
Figure S1. Stem-loop structures formed by the conserved nucleotides at 5' and 3' termini of jujube yellow mottle-associated virus (JYMaV) RNAs.

Figure S2. Multiple alignment of nucleotides at the 3' un-translation region (3'UTR) of RNA1 sequences of jujube yellow mottle-associated virus (JYMaV) amplified from Aksu jujube samples and the corresponding sequence of a reported isolate SY. The 21-bp repeat sequences were highlighted with red boxes. Each sequence was labeled with a sampling field ID followed with a location number and a clone number.

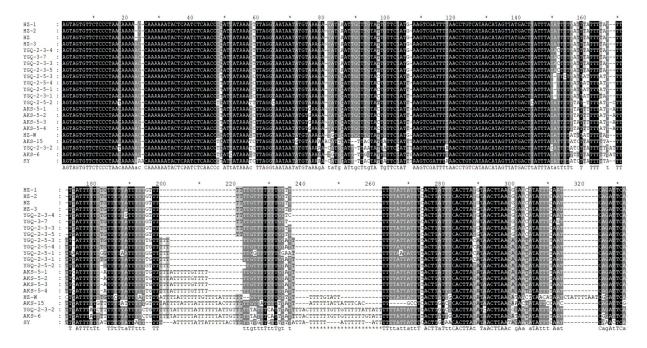

Figure S3. Multiple alignments of nucleotides at the 5' UTR of RNA3 sequences of jujube yellow mottleassociated virus (JYMaV) amplified from Aksu jujube samples and the corresponding sequence of a reported isolate SY. Each sequence was labeled with a sampling field ID followed with a location number and a clone number.

Figure S4. Multiple alignments of nucleotides at the 5' UTR of RNA4 sequences of jujube yellow mottleassociated virus (JYMaV) amplified from Aksu jujube samples and the corresponding sequence of a reported isolate SY. Each sequence was labeled with a sampling field ID followed with a location number and a clone number.

	*	180	*	200	*	220
AKS-5-1	JAUAA <mark>UU</mark> UUAUU	C				-UACCUCGAAUU
AKS-5-2	UUAUU <mark>UUAUU</mark>	c				-UACCUCGAAU
AKS-5-3	UUAUU <mark>UUAUU</mark>	C				-UAC <mark>CUCGAAU</mark>
HZ	UUAUU <mark>UUAUU</mark>					-UAC <mark>CUCGAAU</mark>
SY	UUAUU <mark>UUAUU</mark>	CUGAGCUUU	AUU7	AUUAAUU <mark>GUU-</mark> U	UUAUUUUAUU	CUACCUCGAAU
AYKL-3	JAUAA <mark>CC</mark> UUAUU	CUGUUUUUUUUAU	UAUGACUU/	AUUAAUU <mark>AUUC</mark> U	UAUUUUU <mark>UA</mark> U	UUGUCUCGAAUU
YGQ-2-3	JAUAA <mark>CC</mark> UUAUU	CUGUUUUUUUAU	UAUGACUUA	AUUAAUUAUUUU	UAUUUUUUAU	UUAUCUCGAAUU
YGQ-3-7-1		CUGUUUUUUUAU				
YGQ-3-7-2	JAUAA <mark>CC</mark> UUAUU	CUGUUUUUUUAU	UAUUACUUA	AUUAAUUAUUUU	UAUUUUUAU	UUAUCUCGAAUU
	280	* 300		* 320		* 340
AKS-5-1	U <mark>UUUU</mark> –UUAUU	JUUAUUU <mark>U</mark> UAUUU	JUUAC <mark>UU</mark> UU	UUUAUUUU <mark>UA</mark> UUU	UAUUAUUUU	JAUC <mark>UU</mark> GUCAUU
AKS-5-2	U <mark>UUUU</mark> –UUAUUU	JUUAUUU <mark>U</mark> UAUUU	JUUAC <mark>UU</mark> UU	UUUAUUU <mark>UA</mark> UUU	UAUUAUUUUU	JAUC <mark>UU</mark> GUCA <mark>U</mark> U
AKS-5-3	UUUUU <mark>-UUUU</mark> U	JUUAUUU <mark>U</mark> UUAUUU	JUUAC <mark>UU</mark> UU	UUUAUUU <mark>UA</mark> UUU	UUUUAUUUU	JAUC <mark>UUGUCA</mark> U
HZ	UUUUU <mark>-UUUU</mark> U	JUUAUUU <mark>U</mark> UUAUUU	JUUAC <mark>UU</mark> UU	UUUAUUU <mark>UA</mark> UUU	UUUUA <mark>UUUU</mark> U	JAUC <mark>UUGUCAU</mark> U
SY	UUUUU <mark>AUUAU</mark> U	JUCAUUU	JUUAU <mark>UAUU</mark>	UUU <mark>-UUA</mark> UUU	UAUCAUUUU·	GU <mark>UU</mark> AUCACU
AYKL-3	UAUUU-UUAUAU	JUUAUUU <mark>C</mark> UAUU(CUUAUUAUU	UUUGUUUAUUU	UAUUC<mark>UUU</mark>G∙	UUUUGUCAGU
YGQ-2-3	UAUUU-UUAUAU	JUUAUUU <mark>C</mark> UAUU(CUUAUUAUU	UUUGUUUAUUU	UAUUC<mark>UUU</mark>G·	UUUUGUCAGU
YGQ-3-7-1	UAUUU-UUAUAU	JUUAUUU <mark>C</mark> UAUU(CUUAUUAUU	UUUGUUUAUUU	UAUUC<mark>UUU</mark>G·	UUUUGUCAGU
YGQ-3-7-2	U <mark>AUUU-UUAU</mark> AU	JUUAUUU <mark>C</mark> UAUU(CUUA <mark>UU</mark> AUU	UUUGUUUAUUU	UAUUC <mark>UUU</mark> G·	U <mark>UUU</mark> GUCA <mark>G</mark> U

Figure S5. Multiple alignments of nucleotides at the 5' UTR of RNA5 sequences of jujube yellow mottle-associated virus (JYMaV) amplified from Aksu jujube samples and the corresponding sequence of a reported isolate SY. Each sequence was labeled with a sampling field ID followed with a location number and a clone number.

Figure S6. Multiple alignments of nucleotides at the 5' UTR of RNA6 sequences of jujube yellow mottleassociated virus (JYMaV) amplified from Aksu jujube samples and the corresponding sequence of a reported isolate SY. Each sequence was labeled with a sampling field ID followed with a location number and a clone number.

ORF	Primer	Sequence ª (5'-3')	Position	Produc t size
			(nt)	(bp)
ORF4	P4-F	AAAAAGCAGGCTCCATGAAAATATTTCAAGTATATT	1317–1392	1155
	P4-R	AGAAAGCTGGGTCCAATGCTATCTTAGACATATC	265–285	
ORF5	P5-F	AAAAAGCAGGCTCCATGAAAGTTATCAAGGCTTAC	1131–1151	861
	P5-R	AGAAAGCTGGGTCATCATTATAATGTATGGAC	318-336	

Table S1 Primers designed for amplification of the ORF4 and ORF5 of jujube yellowmottle-associated virus (JYMaV) isolate HZ

a: The artificially added nucleotides used for recombination reactions were underlined.

Matched protein	No. of contig	Length (bp)	aa identity (%)
P1	51	51-287	48.4-90.8
P2	12	56-180	51.6-70.8
P3	12	56-190	59.4-88.2
P4	13	55-350	46.8-91.3
P8	1	73	69.2

Table S2. Contigs derived samples HZ by small RNA sequencing (sRNA-seq) and matched proteins of raspberry leaf blotch virus (RLBV), a member of the genus *Emaravirus* as analyzed against database available in NCBI GenBank

Sample	RNA	Contig ID	No. of	Size (bp)	Position (nt)	Identity (%)
			reads			
AKS-6	RNA1	contig_364	280980	7134	31–7160	92.2
	RNA2	contig_489	90265	2221	1–2221	95.9
	RNA3	contig_60	298358	1225	1–1224	98.3
	RNA4	contig_255	65443	1312	168–1483	91.6
	RNA5	contig_309	109523	1260	11–1274	88.9
	RNA6	contig_66	116627	991	1–991	90.1
AKS-15	RNA1	contig_177	370602	7151	13–7159	92.4
	RNA2	contig_70	93402	2221	1–2221	93.7
	RNA3	contig_107	601278	1228	1–1228	98.0
	RNA4	contig_184	86128	1488	2–1488	95.8
	RNA5	contig_914	79172	1239	2–1239	97.9
	RNA6	contig_305	99406	975	1–975	87.9

Table S3 Contigs derived from samples AKS-6 and AKS-15 by RNA-seq and identitywith the genomic RNAs of jujube yellow mottle-associated virus (JYMaV) isolate HZ

Origin	Variety	Sample ID ^a	Tissue ^b	Symptom ^c	RT-PCR	RT-PCR ^d		
					RNA3	RNA5	RNA6	
Xinjiang	Huizao	AKS-1	L	CRS	+	+	+	
		AKS-3	L	CRS	-	-	-	
		AKS-5	L	B, CS	+	+	+	
		AKS-9	L	M, MF	+	+	+	
		HZ-1	L	CRS, MF, B	+	+	+	
		XHL-17	L	CS, MF, M	+	+	+	
		XHL-18	L	CS, MF, M	+	+	+	
		XHL-19	L	CS, MF, M	+	+	+	
		XHL-20	L	CS, MF, M	+	+	+	
		YGQ3-1	L	CS, MF, M	+	+	+	
		YGQ3-2	L	CS, MF, M	+	+	+	
		YGQ3-3	L	CS, MF, M	+	+	+	
		YGQ3-4	L	CS, MF, M	-	-	-	
		YGQ3-5	L	CS, MF, M	+	+	+	
		YGQ3-6	L	CS, MF, M	+	+	+	
		YGQ3-7	L	CS, MF, M	+	+	+	
		YGQ3-8	L	CS, MF, M	+	+	+	
		YGQ3-9	L	CS, MF, M	+	+	+	
		YGQ3-10	L	CS, MF, M	+	+	+	
		YGQ3-11	L	CS, MF, M	+	+	+	
		YGQ3-12	L	CS, MF, M	+	+	+	
		YGQ3-13	L	CS, MF, M	+	+	+	
		YGQ3-14	L	CS, MF, M	+	+	+	
		YGQ3-15	L	CS, MF, M	+	+	+	
		YGQ2-7	L	CS, MF, M	+	+	+	
		YGQ2-8	L	CS, MF, M	+	+	+	
		KEL-1	L	Ν	-	-	-	
		AKS-8	L	B, CS	+	+	+	
		AKS-10	L	Ν	-	-	-	
		AKS-11	L	Ν	-	-	-	
		AKS-12	L	CS, B	+	-	-	
		AKS-14	L	CS, B	+	+	+	
		AKS-15	L	CS, MF	+	+	+	
		AKS-16	L	CS, B	+	+	+	
		AKS-17	L	CS, B	+	+	+	
		AKS-18	L	М, В	+	+	+	

Table S4 RT-PCR detection of jujube yellow mottle-associated virus (JYMaV) using the three pair of primers in jujube plants grown in Xinjiang Uygur Autonomous region of China and Shanxi Province

		AKS-19	L	CS, B	+	+	-
		AKS-20	L	М, В	+	+	
		XHL-1	L	CS, MF, M	+	+	
		XHL-2	L	CS, MF, M	+	+	
		XHL-3	L	CS, MF, M	-	+	
		XHL-4	L	CS, MF, M	+	+	
		XHL-5	L	CS, MF, M	+	+	
		XHL-10	L	CS, MF, M	+	+	
		YGQ2-1	L	CS, MF, M	+	+	
		YGQ2-2	L	CS, MF, M	-	-	
		YGQ2-3	L	CS, MF, M	+	+	
		YGQ2-4	L	CS, MF, M	+	+	
		YGQ2-5	L	CS, MF, M	+	+	
		YGQ2-6	L	CS, MF, M	+	+	
		KEL-2	L	Ν	-	-	
	Z. jujube	AKS-2	L	CRS	+	+	
	var. spinosa	AKS-4	L	CRS	+	+	
		AKS-6	L	CRS	+	+	
		XHL-6	L	CS, MF, M	+	+	
		XHL-7	L	CS, MF, M	+	+	
		XHL-8	L	CS, MF, M	-	-	
		XHL-9	L	CS, MF, M	-	+	
		AYKL-1	L	CS, MF, M	+	+	
		AYKL-2	L	CS, MF, M	+	+	
		AYKL-3	L	CS, MF, M	+	+	
		AYKL-4	L	CS, MF, M	+	+	
		AYKL-5	L	CS, MF, M	+	+	
	Jixinzao	AKS-7	L	B, MF, CS	+	+	
	Unknow	WS-1	L	Ν	-	-	
		WS-2	L	Ν	-	-	
		WS-3	L	Ν	-	-	
		WS-4	L	Ν	-	-	
		WS-5	L	Ν	-	-	
		WS-6	L	Ν	-	-	
		WS-7	L	Ν	-	-	
		WS-8	L	Ν	-	-	
		WS-9	L	Ν	-	-	
		WS-10	L	Ν	-	_	
	Dongzao	AKS-13	L	CRS	+	+	
Shanxi	Hupingzao	SX-1	L	Ν	-	_	
		SX-2	L	Ν	-	_	
		SX-3	L	Ν			

	SX-4	L	Ν	-	-	-
	SX-5	L	Ν	-	-	-
	SX-6	L	Ν	-	-	-
	SX-7	L	Ν	-	-	-
	SX-8	L	Ν	-	-	-
	SX-9	L	Ν	-	-	-
	SX-10	L	Ν	-	-	-
Total				55	56	53

a: samples were collected from five different locations in Xinjiang Uygur Autonomous region of China as indicated by the first letters (AKS, XHL, YGQ3, YGQ2, and AYKL) in the sample names.

b: L, leaf

d: M, mosaic; B, blotch; MF, malformation; CS, chlorotic spot; CRS, chlorotic ringspot; N, symptom unknown.

d: +, positive; -, negative; N, not tested.