
 
 

 
 
 



 
 

Supplementary Fig. 1. Gene Ontology analysis. (A) Gene Ontology (GO) enrichment analysis 
REVIGO71 word plot for all trait correlated DE genes in all seven tissues for lipid related traits 
and glucose related traits. GO terms are collapsed into grouping based on GO hierarchy. Color 
represents if the GO term was shared between lipid and glucose traits or was unique. The size of 
each box is proportional to the number of times it was found as a GO term. (Abbreviations in the 
text are MP: metabolic process, BP: biosynthetic process). (B) GO network plot for Liver trait 
correlated DE genes for lipid traits (LDL, HDL, plasma cholesterol, hyperlipidemia, cholesterol 
medications) and glucose traits (blood glucose, HbA1c, T2D status, T2D medications, insulin 
medications). Nodes are colored based on the sharing of pathways between the two lists. 



 
 

 
 



 
 

Supplementary Fig. 2. Differential expression circular plots for all tissues. Enrichment of genes for every tissues’ coexpression 
modules with the trait correlated DE genes. Each track represents a different phenotype and the fill represents the –log10(Fisher’s 
Exact Test P-value). Only those with an FDR <= 5% are shown.  
  



 
 

 

 
 
 
Supplementary Fig. 3. KEGG pathways enriched for the GLD module genes. Left panel: Sterol Bioynthesis; right panel: 
Terpenoid Backbone Biosynthesis. Genes in yellow are the genes found in the GLD module while the genes colored in grey are those, 
which were not found in the GLD module but expressed in the data.  
  
 



 
 

 
 
Supplementary Fig. 4. Metabolite – module correlation for the 20 modules in Liver, VAF and SF. Only shown are the correlation 
r value where the FDR < 5%. Metabolites are clustered by group type.  



 
 

 
 
 
Supplementary Fig. 5. Correlations between GLD module genes and metabolite levels in 
the Hybrid Mouse Diversity Panel (HMDP) dataset. Both in mice fed an Apoe Leiden diet (a 
model of atherosclerosis, labeled “Ath”) and mice fed a normal chow diet (“chow”), GLD 
module genes are significantly associated with both blood glucose levels and blood lipid levels. 



 
 

 
 
Supplementary Fig. 6. Additional probabalistic causal network diagrams. (A) Multiscale (MS) probabilistic causal network for 
the GLD module genes, metabolites, and clinical traits. Color represents the data source and genes in bolded black represent the key 
drivers of the network. Dark grey edges and nodes are highlighted to show the interaction between the GLD genes and glucose via 
amino acids. (B) Global network (N = 8812) all genes are in grey except for GLD module genes, which are colored in gold and 
enlarged. The networks are laid out in spring-weighted measure where the weight is the edge-betweenness, a metric of how much 
information flows through that edge.



 
 

 

 
 
Supplementary Fig. 7.  Gene expression data from mouse experiment. Boxplots for the 
qPCR results from the liver expression of the B6 mice fed either control diet (n = 11 animals) or 
BIBB515 diet (n = 11 animals) are shown for the genes of Psck9, Mvd, Rdh11 and Adipor2. 
Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; 
points, all individual data points. P-values calculated with Student’s t-test, two-sided, with no 
correction for multiple hypothesis testing applied.  



 
 

 
  
 

 
 
Supplementary Fig. 8. Cholesterol results from mouse experiment. Boxplot for the 
cholesterol results from the mice B6 blood samples after being fed either control diet (n = 11 
animals) or BIBB515 diet (n = 11 animals). Center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, all individual data points. P-values 
calculated with Student’s t-test, two-sided, with no correction for multiple hypothesis testing 
applied. 
 
 
  



 
 

Supplementary Table 1.   
The 20 modules enriched for both glucose and lipid correlated DE genes, and the variance 
explained by their 1st PC. 

Module Tissue # Lipid 
DE traits 
enriched 

for 

# Gluc 
DE traits 
enriched 

for 

Variance 
Explained 
by Module 

PC1 

Module 
Lipid 

Correlation 
(direction) 

Module 
Glucose 

Correlation 
(direction) 

gold LIV 4 3 57% LDL (-), 
Plasma 

Cholesterol 
(-) 

HbA1c (+), 
Blood 

Glucose (+) 

black LIV 1 3 45% TG (-) HbA1c (-) 
midnightblue LIV 1 2 59% TG (-) 

 

seashell LIV 1 3 57% TG (-) HbA1c (-) 
bisque LIV 1 3 57% TG (+) HbA1c (+) 
pink LIV 1 2 49% 

  

salmon VAF 1 3 53% TG (+) HbA1c (+), 
Blood 

Glucose (+) 
yellow VAF 1 3 45% TG (+) HbA1c (+) 
black VAF 1 4 46% TG (-) HbA1c (-), 

Blood 
Glucose (-) 

lightgreen VAF 1 2 51% TG (+) HbA1c (+), 
Blood 

Glucose (+) 
lightcyan VAF 1 1 59% TG (-) HbA1c (-) 

tan SF 1 4 49% TG (+) HbA1c (+) 
brown SF 1 4 42% TG (+) HbA1c (+) 
salmon SF 1 2 51% TG (-) 

 

lightcyan SF 1 4 50% TG (-) HbA1c (-) 
sienna SF 1 3 50% TG (+) HbA1c (+) 

chocolate SF 1 3 54% TG (-) 
 

lightgreen SF 1 3 64% TG (+) HbA1c (+) 
wheat SF 1 3 59% 

 
HbA1c (-) 

cyan SF 1 1 47% HDL (-) 
 

peru SF 1 0 55% TG (+) HbA1c (+) 
brown MAM 1 0 42% HDL (-) Blood 

Glucose (-) 
 
  



 
 

Supplementary Table 2 
Correlation statistics of the 1st PC of the GLD-equivalent module (bisque) in the obese cohort 
liver with glucose and lipid trait data available in that cohort. 
 
Trait Correlation (Pearson’s r) FDR 
Blood Insulin 0.094 0.036 
Blood Glucose 0.13 0.0053 
HbA1c 0.093 0.091 
LDL Cholesterol -0.16489 0.0011 
HDL Cholesterol -0.05046 0.453061 
Triglycerides 0.243345 1.35E-08 
Plasma Cholesterol -0.01145 0.838924 

 
 
Supplementary Table 3. 
Enrichment analysis results from GTEx tissues.  
 

Tissue OR FDR Module 
Size 

# Gold Genes 
in Module 

Age 

Liver 3368.10 1.86E-88 47 35 Old 
Liver 5172.02 1.15E-77 36 30 Young 

Esophagus Mucosa 2240.90 2.35E-66 38 27 Old 
Cells Transformed 

fibroblasts 
838.24 3.10E-46 39 21 Young 

Lung 465.97 1.73E-28 37 14 Young 
Cells Transformed 

fibroblasts 
63.43 1.79E-27 280 22 Old 

Artery Aorta 91.17 3.15E-21 129 15 Old 
Lung 31.30 7.28E-13 325 13 Old 

Esophagus Mucosa 6.73 5.99E-08 2374 21 Young 
Thyroid 16.82 1.05E-05 330 8 Young 
Thyroid 10.51 1.11E-05 674 10 Young 

Nerve Tibial 34.77 6.14E-05 96 5 Young 
Skin Sun Exposed (Lower 

leg) 
5.59 7.53E-05 1960 15 Old 

Liver 31.60 4.88E-04 73 4 Young 
Muscle Skeletal 14.17 5.31E-04 241 6 Old 

Nerve Tibial 61.09 1.14E-03 33 3 Young 
Lung 11.40 1.18E-03 349 6 Old 

Adipose Subcutaneous 4.86 1.35E-03 1810 13 Old 
Lung 5.82 1.87E-03 1055 9 Old 

Thyroid 10.15 2.17E-02 320 5 Old 
Adipose Subcutaneous 11.64 4.35E-02 207 4 Young 
Adipose Subcutaneous 16.32 4.44E-02 110 3 Old 



 
 

 
Supplementary Table 4. 
Liver modules correlated to GLD module at FDR <5% and the number of edges to & from GLD 
genes in the expanded and global BNs. 
 

Module FDR Size Correlation # edges 
Gold -> 

module in 
expanded 

BN 
(path 1) 

# edges  
module -> 

gold in 
expanded BN 

(path 1) 

# edges 
Gold -> 
module 

in global 
BN 

(path 1) 

# edges  
module -
> gold in 

global 
BN 

(path 1) 
gold 0.00E+00 60 1.000 84 84 81 81 

bisque 4.42E-20 30 0.404 4 1 4 0 
lightgreen 6.05E-09 75 0.267 1 0 0 0 

wheat 6.63E-07 44 0.231 0 1 0 0 
chocolate 1.67E-06 41 0.118 0 0 0 0 

yellow 5.15E-04 595 0.111 3 5 3 3 
purple 5.90E-03 134 -0.102 0 0 0 0 
peru 1.62E-02 45 -0.118 0 0 0 0 

midnightblue 1.62E-02 78 -0.134 0 0 0 0 
black 2.45E-02 455 -0.165 0 0 0 0 

seashell 4.02E-02 35 -0.223 0 0 0 0 
 
 



Supplementary Note 1: Code Supplement

All analyses were performed with previously published packages. This doc-
ument contains details about how we invoked those packages. Unless otherwise
noted, these analyses were run in R. See the documentation of these methods
for more information.

For information about the sequence of these analyses and the rationale be-
hind them, see the Methods section of the main text.

1 Normalization and Quality Control

Normalization and quality control were performed in R using the limma, edgeR,
and variancePartition libraries, all publicly available on Bioconductor. The
normalization and quality control pipeline starts with the following input:

� A matrix data of expression data (counts) for a single tissue. Rows are
transcripts and columns are samples.

� A data frame info containing all technical and phenotypic information
for each sample. Rows are samples and columns are fields. Make sure the
samples are aligned with the columns of data.

Each step of this pipeline is run using a single tissue, and repeated for all seven
tissues.

1.1 First Pass Filtering and Normalization

We performed Initial steps of filtering and normalization using the cpm() and
calcNormFactors() functions from the edgeR package and the voom() function
from the limma package.

isexpr = rowSums(cpm(data )>1) >= .10*ncol(data)

genesAll <- DGEList(counts=data[isexpr,])

genesAll <- calcNormFactors(genesAll)

vobj = voom(genesAll)

# save filtered and normalized data here

1



1.2 Variance Partition Analysis

We performed variance partition analysis using the variancePartition pack-
age. Here, form is a formula containing the variables to consider; see the package
documentation of variancePartition for details. vobj is the output of voom()
from step 1.1.

varPart = fitExtractVarPartModel( vobj, form, info )

x= plotVarPart(varPart)

# show or save the variance partition plot here

1.3 Flow Cell and Hardware Correction

We corrected for flow cell and hardware using the lmFit() function from the
limma package. As described in Methods, we corrected for flow cell for all tissues
and additionally corrected for hardware for visceral fat and blood. Note that for
this correction to be reliable, each flow cell or hardware must have processed at
least about 10 samples. design is a design matrix, where columns are flow cell
identifiers or hardware identifiers and rows are samples, and each cell contains
1 if that sample was processed on that flow cell or hardware and 0 otherwise.
We removed multicolinearity in the design matrix using svd before performing
the correction. vobj is the output of voom from step 1.1.

svd_design = svd(design)

design_matrix_svd =svd_design$u[,svd_flowCell$d>10^-10]

fit = lmFit(vobj, design_matrix_svd)

resid = residuals(fit, vobj)

# save corrected data here

1.4 PCA and Outlier Removal

We used builtin R functions to perform PCA on the normalized and corrected
expression data. We then used ggplot2 to determine outliners, by drawing an
ellipse in PC1 vs PC2 space and identifying points outside of that ellipse. Note,
this code requires a column name col, corresponding to a field in the info data
frame, which is only used to color points in the plot; outliers can be computed
without specifying this.

covariance=cov(resid)

SampleByVariable=t(covariance)

clonename<-rownames(SampleByVariable)

pca <- prcomp(SampleByVariable, scale=T)

summ=summary(pca)

2



level3=pnorm(3,mean=0,sd=1,lower.tail=T) - pnorm(3,lower.tail=F)

level2=pnorm(2,mean=0,sd=1,lower.tail=T) - pnorm(2,lower.tail=F)

level1=pnorm(1,mean=0,sd=1,lower.tail=T) - pnorm(1,lower.tail=F)

a <- ggplot(data.frame(pca$x),

aes(x= pca$x[,1], y= pca$x[,2],

factor(info[,col]), label=clonename)) +

geom_point(size=0.8) +

geom_text(aes(label=clonename), hjust=0, vjust=0, size=1.2) +

labs(title="PC1-PC2") +

xlab(paste("PC1: ",

round(summ$importance[2,1]*100, digits=2),"%",sep="")) +

ylab(paste("PC2: ",

round(summ$importance[2,2]*100,digits=2),"%",sep="")) +

ggtitle(paste("Colored By:",col)) +

stat_ellipse(aes(x = pca$x[,1],y=pca$x[,2]),inherit.aes=F,

type="norm",level=level3,

linetype = "dotdash", colour="darkgrey") +

stat_ellipse(aes(x = pca$x[,1],y=pca$x[,2]),inherit.aes=F,

type="norm",level=level2,

linetype = "dotdash", colour="darkgrey") +

stat_ellipse(aes(x = pca$x[,1],y=pca$x[,2]),inherit.aes=F,

type="norm",level=level1,

linetype = "dotdash",colour="darkgrey")

build <- ggplot_build(a)$data

points <- build[[1]]

ellipse <- build[[3]]

dat <- data.frame(points[1:2], in.ellipse = as.logical(

point.in.polygon(points$x, points$y,

ellipse$x, ellipse$y)))

outliers=points$label[which(dat$in.ell==F)]

# show or save the PCA plot here

resid = resid[,setdiff(colnames(resid), outliers)]

info = info[match(colnames(resid), info$id),]

# save filtered data here

2 Differential Expression

We performed differential expression analysis using the lmFit(), contrast.fit(),
and eBayes() functions from the limma package.

3



2.1 Continuous Traits

The code below is applied to each continuous trait in info to detect genes
whose expression is significantly correlated with that trait. Categorical traits
are treated differently, see step 2.2 below. info and resid are the normalized
and filtered data reulting from step 1.4; col is the column name.

design = model.matrix(~ info[,col])

fit = lmFit(resid,design)

fit2 <- eBayes(fit)

topSet = topTable(fit2, number=nrow(fit2))

# output or analyze top DE results here

2.2 Categorical Traits

The code below is applied to each categorical trait, to detect genes whose
expression is significantly different between different categories. resid, info,
and col are the same as in step 2.1 above.

tmp = info[,col]

design = model.matrix(~ 0 + tmp )

colnames(design)=gsub("tmp","",colnames(design))

levs = colnames(design)

combos = combn(levs,2)

contrasts = apply(combos,2, function(x){paste(sort(x),collapse="-")})

contrast.matrix <- makeContrasts(contrasts = contrasts ,levels=design)

fit = lmFit(resid,design)

fit2 <- contrasts.fit(fit, contrast.matrix)

fit2 <- eBayes(fit2)

for(j in 1:ncol(combos)){

topSet = topTable(fit2, coef=j, number=nrow(fit2))

# output or analyze top DE results here

}

2.3 Metabolite Analysis

We used a version of the same differential expression analysis to detect metabo-
lites that were significantly different between statin-taking and non-statin-taking
patients. Here, metabolite_data is a matrix of measured metabilte levels
analagous to the data matrix used in step 1.1, and info is the same clini-
cal information data frame used as input in steps 1.2 and 1.4. Metabolite data
is first imputed (to fill in missing data and zeros) and normalized.

4



metabolite_data_imputed = apply(metabolite_data,2,function(s){

t = s

t[is.na(s)] = median(s,na.rm=T)

t

})

mins = apply(metabolite_data_imputed, 1,function(S){min(S[S!=0])})

for(i in 1:nrow(metabolite_data_imputed)){

metabolite_data_imputed[i,metabolite_data_imputed[i,] == 0] = 0.9*mins[i]

}

metabolite_data_norm = metabolite_data_imputed

for(i in 1:nrow(metabolite_data_imputed)){

metabolite_data_norm[i,] = scale(metabolite_data_imputed[i,],

center = T, scale = T)

}

design = model.matrix(~clinical_info_de$LipidLowerer)

fit = lmFit(metabolite_data_de_norm,design)

fit2 <- eBayes(fit)

topSet = topTable(fit2, number=nrow(fit2))

# output or analyze top differential metabolites here

3 GO and KEGG Analysis

GO and KEGG annotations were retrieved using the goseq package, and en-
richment analysis on these annotated was performed using the topGO package,
both available on Bioconductor. Here, allGenes is a vector containing the En-
sembl Gene IDs of all genes expressed in the tissue, and DEGenes is the list of
differentially expressed genes from any of the differential expression analyses
from step 2.

gene.map = getgo(allGenes,'hg19','ensGene')

a = rep(0, length(allGenes))

names(a) = allGenes

a[allGenes %in% DEGenes] = 1

ips = new("topGOdata", description = "Enrichment from DE",

ontology = c("BP", "MF", "CC", "KEGG"),

allGenes = allGenes, geneSel = names(a[a==1]),

nodeSize = 10,

annot = annFUN.gene2GO,

5



gene2GO = gene.map)

test.stat = new("classicCount", testStatistic = GOFisherTest, name = "Fisher test")

res.fisher = getSigGroups(ips, test.stat)

res.final = GenTable(ips, classic = res.fisher, topNodes=500)

res.final$classic[res.final$classic == "<1e-30"] = 1/(1+1e-30)

res.final$classic = as.numeric(res.final$classic)

res.final = res.final[res.final$classic <= 0.1,]

# output or analyze GO enrichment results here

4 Coexpression Analysis

We performed coexpression analysis using the coexpp package, available at
https://bitbucket.org/multiscale/coexpp/, and the WGCNA package, avail-
able at https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/

Rpackages/WGCNA/. Here, data is a data frame of expression data, either de-
rived from the resid matrix from step 1.4 or downloaded from GTEx, refor-
matted and preprocessed for WGCNA. See https://horvath.genetics.ucla.
edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ for informa-
tion on preprocessing steps required for WGCNA. Other than expression data,
the code below takes two parameters: cutHeight and beta, the values of which
were different by tissue as follows:

tissue cutHeight beta

LIV 200 NULL

AOR 225 NULL

Blood 250 NULL

VAF 250 6
MAM 250 NULL

SF 250 NULL

SKLM 200 7

sampleTree = flashClust(dist(data), method = "complete")

clust = cutreeStatic(sampleTree, cutHeight = cutHeight, minSize = 5)

keepSamples = (clust==1)

samplesRemoved = data[keepSamples, ]

coex <-coexpressionAnalysis(as.matrix(samplesRemoved),

cut="tree",beta = beta)

# output or analyze coexpression results here

6

https://bitbucket.org/multiscale/coexpp/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/


5 eQTL analysis

eQTL analysis was performed with the standalone tools fastQTL and MetaX-
can; see Methods and the documentation of these tools: http://fastqtl.

sourceforge.net/ and https://github.com/hakyimlab/MetaXcan.

6 Bayesian Network Analysis

6.1 Causal Inference Test

To seed the multiscale network with prior edges, we performed a causal in-
ference test using the citpp package, available at https://bitbucket.org/

multiscale/coexpp. The main input data are 3 matrices: SNPs, whose entries
are SNP dosages (0, 1, or 2 for genotyped SNPs, a number between 0 and 2 for
imputed SNPs); met_data, whose entries are measured metabolite levels; and
gene_data, whose entries are measured gene expression levels. For all three,
rows are samples and columns are measurements. This step also requires a data
frame, eQTL_data, where rows are all possible combinations of metabolites and
genes, and columns contain information about that metabolite, that gene, and
the eQTL for that gene. In particular, the columns snp_Idx, gene_Idx, and
met_Idx are the indices of the eQTL, gene, and metabolite in the input matri-
ces; and SNP_Met_pval is the p-value of association between the eQTL and the
metabolite.

L = as.matrix(SNP_expr)

G = as.matrix(gene_data)

T = as.matrix(met_data)

trios = as.matrix(cbind(eQTL_data$snp_Idx,eQTL_data$gene_Idx,eQTL_data$met_Idx))

cit_causal = cit(L,G,T, trios,threads=10)

cit_reactive = cit(L,T,G, trios[,c(1,3,2)],threads=10)

colnames(cit_reactive) = paste(colnames(cit_reactive),"_reactive",sep="")

res = cbind(eQTL_data,cit_causal,cit_reactive)

load("/sc/orga/projects/STARNET/ariella/cis_trans_causlity/rerun/geneNames_all.Rdata")

res$causal = res$p_cit <= 0.05 & res$p_cit_reactive > 0.05 & res$SNP_Met_pval <= 0.05 & res$pval <=0.05

res$reactive = res$p_cit > 0.05 & res$p_cit_reactive <= 0.05 & res$SNP_Met_pval <= 0.05 & res$pval <=0.05

# output or process results data frame here

7

http://fastqtl.sourceforge.net/
http://fastqtl.sourceforge.net/
https://github.com/hakyimlab/MetaXcan
https://bitbucket.org/multiscale/coexpp
https://bitbucket.org/multiscale/coexpp


6.2 GLD Module Expansion

We expanded the GLD module using PEXA, which is a standalone program
executed in Java. Please see the original PEXA publication (https://dx.doi.
org/10.1101/gr.087890.108) or contact its authors for details on how to run
PEXA.

6.3 Network Construction

We ran RIMBANET using the run_BN.sh wrapper, available at https://

bitbucket.org/multiscale/run_bn/. No input parameters are required be-
yond the data produced by previous steps. See the documentation there.

7 Key Driver Analysis

We ran key driver analysis using the keyDriver package, available at https://
github.com/kippjohnson/RASNetwork/tree/master/Code/RPackages/keyDriver.
This package is invoked from the command line using the R-keydriver-analysis.R
script, included in that repository. Edit that script to load the network data
and set parameters; the parameters we used in this analysis were:

directed <- TRUE

layer <- 8

minDsCut <- 1

8

https://dx.doi.org/10.1101/gr.087890.108
https://dx.doi.org/10.1101/gr.087890.108
https://bitbucket.org/multiscale/run_bn/
https://bitbucket.org/multiscale/run_bn/
https://github.com/kippjohnson/RASNetwork/tree/master/Code/RPackages/keyDriver
https://github.com/kippjohnson/RASNetwork/tree/master/Code/RPackages/keyDriver

