1 Supplementary Discussion

2 Catabolite repression in *B. theta* when grown on YM.

3 In addition to MAN-PUL activation, regions of gene repression were observed in each strain (Fig. 5a). BtVPI-5482 down-regulated (\log_2 fold-change < -3.5) many genes when grown on YM, 4 including PUL22, which is predicted to target dietary fructans (BT 1758-1763)[1, 2]. This 5 6 response was observed in MD33_{MG} and MD40_{HG} for a homologous cluster of fructan-utilizing genes (\log_2 fold-change < -3.5), suggesting there may be a YM-catabolite repression effect with 7 8 these two polysaccharides, as it was not observed when the cultures were grown on mannose. In MAN-PUL2, BT 3775-BT 3776, which encodes a biosynthetic gene cluster, displayed the lowest 9 expression levels of all the MAN-PUL genes. This is consistent with what was reported previously 10 [3]. Overall, the MD33_{MG} transcriptome had more plasticity in the genes that were either induced 11 12 or repressed in comparison other two strains (Fig. 5a).

13

14 Expression levels of MAN-PULs

Within each MAN-PUL, the *gh*, *susC*-like, and *susD*-like gene clusters consistently displayed the highest \log_2 expression values (Fig. 5b, Supplementary Fig. 6). The BT_3788 (*susC*-like, 5.4) and BT_3789 (*susD*-like, 5.5) genes from MAN-PUL3 in *Bt*VPI-5482, BT_2629 (*gh92*, 7.7) and BT_3792 (*gh76*, 7.7) genes in MD33_{MG}, and BT_3784 (*gh92*, 7.7) gene in MD40_{HG} displayed the highest expression of all genes studied (Supplementary Fig. 6a).

20

21 Host adaptation of *Bt*^{Bov} strains

We observed the presence of signature CAZymes that suggested these strains have adapted to colonize the bovine gut. For example, in every Bt^{Bov} strain, two GH95s and two polysaccharide lyases from Family 8 are inserted into the host-glycan utilization locus PUL85, which differs from the human-associated *Bt*VPI-5482 and 7330 strains (Supplementary Fig. 3). If such host-bacterium interactions are factors required for host colonization, these properties may be exploited for developing bovine-adapted probiotics.

28

29 Supplementary Methods

30 Isolation of bovine-adapted mannan-degraders

Three biological replicates for each sample were incubated anaerobically at 39°C on a rotary shaker for 24 h. Serial dilutions of the batch cultures (10⁰-10⁻⁶) were similarly streaked on YM plates. Plates were incubated anaerobically (atmosphere: 85% N₂, 10% CO₂, 5% H₂) at 37°C for up to 96 h. After 24-96 h of incubation, single colonies were selected and inoculated in nutrient rich Brain Heart Infusion (BHI) medium: 3.7% BactoTM Brain Heart Infusion (BD; 237500), 8.3 mM Lcysteine, 10mL/L hemin (0.77 mM hemin in 0.01M NaOH), and 0.2% NaHCO₃. Overnight cultures were centrifuged and resuspended in 0.8 mL glycerol (50%) and stored at -80°C.

38 Growth profiling of bovine isolates

39 TYG Ingredients: 1% Bacto[™] Tryptone (BD; 211705), 0.5% Yeast Extract Bacteriological (VWR;

40 J850), 4.1 mM L-cysteine, 0.2% glucose, 0.1 M KPO₄ pH 7.2, 2.2 μM vitamin K₃, 40 μL/mL TYG

41 Salts (2 mM MgSO4·7H₂O, 119 mM NaHCO₃, and 34.2 mM NaCl), 28.8 µM CaCl₂, 1.4 µM

42 FeSO₄, 4.4 μ M resazurin, 1 μ L/mL (v/v) histidine/hematin (1.9 mM hematin, and 200 mM L-

43 histidine, 1000X stock solution).

44 Bacteroides MM Ingredients: : 200 mL/L (v/v) 10X Bacteroides salts solution pH 7.2 (999 mM

45 KH₂PO₄, 150 mM NaCl, 85 mM (NH₄)₂SO₄), 20 mL/L (v/v) Balch's Vitamins pH 7.0 (36.5 μM

46 ρ-aminobenzoic acid, 4.5 μM folic acid, 8.2 μM biotin, 40.6 μM nicotinic acid, 10.5 μM calcium

47 pantothenate, 13.3 μ M riboflavin, 14.8 μ M thiamine HCl, 48.6 μ M vitamin B₆, 73.8 nM vitamin

B₁₂, and 24.2 mM thioctic acid), 20 mL/L (v/v) Amino Acid Solution (5 mg/mL amino acids: 48 49 alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, 50 isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, 51 tyrosine, and valine), 20 mL/L (v/v) Purine/Pyrimidine Solution pH 7.0 (1 mg/mL adenine, guanine, thymine, cytosine, and uracil), 20 mL/L (v/v) Trace Mineral Solution pH 7.0 (1.7 mM 52 53 ethylenediaminetetraacetic acid, 12.2 mM MgSO4·7H2O, 3 mM MnSO4·H2O, 17.1 mM NaCl, 359.7 µM FeSO4·7H2O, 901.1 µM CaCl2, 347.7 µM ZnSO4·7H2O, 40.1 µM CuSO4·5H2O, 161.7 54 μM H₃BO₃, 41.3 μM Na₂MoO₄·2H₂O, and 84.1 μM NiCl₂·6H₂O), 4.4 μM vitamin K₃, 2.9 μM 55 FeSO4·7H2O, 14.4 µM CaCl2, 2 mM MgCl2·6H2O, 7.4 pM vitamin B12, 16.5 mM L-cysteine, and 56 $2 \mu L/mL$ (v/v) histidine/hematin. 57

58 Extraction of YM from the cell wall of *S. pombe*

59 S. pombe was grown in 1 L Yeast Peptone Tryptone (YPD) medium at 30°C with shaking at 150 60 rpm for 24 hours. Cells were harvested by centrifugation at 6,000 x g for 10 min. Pellets were resuspended in 10 mL 20 mM Citrate Buffer, pH 7.0 and autoclaved at 125°C for 90 min. 61 Autoclaved cells were centrifuged at 10,000 x g for 10 min. Supernatant was stored at 4°C. Pellets 62 were again resuspended in Citrate Buffer, autoclaved, and centrifuged. Supernatants were pooled 63 64 and mixed with an equal volume of Fehling's Reagent. The solution was incubated at 40°C, 120 rpm for 2 h. White precipitate formed in the solution and was harvested by centrifugation at 5,000 65 x g for 10 min. Pellets were dissolved in 2 mL 3 M HCl (per pellet from 1 L of original culture). 66 67 The solution was slowly transferred to 100 mL of 8:1 Methanol: Acetic Acid with gentle stirring and incubated for 15 min. White precipitate formed in the solution and was collected by 68 69 centrifugation at 3,200 x g. Supernatant was discarded and the pellet was dissolved in 100 mL 8:1 Methanol:Acetic Acid, vortexed briefly, and centrifuged at 1,500 x g for 5 min. This wash step 70

71 was performed two more times and then repeated an additional three times with 100% Methanol.
72 After the final wash, the pellets were left to dry. The following day, the pellets were dissolved in
73 Mq H₂O and dialyzed (500-1,000 MWCO) in Mq H₂O for 20 h. The dialyzed solution was then
74 freeze dried and used for growth analysis.
75 Genome and 16S rDNA gene sequencing, assembly, and annotation of *Bt*^{Bov} strains
76 The 16S rDNA was PCR amplified using the following two primers:

77 Universal primer 27F: 5'-AGR GTT TGA TCM TGG CTC AG-3'

78 Universal primer 1492R: 5'-GGT TAC CTT GTT ACG ACT T-3'

79

80 **RNA-seq: assembly, quantitation, and comparative analysis**

81 BtVPI-5482, MD33_{MG}, and MD40_{HG} were each inoculated into three tubes containing 5 mL of 82 TYG media. Overnight cultures of BtVPI-5482, MD33_{MG}, and MD40_{HG} (OD₆₀₀ 1.0-1.4) were 83 diluted with 2X MM to an OD₆₀₀ 0.05. 100 μ L of 1% YM or mannose was added to six wells of diluted culture aliquoted from the same overnight stock, to a final volume of 200 µL. This step 84 was repeated three times for a total of three replicates (each divided among six wells) for each 85 bacterial strain and treatment. Cells were harvested during the exponential phase of the first growth 86 87 phase (OD₆₀₀ 0.4-0.8). Six wells were pooled and added to an equal volume of RNAprotect (Qiagen). The mixture was vortexed for 5 sec and incubated for 5 min at room temperature. After 88 incubation, the protected cells were centrifuged (10 min; 2,800 x g). The supernatant was decanted 89 90 and pellets were stored at -80°C until further processing.

91 Production of SusD-like protein C-myc fusion *B. theta* strain

92 The 5' and 3' regions flanking the BT_3789 stop codon were amplified by PCR. Primers that 93 contained the linker+C-myc nucleotide sequences were used to amplify the PCR products. These 94 amplicons were then stitched together and ligated into a pEXchange plasmid. The plasmid was 95 transformed into *E. coli* and conjugated into *Bt*VPI-5482 Δ tdk Δ pul75 recipient strain. Insertion of 96 the C-myc tag was confirmed by sanger sequencing.

97 Generation of FLA-YM conjugates

To chemically activate the polysaccharide, 350 µL 0.81 M cyanogen bromide (CNBr; 97%; Sigma 98 C91492) was added to 2 mL 2% YM. For ~5 min, pH was monitored and maintained above 9.5 99 with additions of 0.25 M NaOH. Activated YM was separated from CNBr using Sephadex[®] G-50 100 101 gel filtration medium in a column coupled to a Bio-Rad BioLogic LP Multistatic peristaltic pump 102 (flow rate: 1 mL min⁻¹). The mobile phase consisted of 0.2 M sodium tetraborate decahydrate pH 8.0 (≥99.5%, Sigma S9640). Activated YM was eluted into a vial containing 2.0 mg 103 104 fluoresceinamine Isomer II (FLA; ~95%; Sigma O7985) wrapped in aluminum foil and incubated for ~24 h at room temperature. To remove excess FLA and purify labelled YM, the reaction 105 106 mixture was loaded onto Sartorius Vivaspin 15R columns (5,000 MWCO; VS15RH11) and 107 centrifuged (210 x g). Columns were repeatedly topped up with distilled H₂O and centrifuged until a clear filtrate was observed. The purified FLA-YM was lyophilized, covered in aluminum foil 108 and stably stored (~4°C) until further use. 109

110 Visualization of FLA-YM uptake by strains of Bt^{Bov}

For microscopy, samples were resuspended in 1 ml 1 X PBS and, subsequently, 25 μl was
heat fixed at 40°C onto a poly-L-lysine coated glass cover slip (12 mm, #1.5H) (Thorlabs GmbH,

113 Germany). After heat fixation the samples were washed in MQ to remove additional salts and dried 114 at 35°C. The samples were then counter stained with 4', 6-diamidino-2-phenylindole (DAPI) (1 115 ng μ l⁻¹ WS) and Nile red (2 ng μ l⁻¹ WS) for 10 and 25 min, respectively. After each stain, the cells 116 were washed in MQ and subsequently left to dry at RT. Finally, they were mounted onto glass 117 slides using a 4:1 Citifluor (Electron Microscopy Sciences, USA) / VectaShield (Vector 118 Laboratories, Germany) mounting solution.

For epifluorescence microscopy, the samples were visualised using a Zeiss Axioskop 2 119 120 motplus fluorescence microscopy with a 100x oil objective. The cells were imaged using the 121 Axiovision software (Zeiss, Germany) and a constant exposure time of 200 ms was applied for the FLA-YM channel (Alexa Fluor 488 filter cube) to enable a comparison of the FLA-YM signal. 122 The subcellular localisation of FLA-YM within individual cells was achieved using a super-123 resolution structured illumination microscopy (SR-SIM). A Zeiss ELYRA PS.1 microscope with 124 561, 488, 405 nm lasers and BP 573-613, BP 502-538, and BP 420-480 + LP 750 optical filters 125 126 was used. Z-stack images were taken with a Plan-Apochromat x63/1.4 oil objective and processed with the ZEN2011 software (Carl Zeiss, Germany). 127 128

129 Supplementary References

130	1.	Martens EC, Chiang HC, Gordon JI: Mucosal glycan foraging enhances fitness and
131		transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008,
132		4: 447-457.
133	2.	Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg
134		JL: Specificity of polysaccharide use in intestinal bacteroides species determines diet-
135		induced microbiota alterations. Cell 2010, 141:1241-1252.
136	3.	Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B,
137		Gilbert HJ, Bolam DN, Gordon JI: Recognition and degradation of plant cell wall
138		polysaccharides by two human gut symbionts. <i>PLoS Biol</i> 2011, 9:e1001221.
139	4.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J
140		<i>Mol Biol</i> 1990, 215: 403-410.
141	5.	Jones DR, Thomas D, Alger N, Ghavidel A, Inglis GD, Abbott DW: SACCHARIS: an
142		automated pipeline to streamline discovery of carbohydrate active enzyme activities within
143		polyspecific families and de novo sequence datasets. <i>Biotechnol Biofuels</i> 2018, 11:27.
144		

S1 Table: Alignment of 16S rDNA gene sequences from mannan-degrading *B. theta* strains isolated from the rumen blasted against the NCBI database[4].

	Strain	Top Blast Hit(s)	Query cover (%) Identity (%)				
	MD11 _{MG}	B. theta VPI-5482 and strain 7330	100	99.7			
	MD28 _{MG}	B. theta strain 7330	100	99.7			
	MD33 _{MG}	B. theta VPI-5482	100	99.8			
	MD35 _{MG}	B. theta VPI-5482 and strain 7330	100	99.7			
	MD8 _{HG}	B. theta VPI-5482 and strain 7330	100	99.7			
	MD13 _{HG}	B. theta VPI-5482 and strain 7330	100	99.7			
	MD17 _{HG}	B. theta strain 7330	100	99.7			
	MD40 _{HG}	B. theta strain DMF	100	100			
	MD51 _{HG}	<i>B. theta</i> strain 7330	100	100			
148							
149							
150							
151							
152							
153							
154							
155							
156							
157							
158							
159							
160							
161							

S2 Table: NCBI accession number and assembly parameters of bovine-associated bacterial isolates. SPAdes *de novo* genome assembly output of nine Bt^{Bov} isolates sequenced by Illumina MiSeq PE150bp and ANIb output of Bt^{Bov} assembled contigs blasted to multiple *B. theta* strains from the JSpeciesWS genome reference database.

ACCESSION NUMBER	ISOLATE	SOURCE	SPADES CONTIGS	SPADES LARGEST (BP)	SPADES N50	ANIB STRAIN	ANIB (%)
SAMN11961934	MD8 _{HG}	Rumen	920	868,373	157,167	VPI-5482	98.03
SAMN11961935	MD11 _{MG}	Rumen	62	589,645	236,443	VPI-5482	98.05
SAMN11961936	$MD13_{HG}$	Rumen	61	781,280	229,189	KLE1254	99.16
SAMN11961937	MD17 _{HG}	Rumen	59	928,731	208,464	KLE1254	99.15
SAMN11961938	MD28 _{MG}	Feces	63	838,230	236,443	7330	98.32
SAMN11961939	MD33 _{MG}	Feces	72	759,138	150,716	7330	98.33
SAMN11961940	MD35 _{MG}	Feces	70	723,774	145,695	7330	98.33
SAMN11961941	MD40 _{HG}	Feces	62	519,222	189,229	7330	98.34
SAMN11961942	$MD51_{HG}$	Feces	62	868,373	229,189	7330	98.33

Number of contigs does not include contigs ≤ 1000 bp.

S3 Table: Statistical significance of RNAseq TPM expression differences between *Bt*VPI-5482, MD33_{MG}, and MD40_{HG} MAN-PUL genes when grown in YM.

Strain		TPM	SEM	B. theta	MD33	MD40
	BT_2620	279	39		!	-
	BT_2622	720	96		!	-
	BT_2623	252	30		!	-
	BT_2625	660	106		!	-
	BT_2628	635	52		!	-
	BT_2629	2454	385		!	-
	BT_2631	398	64		!	-
	BT_2632	1087	105		ns	-
	BT_3773	179	18		!	!
	BT_3774	604	44		!	!
	BT_3775	1646	30		!	ns
	BT_3776	1832	62		ns	ns
¹ B. theta	BT_3780	859	16		!	!
	BT_3781	1103	113		ns	ns
	BT_3782	414	18		ns	ns
	BT_3783	440	52		!	ns
	BT_3784	1834	154		ns	ns
	BT_3786	2594	64		!	ns
	BT_3789	2600	358		!	!
	BT_3791	265	40		!	!
	BT_3792	602	45		!	!
	BT_3853	20	2		!	ns
	BT_3855	12	3		!	ns
	BT_3858	24	4		!	ns
	BT_3862	21	2		!	ns
	BT_2620	13	3	!		-
	BT_2622	16	2	!		-
	BT_2623	24	4	!		-
	BT_2625	804	93	!		-
	BT_2628	183	40	!		-
	BT_2629	2289	219	!		-
	BT_2631	877	46	!		-
MD33 _{MG}	BT_2632	1045	300	ns		-
	BT_3773	1201	134	!		ns
	BT_3774	981	53	!		!
	BT_3775	941	157	!		ns
	BT_3776	1370	38	ns		ns
	BT_3780	1635	142	!		!
	BT_3781	1012	163	ns		ns
	BT_3782	1566	144	ns		!

		1 5 2 2				
	BT_3783	1533	75	!		!
	BT_3784	1301	257	ns		ns
	BT_3786	1905	146	!		ns
	BT_3789	132	18	!		!
	BT_3791	352	43	!		!
	BT_3792	279	49	!		!
	BT_3853	449	8	!		!
	BT_3855	1394	45	!		!
	BT_3858	826	102	!		!
	BT_3862	326	23	!		!
	BT_3773	1261	99	!	ns	
	BT_3774	892	83	!	!	
	BT_3775	655	22	ns	ns	
	BT_3776	3754	533	ns	ns	
	BT_3780	1677	104	!	!	
	BT_3781	30	6	ns	ns	
	BT_3782	66	17	ns	!	
	BT_3783	36	6	ns	!	
MD40hg	BT_3784	239	20	ns	ns	
	BT_3786	870	128	ns	ns	
	BT_3789	237	75	!	!	
	BT_3791	91	12	!	!	
	BT_3792	357	66	!	!	
	BT 3853	107	24	ns	!	
	BT_3855	200	20	ns	!	
	BT_3858	645	128	ns	!	
	BT 3862	163	30	ns	!	

 ${}^{1}Bt$ VPI-5482.

S4 Table. Percent identity matrix of the MAN-PUL2 SusC/D/E-like amino acid sequences
 from isolated strains generated by MUSCLE [76].

Strain	MD11 _{MG}	, MD28 _{MG}	MD33 _{MG}	MD35 _{MG}	MD8 _{HG}	MD13 _{HG}	MD17 _{HG}	MD40 _{HG}	MD51 _{HG}	Bt^1
SusC										
MD11 _{MG}	100	100	100	100	77	77	77	77	77	77
MD28 _{MG}	100	100	100	100	77	77	77	77	77	77
MD33 _{MG}	100	100	100	100	77	77	77	77	77	77
MD35 _{MG}	100	100	100	100	77	77	77	77	77	77
MD8 _{HG}	77	77	77	77	100	100	100	100	100	100
$MD13_{HG}$	77	77	77	77	100	100	100	100	100	100
$MD17_{HG}$	77	77	77	77	100	100	100	100	100	100
MD40 _{HG}	77	77	77	77	100	100	100	100	100	100
MD51 _{HG}	77	77	77	77	100	100	100	100	100	100
B. theta ¹	77	77	77	77	100	100	100	100	100	100
SusD										
MD11 _{MG}	100	100	100	100	81	81	81	81	81	81
MD28 _{MG}	100	100	100	100	81	81	81	81	81	81
MD33 _{MG}	100	100	100	100	80	80	80	80	80	80
$MD35_{MG}$	100	100	100	100	80	80	80	80	80	80
MD8 _{HG}	81	81	80	80	100	100	100	100	100	100
$MD13_{HG}$	81	81	80	80	100	100	100	100	100	100
$MD17_{HG}$	81	81	80	80	100	100	100	100	100	100
MD40 _{HG}	81	81	80	80	100	100	100	100	100	100
MD51 _{HG}	81	81	80	80	100	100	100	100	100	100
Bt^1	81	81	80	80	100	100	100	100	100	100
SusE			•							
$MD11_{MG}$	100	100	99	99	78	78	78	78	78	78
MD28 _{MG}	100	100	99	99	78	78	78	78	78	78
MD33 _{MG}	99	99	100	100	78	78	78	78	78	78
$MD35_{MG}$	99	99	100	100	78	78	78	78	78	78
MD8 _{HG}	78	78	78	78	100	100	100	100	100	100
$MD13_{HG}$	78	78	78	78	100	100	100	100	100	100
$MD17_{HG}$	78	78	78	78	100	100	100	100	100	100
MD40 _{HG}	78	78	78	78	100	100	100	100	100	100
MD51 _{HG}	78	78	78	78	100	100	100	100	100	100
Bt^{1}	78	78	78	78	100	100	100	100	100	100

 ${}^{1}Bt = Bt$ VPI-5482. Grey shading represents conservation $\geq 100\%$.

178 Supplementary Figure Legends

179 Supplementary Fig. 1 Differential glycan utilization of Bt strains. Growth profiles of BtVPI-

- 180 5482, $Bt\Delta$ MAN-PUL1/2/3, and nine rumen isolates grown on 0.5% YM extracted from the cell
- 181 wall of (a) S. cerevisiae (N=4) and (b) S. pombe (N=3). Mean \pm standard deviation shown.
- 182
- Supplementary Fig. 2 Comparative uptake of FLA-YM by Bt strains over time. (a) Single 183 cell measurements from pure cultures of BtVPI-5482, MD33_{MG}, and MD40_{HG}. Grey represents 184 185 cells incubated with YM-MM. Orange shows cells incubated with unconjugated FLA. Blue indicates cells incubated with FLA-YM for the time noted. Graphical representation of how flow 186 cytometry data was gated, with cells above a certain threshold assigned the FLA-YM positive 187 status. N=10.000. (b) Epifluorescence images of MD33_{MG} (left), and MD40_{HG} (right) incubated 188 with FLA-YM for 0 min, 5 min, and 60 min. Cells were counter stained with DAPI and Nile Red. 189 190 Scale bar is 10 µm.
- 191

192 Supplementary Fig. 3 CAZyme updates to PUL85 in the genomes of the Bt^{Bov} isolates. Grey 193 triangles represent gene inserts into the Bt^{Bov} PUL85-like region relative to BtVPI-5482 PUL85. 194

195 Supplementary Fig. 4 CAZyme analysis of GH92 and GH76. (a) Synteny of MAN-PUL1/2/3 and HMNG-PUL of *B. theta* and nine *Bt*^{Bov} strains. Length of genes are to scale and arrows indicate 196 197 directionality. GH76s are indicated with coloured triangles, whereas GH92s are indicated with coloured circles. MAN-PUL1 = Green, MAN-PUL2 = Blue, MAN-PUL3 = Yellow, and the 198 HMNG-PUL = Red. (b) GH92s and (c) GH76s characterized and predicted sequences from Bt^{Bov} 199 200 genomes generated with SACCHARIS[5]. Large trees (left) show all characterized GH92 or GH76 201 enzymes from CAZy and those within the BtVPI-5482 genome, as well as the homologous MAN-PUL enzymes from the *Bt*^{Bov} isolates. Smaller trees display all the characterized GH92 or GH76 202 enzymes from CAZy, with all of the predicted GH92/76 enzymes found in the genomes of the 203 Bt^{Bov} strain noted above the tree. Outer ring represents characterized specificities (see legend). 204 205 Circles (GH92) and stars (GH76) represent sequences from PULs: Green = MAN-PUL1, Blue = 206 MAN-PUL2, Yellow = MAN-PUL3, Red = HMNG PUL, and White = PUL55. Numbers in parenthesis indicate the total number of enzymes within each strain. 207

Supplementary Fig. 5 Growth profiles of Bt^{Bov} cultures supplemented with GH76 recombinant enzymes. MD33_{MG} and MD40_{HG} cells cultured in YM-MM supplemented with BSA control protein, Bt^{Bov} GH76 from PUL55 (BtGH76-MD40), or GH76 from MAN-PUL2 (GH76-BT3782).

213

214 Supplementary Fig. 6 Expression of MAN-PUL gene products in *Bt*VPI-5482, MD33_{MG}, and MD40_{HG}. (a) Expression levels of MAN-PUL1/2/3 and HMNG-PUL genes. Grey represents gene 215 transcripts not present in the corresponding genome. (b) Transcript expression of MAN-PUL1/2/3 216 in *Bt*VPI-5482, MD33_{MG}, and MD40_{HG}. Bar graph represents log₂ fold-change of CAZymes and 217 218 SusC/D/E-like proteins in MAN-PUL1/2/3 and HMNG-PUL encoded in the genomes of BtVPI-219 5482 (white), MD33_{MG} (grey), and MD40_{HG} (black). GH76 enzymes indicated by stars. GH92 enzymes indicated by circles. MAN-PUL1 = green. MAN-PUL2 = blue. MAN-PUL3 = yellow. 220 HMNG-PUL = red. 221

222

223 Supplementary Fig. 7 Co-localization of epitope tagged SusD membrane protein and FLA-

224 YM staining in *Bt*VPI-5482 cells. Dot blot showing YM-MM (YM) or mannose (Man) cultures

of $Bt\Delta tdk \Delta pul75$ and a mutant strain with a C-Myc fused SusD-like protein. SR-SIM of $Bt\Delta tdk$

226 Δpul75 (Bt – wt) stained with DAPI and FLA-YM. SR-SIM of the C-Myc mutant (Bt – cmyc)

showing DyLight antibody signal and co-stained with DAPI and FLA-YM. Scales shown are 2

228

μm.

229

230 Supplementary Fig. 8 Product profiles of YM utilization in the supernatants of *Bt*^{Bov}

isolates. Chromatograms of hydrolysis products in the supernatants of *Bt*VPI-5482, MD33_{MG},

and MD40_{HG} when incubated in FLA-YM for 24 hrs (top) and 72 hrs (bottom).