	8.295	0.91337	3945	1	GGGCGTGG			
8	8.037	0.90567	4012	-1	GTGCGTGA			
9	7.933	0.90257	4274	1	GGGCGTGT			
10	8.295	0.91337	4732	1	GGGCGTGG			
11	8.037	0.90567	4799	-1	GTGCGTGA			
12	7.933	0.90257	5061	1	GGGCGTGT			
13	7.933	0.90257	5368	1	GGGCGTGT			
14	9.542	0.95057	6794	-1	GGGCGTGC			
15	9.419	0.94690	8115	-1	GTGCGTGC			
16	9.419	0.94690	8119	-1	GTGCGTGC			
17	9.330	0.94424	8123	-1	GCGCGTGC			
18	8.663	0.92434	9593	1	ATACGTGT			

Supplementary Table 6 Primer and fragment sequences used for molecular cloning.

mouse Ahsg 500bp promoter fragment

GCTCCGGAGATTGGGAACTTGTTCCTCTCAGCAAGCTTTGCCACACTGCATGGAGATCCGTGTGCGTACAGAGC						
ACTGTTACCCCCATCATGACATGAGCGCTCAGGGAAAGCGCACAAAGTCAATCAA						
AGGATTACACAGAGTCCTTACAGAAGTGTTTTAAGCCTTTTCAATCACATGAAGCAATATTCACATGATAGTGC						
TAAATGGAAAAGGAAACAGCTACACGCTTCTATTTGGTACAGAGAAGTGAGGTGTGTGGTTAAGAGCGACTGCT						
ATCTCTCCTCTCA CCACGTCG CTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG						
TATCTTGGTTTCCACCCCCATGTGAAATTTCATTTGATAGCATTTAAATCTCTCCCCAGGCAGACAGGTGTA						
GCACTGGGAGATGCTCCCGAGTGGCTGGCTGGCTGGCTGG						
mouse Ahsg 500bp promoter fragment mutated						
${\tt GCTCCGGAGATTGGGAACTTGTTCCTCTCAGCAAGCTTTGCCACACTGCATGGAGATCCGTGTGCGTACAGAGC}$						
ACTGTTACCCCCATCATGACATGAGCGCTCAGGGAAAGCGCACAAGTCAATCAA						
AGGATTACACAGAGTCCTTACAGAAGTGTTTTAAGCCTTTTCAATCACATGAAGCAATATTCACATGATAGTGC						
${\tt TAAATGGAAAAGGAAACAGCTACACGCTTCTATTTGGTACAGAGAAGTGAGGTGTGTGT$						
ATCTCTCCTCTCA CATAATAG CTGGGGGGGGGGGGGGGGGGCAGCCACCGCTAGCTTAAATGCCACTGTTTGTT						
TATCTTGGTTTCCACCCCCATGTGAAATTTCATTTGATAGCATTTAAATCTCTCCCCAGGCAGACAGGTGTA						
GCACTGGGAGATGCTCCCGAGTGGCTGGCTGGCTGGCTGG						
mouse Ahsg 500bp fragment of intronic sequences						
${\tt TGCTGAAGGGAAAGCCGTGAGCGAGCACTGTGCATGTGCTGCTGCTGATTGTGAGATGCTCATTATGGGATGCCCGTGAGGCGAGCGA$						
${\tt CCGAGTGGATCAAGAAGTCCTAGGACCCCACCCCGCTGGCAAACTGTTCTGTGAGGCAGCTGACTGA$						
$\mathbf{A} GTGCTGCCTTGTGGTTGGTTGGTGGGTGGGTGGGTGGGGGG$						
${\tt GGCC} \textbf{ACACGTAG} {\tt TCCGTGTGGATTTGTGTTCTCTCAAACTGTGCCAGACCATAGCTTCTCCTCTCCATCCCTCC}$						
${\tt Caccctcctttaccttccttcctctctctctctctctctc$						
${\tt CTCCCTCTATCCCACCTCTTCTTCCCCCCCCCCCCCCC$						
ATCTTTCCCCACGTGTTCCCATTTTCATTCTCAGCCTCTCCCAGT						
mouse Ahsg 500bp fragment of intronic sequences mutated						
${\tt TGCTGAAGGGAAAGCCGTGAGCGAGCACTGTGCATGTGCATGTGAGATGCTGAGATGCTCATTATGGGATGC}$						
${\tt CCGAGTGGATCAAGAAGTCCTAGGACCCCACCCCGCTGGCAAACTGTTCTGTGAGGCAGCTGACTGA$						
$\mathbf{A} GTGCTGCCTTGTGGTTGGTTGGTGGGTGGGTGGGTGGGGGG$						
GGCC AATAATAG TCCGTGTGGATTTGTGTTCTCTCAAACTGTGCCAGACCATAGCTTCTCCTCCATCCCTCC						
${\tt Caccctcctttaccttccttcctctctctctctctctctc$						
CTCCCTCTATCCCACCTCTCCTCCCCCCCCCCCCCCCCC						
ATCTTTT AATAATAT TCTCATTTTCATTCTCAGCCTCTCCCAGT						
mouse Ahsg 2.5kb promoter fragment						
Forward Primer atagagctccggagattgggaacttgt						
Reverse Primer aaaagaattcatggttgctccagagaggc						

Primary antibodies							
Target/protein	Host species	Clonality	Application	Source			
Alpha smooth muscle actin	rabbit	mono	WB	Abcam, ab32575			
Aquaporin-1	rabbit	poly	IF	SCBT, sc-20810			
Aquaporin-2	rabbit	poly	IF	J. Loffing ¹⁸			
Beta actin	rabbit	poly	WB	Abcam, ab8227			
Caspase-3 (cleaved)	rabbit	poly	IF	Cell Signaling, 9661S			
CD11b-PE	rat	mono	FACS	eBioscience, 12-0112-82			
CD11c-BV 605	hamster	mono	FACS	BioLegend, 117333			
CD68-APC-Cy7	rat	mono	FACS	BioLegend, 137024			
CD80-Pacific blue	hamster	mono	FACS	BioLegend, 104723			
CD86-APC	rat	mono	FACS	BioLegend, 105011			
CD206-FITC	rat	mono	FACS	BioLegend, 141703			
Collagen 1	mouse	mono	WB	SCBT, sc-293182			
F4/80-PE-Cy7	rat	mono	FACS	BioLegend, 123114			
Fetuin-A	goat	poly	IF, WB	SCBT, sc-9668			
Fetuin-A	rabbit	poly	WB	W. Jahnen-Dechent ¹⁹			
Fetuin-A	rabbit	mono	IF, IHC	Sino Biological, 50093-R022			

Fibronectin	mouse	mono	WB	SCBT, sc-73611
Ncc	rabbit	poly	IF	J. Loffing ²⁰
Nephrin	goat	poly	IF	R&D, AF3159
Nkcc2	rabbit	poly	IF	J. Loffing ¹⁸
Phospho-Smad3	rabbit	mono	WB	Cell Signaling, 9520S
Smad3	mouse	mono	WB	SCBT, sc-101154
Vimentin	rabbit	mono	WB	Cell Signaling, 5741T
		Secondary antibodie	es	
Target	Host species	Conjugate	Application	Source
goat	donkey	Alexa Fluor® 647	IF	Jackson, 705-605-147
goat	donkey	Cyanine Cy [™] 2	IF	Jackson, 705-225-147
goat	donkey	HRP	WB	Jackson, 705-035-147
goat	donkey	HRP	IHC	SCBT, sc-2304
mouse	goat	HRP polymer	IHC	Agilent, K4001
mouse	donkey	HRP	WB	Jackson, 715-035-151
rabbit	goat	HRP polymer	IHC	Agilent, K4003
rabbit	donkey	Cyanine Cy [™] 3	IF	Jackson, 711-165-152
rabbit	donkey	HRP	WB	Jackson, 711-035-152
rat	donkey	Alexa Fluor® 647	IF	Jackson, 712-606-153

Supplementary	7 Table 8 P	-values for	postnatal	growth curve	(Figure	1g).
---------------	-------------	-------------	-----------	--------------	---------	------

Destructed day	No wt vs. No KO	Hy wt vs. Hy KO	No wt vs. Hy wt	No KO vs. Hy KO	
Postnatal day	(whites cirles)	(grey cirles)	(small asterisks)	(large asterisks)	
1	0.1171	0.0795	< 0.0001	< 0.0001	
2	0.2810	< 0.0001	0.0002	< 0.0001	
3	0.4101	< 0.0001	0.0311	< 0.0001	
4	0.6130	0.0001	0.9948	0.0003	
5	0.3534	< 0.0001	0.6691	< 0.0001	
6	0.2508	< 0.0001	0.7768	0.0004	
7	0.4692	0.0005	0.8715	0.0123	
8	0.3583	< 0.0001	0.4804	0.0223	
9	0.1710	0.0020	0.6816	0.3367	
10	0.1132	0.0014	0.4091	0.7761	
11	0.1306	0.0027	0.2492	0.5394	
12	0.1143	0.0040	0.3040	0.2352	
13	0.1195	0.0020	0.1998	0.1429	
14	0.0763	0.0023	0.1502	0.0368	
15	0.0918	0.0047	0.1509	0.0324	
16	0.0777	0.0103	0.1169	0.0059	
17	0.0897	0.0067	0.0567	0.0054	
18	0.0798	0.0067	0.0434	0.0013	
19	0.0879	0.0032	0.0368	0.0014	
20	0.0675	0.0024	0.1068	0.0069	
21	0.0422	0.0003	0.2543	0.1720	
22	0.0362	0.0005	0.3287	0.2502	
23	0.0328	0.0010	0.4982	0.3645	
24	0.0378	0.0001	0.3984	0.4905	
25	0.0292	0.0001	0.4332	0.6058	
26	0.0158	< 0.0001	0.3983	0.8054	
27	0.0227	< 0.0001	0.3472	0.7794	
28	0.0146	< 0.0001	0.5062	0.9593	
35	0.0173	0.0017	0.9430	0.7905	
42	0.0748	0.0106	0.8946	0.8382	
49	0.2117	0.118848	0.9004	0.9142	
56	0.2569	0.154605	0.8423	0.9054	

Supplementary References

- 1 Wu, C.Y., Young, L., Young, D., Martel, J. & Young, J.D. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. *PLoS One* **8**, e75501 (2013).
- 2 Smith, E.R., Hewitson, T.D., Hanssen, E. & Holt, S.G. Biochemical transformation of calciprotein particles in uraemia. *Bone* **110**, 355-367 (2018).
- 3 Vij, A. G. Effect of prolonged stay at high altitude on platelet aggregation and fibrinogen levels. *Platelets* **20**, 421-427, doi:10.1080/09537100903116516 (2009).
- 4 Suresh, M. V. *et al.* Hypoxia-Inducible Factor (HIF)-1α Promotes Inflammation and Injury Following Aspiration-Induced Lung Injury in Mice. *Shock*, doi:10.1097/SHK.00000000001312 (2018).
- 5 Rolfs, A., Kvietikova, I., Gassmann, M. & Wenger, R. H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. *J Biol Chem* **272**, 20055-20062, doi:10.1074/jbc.272.32.20055 (1997).
- 6 Padhy, G., Sethy, N. K., Ganju, L. & Bhargava, K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. *High Alt Med Biol* **14**, 289-297, doi:10.1089/ham.2012.1095 (2013).
- 7 Tripathy, D. *et al.* Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. *Front Aging Neurosci* **5**, 19, doi:10.3389/fnagi.2013.00019 (2013).
- 8 Wenger, R. H., Rolfs, A., Marti, H. H., Bauer, C. & Gassmann, M. Hypoxia, a novel inducer of acute phase gene expression in a human hepatoma cell line. *J Biol Chem* **270**, 27865-27870, doi:10.1074/jbc.270.46.27865 (1995).
- 9 Tan, F., Ghosh, S., Mosunjac, M., Manci, E. & Ofori-Acquah, S. F. Original Research: Diametric effects of hypoxia on pathophysiology of sickle cell disease in a murine model. *Exp Biol Med (Maywood)* 241, 766-771, doi:10.1177/1535370216642046 (2016).
- 10 Zhang, B. *et al.* Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig. *Sci Rep* **7**, 3654, doi:10.1038/s41598-017-03976-3 (2017).
- 11 Le Jan, S. *et al.* Characterization of the expression of the hypoxia-induced genes neuritin, TXNIP and IGFBP3 in cancer. *FEBS Lett* **580**, 3395-3400, doi:10.1016/j.febslet.2006.05.011 (2006).
- 12 Wellmann, S. *et al.* Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. *J Cell Sci* **117**, 1785-1794, doi:10.1242/jcs.01026 (2004).
- 13 Zhang, Y., Wang, H., Zhang, J., Lv, J. & Huang, Y. Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. *Cancer Sci* **104**, 416-422, doi:10.1111/cas.12108 (2013).
- 14 Hernández, C. *et al.* Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. *Br J Pharmacol* **156**, 262-272, doi:10.1111/j.1476-5381.2008.00044.x (2009).
- 15 Liangos, O. *et al.* Whole blood transcriptomics in cardiac surgery identifies a gene regulatory network connecting ischemia reperfusion with systemic inflammation. *PLoS One* **5**, e13658, doi:10.1371/journal.pone.0013658 (2010).
- 16 Saraf, S. L. *et al.* Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models. *Transl Res* **197**, 1-11, doi:10.1016/j.trsl.2018.01.007 (2018).

- 17 Kelly, K. J., Liu, Y., Zhang, J. & Dominguez, J. H. Renal C3 complement component: feed forward to diabetic kidney disease. *Am J Nephrol* 41, 48-56, doi:10.1159/000371426 (2015).
- 18 Wagner, C. A. *et al.* Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. *Am J Physiol Renal Physiol* **294**, F1373-1380, doi:10.1152/ajprenal.00613.2007 (2008).
- 19 Denecke, B. *et al.* Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. *Biochem J* **376**, 135-145, doi:10.1042/BJ20030676 (2003).
- 20 Loffing, J. *et al.* Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome. *J Am Soc Nephrol* **15**, 2276-2288, doi:10.1097/01.ASN.0000138234.18569.63 (2004).