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Supplementary Note 1. Distribution of study sites across the climatic range of sampled 

biomes 

 

 

Supplementary Fig. 1. Distribution of study sites across the sampled biomes and climatic range. Biome 

boundaries in (a) are based on shapefiles published by Olson et al. (2001)1. Colored polygons in (b) and 

(c) represent the climatic range of studied biomes. 

The sites used in this study reflected the global climatic range of forest and woodland biomes 

quite well (Supplementary Fig. 1). Forests with annual precipitation ≤ 300 mm or ≥ 2700 mm 

and a precipitation seasonality of more than ≥ 113 % or less than ≤ 14 % (coefficient of variation 

of monthly precipitation) accounted for ~3 % of the forest and woodland points in our global 

sampling grid, after excluding outliers based on a 95 % kernel density estimation for each 

biome (see Supplementary Fig. 9). Forest structural complexity is unlikely to linearly continue 

to increase or decrease far beyond the range we have studied and should saturate at a certain 

asymptote. We assume SSCI would follow a sigmoid function if sites with higher and lower 

precipitation and seasonality were included. However, structural complexity may also 



decrease with extremely high levels of precipitation due to permanent waterlogging. Still, we 

measured SSCI values of up to 13.4 in individual plots, suggesting that higher SSCI values in 

the excess of site-averaged SSCI values are possible within the investigated climatic range. 

 

Supplementary Note 2. Correlations between the Stand Structural Complexity Index (SSCI) 

and other metrics of forest structural complexity  

The Stand Structural Complexity Index (SSCI) used in this study correlates well with other 

metrics of forest structural complexity (Supplementary Fig. 2, such as the Structural 

Complexity Index by Zenner & Hibbs (2000)2, the Gini-Coefficient of tree diameters (see 3) and 

the Tree Size Differentiation Index (see 4).  

 

Supplementary Fig. 2. Relationships of SSCI with other metrics of forest structural complexity. Linear 

regression was used to model relationships between the forest structural complexity index used in this 

study (SSCI) and (a) the Stand structural complexity index (SCI) by Zenner and Hibbs (2000)2, (b) the 

Gini-Coefficient of tree diameters (see3), and (c) the tree size differentiation index (see4). Data points are 

based on 91, fully inventoried, stem-mapped forest plots of 1 hectare (n = 91). Each linear regression 

model was significant at p < 0.0001. Forest plots represent differently managed temperate broadleaf and 

conifer forests of Central Europe (shelterwood system, selectively logged and unmanaged, old-growth). 

Data points represent mean SSCI-values of five systematically distributed single scans per plot (same 

sampling design as in this study). Shaded envelopes represent the 95 % confidence intervals of the 

regression lines. The shown correlations between SSCI and other measures of structural complexity are 

stronger than in the original publication5, because they are based on fully inventoried and completely 

stem-mapped plots (in contrary to the results shown in the original publication, where trees smaller 

than 7 cm DBH were not accounted for). Additional information on study sites is provided in 5,6. Data 

of tree attribute-based metrics of forest structural complexity is published in 6. 

The diversity and intermingling of different tree sizes, in conjunction with complementary 

crown architectures, determine the density and degree of heterogeneity of biomass or foliage 



distribution in three-dimensional space and thus the vertical stratification and spatial patterns 

of canopy space occupation (see Supplementary Fig. 3). SSCI consists of two components, the 

fractal dimension of cross-sectional polygons and effective number of canopy layers (Effective 

number of layers, ENL7).      

 

Supplementary Fig. 3. Graphical visualization of three-dimensional point clouds, cross-sectional 

polygons and vertical foliage profiles of a forest with low (a, SSCI = 4.3) and high structural complexity 

(b, SSCI = 7.1). Images of three-dimensional point clouds are based on a dataset published in Juchheim 

et al. (2017)8. Images of cross-sectional polygons and vertical profiles are based on a dataset published 

in Ehbrecht et al. (2017)5. 

The fractal dimension quantifies the shape complexity of cross-sectional polygons (see 5for 

details). As such, it quantifies the heterogeneity of foliage or biomass distribution in three-

dimensional space (sensu9). However, the fractal dimension is a scale-independent measure of 

structural complexity (see 10). In order take stand size and vertical stratification into account, 

the Effective Number of Layers (ENL) is used to scale the fractal dimension values, which 

quantifies the vertical stratification or layering. Higher tree size diversity and intermingling 

result in multi-layered canopies and thus higher ENL values (see vertical profiles of foliage 

density in Supplementary Fig. 3, ENL is in the right profile is higher than in the left).  



SSCI is based on single terrestrial laser scans and as such, it is affected by occlusion, because 

parts of the canopy space are sampled under-proportionally. To test effects of occlusion on 

ENL, we compared ENL values between point clouds based on single scans and multiple scans 

with occlusion of less than 1% (based on a voxel size of 20cm side length. Ray tracing was used 

to determine the share of occluded voxels, around 40 scans on a 40 x 40 m plot, see 7 for details). 

We found that ENL can be quantified based on single scans with an RMSE of 9.82% (see Fig. 

8). The slope of the regression line, however, was not significantly different from 1 (i.e. no 

significant deviation from the 1:1 line). The cross-sectional polygons are based on the 

hemispherical view of the scanner, and as such, the fractal dimension is not directly affected 

by occlusion. Inherent to the way they are being constructed, the cross-sectional polygons 

solely depend on information that is visible from the scanner´s perspectives. Even though 

large parts of the upper canopy remain occluded, laser beams still traverse through small gaps 

in lower- or mid-canopy layers and detect objects in upper canopy layers, which creates spikes 

in the cross-sectional polygons. A more heterogeneous distribution of foliage or biomass in 

three-dimensional space thus results in more complex shapes of the cross-sectional polygons 

and is expressed in higher fractal dimension values.   

 

Supplementary Note 3. Correlations between forest structural complexity and canopy 

height, basal area or canopy openness 

Contrary to other studies11,12, we did not find significant correlations between climate variables 

and canopy height or basal area, which are often used as predictors of above-ground biomass13. 

However, we still assume that forest structural complexity could be correlated to these 

structural attributes, as climatic effects on structural complexity could be mediated by 

correlations between structural complexity and canopy height, basal area or canopy openness. 

SSCI followed a humped-shaped curve in relation to canopy height and basal area and 

decreased with increasing canopy openness (Supplementary Fig. 4). Forests with very high 

and very low basal area/canopy height are rather characterized by a low structural complexity.  



 
Supplementary Fig. 4. Relationships of canopy height (a), basal area (b) and canopy openness (c) with 

the stand structural complexity index (SSCI) for the study sites. Fitted curves represent thin-plate 

regression splines based on generalized additive models. Shaded enveloped represent 95 % confidence 

intervals of regression splines. Models were significant at p = 0.02 (a), p = 0.0958 (b) and p < 0.0001 (c). 

Data points represent mean SSCI as well as canopy height, basal area or canopy openness values, 

respectively, per site. Error bars indicate the standard error of the mean. 

Greater canopy height and basal area are both mainly driven by the number of large diameter 

trees on the plot. An increasing share of large diameter trees per plot may result in suppressed 

growth or lower survival rates of under- or mid-story trees, due to a high degree of asymmetric 

competition. Under these conditions, tree size diversity is low and three-dimensional canopy 

space is less efficiently filled, resulting in a lower structural complexity. A low structural 

complexity of forests with low basal area and/or low canopy height is due to a low tree size 

diversity or a low vertical stratification, as larger trees are lacking. However, structural 

complexity decreased with greater canopy openness, following a non-linear, near negative 

exponential trend (Supplementary Fig. 2). 

 

Supplementary Note 4. Inter-correlations of climate variables 

In our dataset, mean annual precipitation (MAP) and mean annual precipitation minus 

potential evapotranspiration (MAP – PET), as well as precipitation seasonality (Prec. 

Seasonality) and MAP – PET were significantly inter-correlated (Pearson`s correlation 

coefficient, r = 0.79 and r = 0.80, respectively), and were not used in combination during 

modelling. All other variable combinations either did not show significant inter-correlation or 

showed correlation coefficients below the threshold (r < |0.7|) (Supplementary Fig. 5). 



 

Supplementary Fig. 5. Correlation (r) matrix of climate variables used to check for collinearity.  

 

Supplementary Note 5. Model cross-validation 

In order to test the robustness of the model used to predict and map SSCI using mean annual 

precipitation and precipitation seasonality as predictors, we performed a leave-one-out-cross-

validation (LOOCV) using the caret R-package. SSCI of excluded sites was predicted with a 

mean RMSE of 0.71. Supplementary Table 1 shows the model summaries after excluding single 

sites or entire biomes. The given summaries describe the model performance (R², AICc, and 

RMSE) after excluding the respective sites or biomes. 

 

 

 

 

 

 

 



Supplementary Table 1. Model summaries after excluding single sites or entire biomes from the 

linear model used estimate the potential structural complexity across the earth`s forest and woodland 

ecoregions. Each linear regression model was significant at p < 0.0001. 

Site excluded R² AICc RMSE 

Parque Nacional Villarica (Chile) 0.91 41.69 0.59 

Big Reed (USA) 0.89 44.44 0.63 

Budongo Forest Reserve (Uganda) 0.90 43.14 0.61 

Chobe Forest Reserve (Botsuana) 0.89 43.00 0.61 

Bwabwata National Park (Namibia) 0.88 44.38 0.63 

Danum Valley (Malaysia) 0.89 44.46 0.63 

Fairbanks (USA) 0.89 44.25 0.63 

HJ Andrews Old-Growth Forest (USA) 0.90 44.23 0.63 

Khaudum National Park (Namibia) 0.88 43.72 0.62 

Lagodechi Nature Reserve (Georgia) 0.89 44.43 0.63 

Maliau Basin (Malaysia) 0.88 44.45 0.63 

Muddus (Sweden) 0.91 40.33 0.57 

Parque Tantauco National Park (Chile) 0.90 41.43 0.58 

San Pablo de Tregua Nature Reserve (Chile) 0.89 44.06 0.62 

Rockefeller Forest (USA) 0.89 44.31 0.63 

Rožok (Slovakia) 0.89 44.42 0.63 

Saddle Road Forest (USA) 0.92 38.88 0.54 

Uholka-Shyrokyi Luh (Ukraine) 0.91 41.64 0.58 

Whitaker Forest (USA) 0.90 43.67 0.62 

Colo-I-Suva Forest (Fiji) 0.88 44.45 0.63 

    

Biome excluded R² AICc RMSE 

Temperate conifer forest 0.90 37.99 0.62 

Temperate broadleaf forest 0.91 32.99 0.59 

(Sub-)Tropical moist broadleaf forest 0.89 34.02 0.58 

(Sub-)Tropical tree savannas and woodlands 0.82 40.90 0.64 

Boreal forest 0.91 39.60 0.58 

 

 

 

 

 

 

 



Supplementary Note 6. Model coefficients and residuals 

The normal distribution of model residuals was tested and confirmed using a Shapiro-Wilk 

test (W = 0.955, p = 0.455) for the model used to predict and map SSCI. Model coefficients are 

shown in Supplementary Table 2; model residuals are shown in Supplementary Fig. 4. 

Supplementary Table 2. Model coefficients of the linear regression model that was used to predict 

SSCIpot across biomes based on mean annual precipitation (MAP) and precipitation seasonality (Prec. 

Seasonality) 

  Coefficient estimate Std. error t p-value 

Intercept 6.057558 0.566731 10.689 5.78E-09 

MAP 0.001319 0.000241 5.473 4.12E-05 

Prec. Seasonality -0.033841 0.005521 -6.129 1.11E-05 

 

 

Supplementary Fig. 6. Residual plots of the model that was used to predict SSCIpot across biomes 

based on mean annual precipitation and precipitation seasonality



Supplementary Note 7. Relations between climate variables and attributes of forest structure 

 

Supplementary Fig. 7. Relations between climate variables and attributes of forest structure. MAP and Prec. seasonality significantly correlated with canopy 

openness (p < 0.0001). We found no significant effects of climate variables on canopy height or basal area.  



Supplementary Note 8. Global sampling grid and climatic ranges of sampled biomes 

 

 

Supplementary Fig. 8. Global sampling grid across the sampled biomes1. Distance between sample 

points is ~50km across latitudes. The sampling grid was confined to ecoregions that were classified as 

forest, woodland, taiga, chaco, yungas, várzea, or campinarana. Large areas in the (sub-) tropical 

grasslands, savannas and shrublands biome were not classified as such and were hence not sampled.  

 

Supplementary Fig. 9. Climatic ranges of sampled biomes. Points represent sample points of the global 

sampling grid. Dashed lines include the 95 % of sample points that were used to model SSCIpot within 

biomes, based on a 95 % kernel density estimation. Sample points outside the dashed line were 

considered outliers and were rejected during analyses. Coloured polygons are convex hulls around the 

95 % kernel density used for visualizing the climatic range of the respective biome.     



Supplementary Note 9. Relative changes in mean annual precipitation and precipitation 

seasonality by 2070 

 

Supplementary Fig. 10. Relative changes in mean annual precipitation (a) and precipitation seasonality 

(b) under a RCP8.5 emissions scenario. Projections are based on 17 different climate models that were 

used in the 5th IPCC report14 within the frame of the Coupled Model Intercomparisons Project (CMIP5)15. 

Maps are based on the WorldClim dataset16 and show average change across the 17 climate models.  
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