Supplementary Material

1. Supplementary material for the “Tumor size, NLR and survival data modeling”

section in the main manuscript

1.1. General description of COX model
The Cox proportional hazard model is a regression model used for time-to-event analysis. The
structure of this model is based on the assumption that for each individual i, the set of Q baseline
covariates {Cov;i, | = 1,2,...,Q} determines individual hazard function h;(t) and, therefore, individual
survival function S;(t). Mathematically, it is determined by the following equations:
hi() = ho(t) * exp(ZZ, v1 * Covyy),
Si®) = exp (= Jy (D)),

where hy(t) denotes the baseline hazard function and {y;,l = 1,2, ..., Q} are association coefficients.

(1)

Both hy(t) and y; are the parameters of the COX model. Parameter values are obtained using the
available survival dataset, in a procedure usually referred to as a qualification of model, which is based
on the maximization of a likelihood function. Baseline hazard h,(t) is often restricted to a class of
functions described by a finite set of parameters, for instance, piecewise-constant functions, spline

approximations, or Weibull distributions.

1.2. Covariate search procedure using COX models
This research is primarily focused on the use of SLD and NLR, even though we tested up to two
additional baseline covariates, to increase the prediction performance of the survival model . Here we

describe the covariate search procedure used for the selection of these covariates.

Based on the available clinical data in the training dataset, the following covariates — beyond SLD and

NLR — were tested:

e ECOG performance status [s1] (0 or 1), referred to as ECOG;
e PD-L1 expression level [s2] (high, low, or unknown), referred to as PDL1;
e Smoking status (smoker, non-smoker, or ex-smoker), referred to as SMK;
e EGFR status [s3] (positive or negative), referred to as EGFR;

e Patient age at start of treatment (a positive integer), referred to as AGE.

To rank these covariates, we qualified a set of COX models on the training dataset (ATLANTIC
patients). All models were built using the coxph() function from the survival package, version 2.44-1.1, in
the R software [s4]. A piecewise-constant approximation was used for the baseline hazard function.

Each model included logarithmically transformed SLD, NLR, and one covariate from the list above. The

Akaike Information Criterion (AIC) [s5] and the Likelihood-Ratio Test (LRT) [s6] were estimated for all

models.

Based on the AIC and LRT estimates shown in Table S1, we concluded that PDL1 and ECOG
provided the highest increase in likelihood in the corresponding COX models vs. other covariates. For
further investigation of longitudinal SLD and NLR, we chose a COX model with SLD+NLR+PDL1+ECOG as
a basic model. For the remainder of this document, this model is simply referred to as “COX". The

association coefficients of this model are presented in Table S2.

1.3. General description of the joint model

The longitudinal joint model (JM) was described as a generalization of the COX model for
longitudinal biomarkers. In terms of a hazard function, it features an additional component,
Y _1(a * my;(t)) , which represents the impact of the longitudinal biomarker. Survival is thus

formulated as follows:

Si(t) = exp (= fy ho(t) * exp(ZL, (v, * Covy) + Tk * mi(1))) dt), (2)
where ay, is the association parameter vector, a key metric for the biomarker impact on the risk of
event, and my;(t) is an individual vector of longitudinal data (biomarkers), analyzed using a mixed-
effects sub-model. The mixed-effects sub-model is an important component of joint modeling; it is used
to describe individual variability and to handle stochastic deviations in biomarker measurements.
Mixed-effects models may be of a linear or non-linear nature, and various distributions of random
effects and types of residual error may be applied. These models are named “joint” because their
parameters are estimated using a joint likelihood function, which captures both the time-to-event

impact and the longitudinal data likelihood in a mixed-effects sub-model.

1.4. Univariate JM SLD model description
The baseline hazard was parameterized using a Weibull distribution with a transformed scale parameter

ho(t) = ple?]([e*]t)P~

Survival was thus defined as follows:

t
Si(t) = exp (— f ple?]([e*]t)’”" * exp(yy ECOG; + v, PDL1; + y5 NLR; + ayi(t))dt>
0

A logarithmic transformation was used for SLD, and a linear-exponential mixed-effects sub-model was

formulated as follows:

(In (SLDU + 1) = yi(tij) + €i]',
Yi(tij) = (c* ¢)) »exp[(d + dyt;;| + (b * b)) * t;,
b; ~ Lognormal(1,B;), c¢; ~Lognormal(1,B,), d; ~Normal(0,ps),
&j ~ Normal(0, o).

(3)

where t;; and SLD;; are timepoints and values of SLD measured for the i-th patient. Parameters b >0, ¢
>0, and d are fixed effects. Random values b;, c;, d; are individual random effects described by

parameters 3, B, , B3 of corresponding distributions; &;; is a normally distributed residual error.

1.5. Multivariate JM SLD&NLR model description

The baseline hazard was parameterized using a Weibull distribution with transformed scale parameter

ho(t) = ple*]([e*1t)P ™

Survival was defined as follows, with a bilinear association structure chosen for the two biomarkers:

Si(t) =
= exp <—f ple*]([e*]1t)P~ = exp(yy ECOG; + v, PDL1; + ay y;(8) + ay z;(t) + a1, y; (1) Zi(t))dt>-
0

A logarithmic transformation was used for both SLD and NLR. A linear-exponential mixed-effects sub-
model was applied to SLD, while a hyperbolic sub-model was used to describe longitudinal NLR:
In (SLDU + 1) = yi(tij) + ‘Sij; In (NLle + 1) = Zi(Tik) + €ik
yi(tij) =(cxc) * exp[(d + di)tij] + (b = by) * t;j,

) zi(ty) = (p +) + (exp (L + 1)) = Ttexp (141 (4)
b; ~ Lognormal(1,B,), c¢; ~Lognormal(1,B,), d; ~Normal(0,p3),

qi ~ NOTmal(O, ﬂ4’)l b ~ NOTmal(O, ﬂS)) li ~ NOTmal(O, ﬁS)
L gij ~ Normal(0,01), €y ~ Normal(0,ay).

where t;; and SLD;; are timepoints and values of SLD measured for the i-th patient; 7;; and NLR;;, are
timepoints and values of NLR. Parameters b >0, ¢ > 0, and d are fixed-effects for SLD; g, p and [are
fixed effects for NLR. Random effects b;, c¢;, d;, q;, p;, l; are described by parameters 1, 52 , B3, Ba,

Bs , Be of corresponding distributions, and ¢;;, €;;, are normally distributed residual errors.

1.6. Qualification of models

The likelihood composition for joint models was based on the assumption of conditional
independence of all longitudinal measurements SLD;; and NLR;, (for multivariate JM). Fixed effects,
random effects and residuals parameters were also assumed to be statistically independent. For details
on the likelihood composition for longitudinal JM, see [s7] and the cited literature therein. To calculate
the survival impact on the likelihood, a tanh-sinh quadrature for numerical integration [s8] was used.

To optimize parameters, a Markov Chain Monte Carlo (MCMC) algorithm was used for sampling
from the log-likelihood distribution. It was implemented using the Stan software [s9], which offers a
Hamiltonian Monte Carlo [s10] sampling method - one of the most efficient MCMC algorithms.

Although a Bayesian approach was used in the estimation of model parameters, priors played a
minor role in the final estimates. For positive fixed-effects parameters, log-normal distributions with

means of 1 and standard deviations of 1 were selected as priors; for all other parameters, standard

normal distributions were chosen as priors (and truncated for positive parameters). Since the training
dataset could be described as a rich data sample (200 events, 1507 measurements of SLD and 5055
measurements of NLR), the selected priors should be considered as non-informative.

For both JM SLD and JM SLD&NLR model qualification, a similar sampling setting was applied.
Four Markov Chains were used for sampling. In order to ensure successful convergence, each chain
featured the following setting: total number of iterations — 4000, from which 2000 were warm-up
iterations; initial values for all parameters were set randomly, from a uniform distribution in the [-0.1,
0.1] range (and truncated for positive parameters); parameters for the No-U-Turn sampler in Stan -
adapt_delta = 0.85, max_treedepth = 12. A summary of the sampling results is presented in Table S3,
with columns featuring: name — name of the parameter from formulas (3) or (4); mean — mean value of
sampled results; se_mean — Monte Carlo standard error; sd - standard deviation of a parameter; 2.5%
and 97.5% - corresponding quantiles of sampled parameter; n_eff - effective sample size; Rhat -
potential scale reduction factor (MCMC convergence statistics).

We do not have rights to publish the clinical datasets used in this research, and the R scripts we
used have been adapted to the format of these particular datasets (the format is generally similar to the
one used in the R JM package by D. Rizopoulos). We share, however, the most important components of
this modeling framework by listing the Stan code for the multivariate JM SLD&NLR model, in Appendix A
of these Supplementary Materials. For full details on model development and evaluation, please do not

hesitate to contact the corresponding author.

2. Supplementary material for the “Survival predictions for patient subgroups in
validation study” section in the main manuscript
2.1. Individual survival estimates using JM
Provided the following individual patient dataset - set of baseline covariates values w; and longitudinal
information collected up to time T* {Y;(s;),s; < T*}, let D denote all parameters of the qualified joint

model (JM). The conditional survival probability estimate for selected patients at time T" > TS is

defined by:
n(Th | T$) =Pr(T* = T" | T* > T5,Y;, w;, D) (5)
where T* denotes the event time.

Survival is computed in Stan, using a Markov chain Monte Carlo algorithm for sampling from the
conditional distribution (5). It is implemented using Stan. The mean value of m(T" | T5) is used as a

final estimate for further ROC-AUC and BS calculations, as well as for other validation scenarios.

3. Supplementary material for the “Precision of individual survival predictions”
section in the main manuscript

3.1. ROC-AUC and BS calculation method

Since both training and validation datasets are characterized by a high amount of right-censored
patients, an Inverse Probability of Censoring Weighting (IPCW) approach was used to estimate ROC-AUC
and BS [s11]. Let G7s(t) denote the Kaplan-Meier estimator for Pr(C >t | C > T*), where C is a time
of censoring, calculated on a subset of patients DSys known to be in the study up to time TS5. ROC —

AUC(T",T%) is then defined as:

ROC — AUC(TM, TS) =
n n A * PN h
=1 ZJ'=1I(T;‘sTh,v;-*:nl/GTs(Ti)I(T}>Th)1/GTS(T)I(ni(rh | TS)>m (T | T5))

i, I(T; <Thvi=1) 1/Gps(T})) (Z?:l I(T}>Th) 1/Gps(Th))

)

where n is the total number of patients in DSs, T;" is an observed event time for i patient, v; denotes
the type of an event: a value of 1 specifies the true event took place (patient died), a value of 0 specifies

the patient was censored.

BS was defined as follows:

BS(T",T%) = 1/n(Zieq Ligyerhyizny @(T™ | T*)?/Grs(T7) +
+ X1 Igporm (m(T™ | T9) = 1)2/Grs(TH).

ROC-AUC and BS were estimated using a standard R functionality.

4. Supplementary material for the “Results” section in the main manuscript

All three models (COX, JM SLD, JM SLD&NLR) were qualified using the training dataset, i.e. patients
from the ATLANTIC clinical study. In the main text of the paper, we presented excerpts of ROC-AUC and
BS diagnostics, namely, metrics estimated for different cut-offs T® of longitudinal data calculated for
survival predictions in the validation dataset (patients from the 1108 clinical study), at time of prediction
T"=12 months after the start of therapy. Here we provide complete ROC-AUC and BS diagnostics, which
have been performed for both training and validation datasets.
4.1. Internal ROC-AUC and BS validation

Based on the training dataset and using different amounts of longitudinal data from T* =0 to

TS=6 months, we calculated ROC-AUC and BS at each month up to T"=24 months following the start of
treatment. Figure S1 displays the calculated metrics for T5= 3 months graphically. A summary for T"= 12

months and all considered T* is presented in Table S4.

4.2. External ROC-AUC and BS validation

The external validation was performed similarly to the internal validation procedure (Section
4.1). ROC-AUCs and BSs were calculated for different T from 0 to 6 months, at each month, up to T"=
24 months following the start of treatment. Figure S2 features the calculated metrics for TS= 3 months

graphically. A summary for T"=12 months and all considered TS is presented in Table S4.

4.3. Validation of longitudinal biomarkers; description and predictions

In order to show how well selected mixed-effects sub-models for SLD and NLR describe these
biomarkers, we performed Visual Predictive Check (VPC) diagnostics for the multivariate J]M SLD&NLR
model. Figures S3 (a) and (b) represent VPC diagnostics and summarize the distribution of observed
biomarker values in the training dataset vs. predicted values during model qualification, for SLD and
NLR. Figures S3 (c) and (d), similarly to Figures S3 (a) and (b), summarize the distribution of observed
biomarkers in the validation dataset vs. predicted values obtained from the posterior distribution of the
qualified JM SLD&NLR model informed with longitudinal data from the validation dataset. Figures S3 (e)
and (f) extend the VPC diagnostics and show how well this model predicted SLD and NLR longitudinal

dynamics in the validation dataset, based on a longitudinal data cut-off of TS = 3 months.

References
[s1] Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative

Oncology Group. Am. J. Clin. Oncol. 1982;5(6): 649-55. doi:10.1097/00000421-198212000-00014

[s2] Garassino MC, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung
cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 2018 Apr;19(4):521-536. doi:
10.1016/51470-2045(18)30144-X.

[s3] Bethune G, Bethune D, Ridgway N, Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: an
overview and update. J Thorac Dis. 2010;2(1):48-51.

[s4] Survival package for R. https://github.com/therneau/survival.

[s5] Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control.

1974; 19(6):716-723.

[s6] Glover S, Dixon P. Likelihood ratios: A simple and flexible statistic for empirical psychologists.

Psychonomic Bulletin & Review. 2004; 11:791-806. https://doi.org/10.3758/BF03196706

[s7] Brilleman SL et al. Joint longitudinal and time-to-event models for multilevel hierarchical data. Stat

Methods Med Res. 2019 Dec;28(12):3502-3515

[s8] Takahasi H, Mori M. Double Exponential Formulas for Numerical Integration, Publications of the

Research Institute for Mathematical Sciences. 1974;9 (3): 721-741

[s9] Carpenter B, Gelman A, Hoffman M. et al. Stan: A Probabilistic Programming Language. Journal of

Statistical Software. 76 (1): 1-32. doi:10.18637/jss.v076.i01

[s10] Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Physics letters B.
1987;195(2):216-222, 1987.

[s11] Blanche P, Latouche A, Viallon V. “Time-Dependent AUC with Right-Censored Data: A Survey” in

Risk Assessment and Evaluation of Predictions, New York, Springer, 2013.

Appendix A.

We here provide the Stan code used for the qualification of the multivariate J]M SLD&NLR model. This
listing contains two scripts: the content of the .stan file and the content of the additional .hpp file, which
includes the implementation of computationally demanding likelihood calculations in C++.

s w N

O J oy U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

// content of .stan file
// multivariate nonlinear joint model JM SLD&NLR
functions {
real 1l (int n, real[] fixranef, real[] params, real[] event times, int[] events,
int threads); // log-likelihood impact of time-to-event data implemented in c++
}
data {
int<lower=0> n; // number of patients
int<lower=0,upper=1> events[n]; // events
real<lower=0> event times[n]; // event times
int<lower=0> yln; // length of yl (SLD)
int<lower=0> y2n; // length of y2 (NLR)
real yl[yln]; // SLD measurements
real y2[y2n]; // NLR measurements
real tl[yln]; // SLD measurements timepoints
real t2[y2n]; // NLR measurements timepoints
int<lower=0> yl 1[n]; // indexes yl
int<lower=0> y2 1[n]; // indexes y2
int<lower=0> factorl level n; // levels length of factorl (ECOG)
int<lower=1> factorl[n]; // indexes of factorl (ECOG)
int<lower=0> factor2 level n; // levels length of factor2 (PDL1)
int<lower=1> factor2[n]; // indexes of factor2 (PDL1)
int<lower=1> threads;
// priors
real<lower=0> bs haz p prior sd;
real<lower=0> bs haz lambda prior sd;
real<lower=0> bs haz p prior intercept;
real bsihazilambdaiprlorilntercept
real<lower=0> assoc _coefs prior sd[3];
real<lower=0> factor coefs prior sd;
real assoc _coefs prior intercept[3];
real<lower=0> yl prior sd[7]; // [1:3] - fixed eff, [4] - sigma [5:7] - rand eff,
real<lower=0> y2 prior sd[7]; // [1:3] - fixed eff, [4] - sigma [5:7] - rand eff
real yl prior intercept([3]; // [1:3] - fixed eff
real y2 prior intercept([3]; // [1:3] - fixed eff
}
parameters {
real<lower=0> bs haz p; // p
real bs haz lambda e; // lambda

real assoc coefs[31; // [1] - alpha 1 (SLD), [2] - alpha 2 (NLR), [3] - alpha {12}
real factorl coefs[factorl level n-1]; // gammas 1
real factor2 coefs[factor2 level n-1]; // gammas 2

real<lower=0> yl fixed b; // b (SLD)
real<lower=0> yl fixed c; // ¢ (SLD)

real yl fixed d; // d (SLD)

real y2 fixed b; // g (NLR)

real y2 fixed c¢; // p (NLR)

real y2 fixed 1; // 1 (NLR)

real<lower=0> yl ranef[3]; // [1] - beta 1, [2] = beta 2, [3] - beta 3
real<lower=0> y2 ranef[3]; // [1] - beta 4, [2] = beta 5, [3] - beta 6
real<lower=0> sigmal;

real<lower=0> sigmaz;

real<lower=0> ranefl b[n]; // b i (SLD)

real<lower=0> ranefl c[n]; // c_i (SLD)

real ranefl d[nl; // d_i (SLD)

real ranef2 b[n]l; // g i (NLR)

real ranef2 c[n]; // p_i (NLR)

real ranef2 1[n]; // 1 i (NLR)

}
transformed parameters {
real bs haz lambda;
real fixranef[7*n];
bs haz lambda = exp(bs haz lambda e); // transformed lamda
for (i in 1:n) {

int ind = (i-1)~*

// calculate parameters from fixed and random effects
fixranef[ind+l] = ranefl b[i] * yl fixed b;
fixranef[ind+2] = ranefl c[i] * yl fixed c;
fixranef[ind+3] = ranefl d[i] + yl fixed d;
fixranef[ind+4] = ranef2 b[i] + y2 fixed b;
fixranef[ind+5] = ranef2 cl[i] + y2 fixed c;
fixranef[ind+6] = exp(ranef2 1[i] + y2 fixed 1);

// calculate factor-type covariates

73 if (factorl([i] == 1) fixranef[ind+7] = 0;

74 else fixranef[ind+7] = factorl coefs[(factorl[i]-1)];

75 if (factor2[i] == 1) fixranef[ind+7] += 0;

76 else fixranef[ind+7] += factor2 coefs[(factor2[i]-1)];

77 }

78

79 }

80 model {

81 // main 11

82 real params|[6];

83 real lol = 0;

84 int st;

85 int en;

86 int ind;

87 real delta;

88 real v;

89 params[1l] = bs haz p;

90 params[2] = bs haz lambda;

91 params[3:4] = assoc _coefs[1:2];

92 params[5] = assoc_coefs[3];

93 params[6] = 0.330;

94

95 // random effects

96 lol += lognormal lpdf (ranefl b | 1, yl ranef[l]);

97 lol += lognormal lpdf(ranefl c | 1, yl ranef[2]);

98 lol += normal lpdf (ranefl d | 0, yl ranef[3]);

99 lol += normal lpdf (ranef2 b | 0, y2 ranef[l]);

100 lol += normal lpdf (ranef2 c | 0, y2 ranef[2]);

101 lol += normal lpdf(ranef2 1 | 0, y2 ranef[3]);

102

103 // time-to-event

104 lol += 11 (n, fixranef, params, event times, events, threads);

105

106

107 // yl (SLD) impact

108 st = 1;

109 for (i in 1:n) {
110 en =yl 1[1i];
111 ind = (i-1)*7;
112 for (j in st:en) {
113 v = fixranef[ind+2]*exp (fixranef[ind+3]*t1l[j]) + tl[j]l*fixranef[ind+1l];
114 lol += normal lpdf(v | yl1l[j], sigmal);
115 }
116 st = en+l;
117 }
118
119 // y2 (NLR) impact
120 st = 1;
121 for (i in 1:n) {
122 en = y2 1[1i];
123 ind = (i-1)*7;
124 for (j in st:en) {
125 v = fixranef[ind+5] + fixranef[ind+6]* (fixranef[ind+4] -

fixranef[ind+5])/ (t2[j]l+fixranef[ind+6]);
126 lol += normal lpdf(v | y2[j], sigma2);
127 }
128 st = en+l;
129 }
130
131
132 // apply priors
133 lol += normal lpdf(bs haz p | bs haz p prior intercept, bs haz p prior sd);
134 lol += normal lpdf (bs haz lambda e | bs haz lambda prior intercept,
bs haz lambda prior sd);

135 lol += normal lpdf (assoc_coefs | assoc_coefs prior intercept, assoc coefs prior sd);
136 lol += normal lpdf(yl ranef | 0, yl prior sd[5:7]);
137 lol += normal lpdf(y2 ranef | 0, y2 prior sd[5:7]);
138 lol += lognormal lpdf(yl fixed b | yl prior intercept[l], yl prior sdf[1l]);
139 lol += lognormal lpdf(yl fixed c | yl prior intercept[2], yl prior sd[2]);
140 lol += normal lpdf(yl fixed d | yl prior intercept[3], yl prior sd[3]);
141 lol += normal lpdf(y2 fixed b | y2 prior intercept[l], y2 prior sd[l]);
142 lol += normal lpdf(y2 fixed c | y2 prior intercept[2], y2 prior sd[2]);
143 lol += normal lpdf(y2 fixed 1 | y2 prior intercept[3], y2 prior sd[3]);

144
145
146
147
148
149
150
151

lol +=
lol +=
target
target

target

normal lpdf(sigmal | O, yl prior sd[4]);
normal lpdf(sigma2 | 0, y2 prior sd[4]);

+= normal lpdf (factorl coefs
+= normal lpdf (factor2 coefs

+= lol;

0,
0,

factor coefs prior sd);
factor coefs prior sd);

O ~JOo Ul b WN

BSOS DWW WWWwWwwwwwwdhhhdNdNhdNdNDNDNDNMdNNRE PR R REREERER R
GO WNhRFPFOWOWOJOHUDd WNRFRFOWOWOJOUDd WNEFEOWOJOoU bW EFE O

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

// content of .hpp file with implementation of 11 ()

define M PI 3.14159265358979323846 /* pi */

const double nodes tanhsinh[] = {
/* 1lst layer nodes: transformed 0, 1, 2, 3 */
0.00000000000000000000,
0.95136796407274694573,
0.9999774771924615928¢6,
0.99999999999995705839,
/* 2nd layer nodes: transformed 1/2, 3/2, 5/2 */
0.67427149224843582608,
0.99751485645722438683,
0.99999998887566488198,
/* 3rd layer nodes: transformed 1/4, 3/4, ... */
0.37720973816403417379,
.85956905868989663517,
.98704056050737689169,
.99968826402835320905,
.99999920473711471266,
.99999999995285644818,
* 4th layer nodes: transformed 1/8, 3/8, ... */
.19435700332493543161,
.53914670538796776905,
.78060743898320029925,
.91487926326457461091,
.97396686819567744856,
.99405550663140214329,
.99906519645578584642,
.99990938469514399984,
.99999531604122052843,
.99999989278161241838,
.99999999914270509218,
.99999999999823216531

cNeoNoNoloNoNoNoNololNolNelh NelNolNolNolNo]

};

const double weights tanhsinh[] = {
/* First layer weights */
1.5707963267948966192,
0.230022394514788685,
0.00026620051375271690866,
1.3581784274539090834e-12,
/* 2nd layer weights */
0.96597657941230114801,
0.018343166989927842087,
2.1431204556943039358e-7,
/* 3rd layer weights */
1.3896147592472563229,
.53107827542805397476,
.076385743570832304188,
.0029025177479013135936,
.000011983701363170720047,
.1631165814255782766e-9,
* 4th layer weights */
.5232837186347052132,
.1934630258491569639,
.73743784836154784136,
.36046141846934367417,
.13742210773316772341,
.039175005493600779072,
.0077426010260642407123,
.00094994680428346871691,
.000062482559240744082891,
.8263320593710659699e-6,

HOOOOOOORrRrFE NPk OOOOo

function

74
75
76
77
78
79
80
81

82
83
84

85
86
87

88
89
90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141

const int offsets tanhsinh[] = { 1, 4, 7,

template<typename T>

inline T y t explin(const T& t, const T& b, const T& c, const T& d) {return c¥exp (d*t

) + b*t;}

template<typename T>

736410132e-8,
/6631926964e-11

13, 25 %},

inline T y t bcl(const T& t, const T& b, const T& c, const T& 1) {return c + 1*(b-c

)/ (t+1) ;)

template<typename T>

inline T hO t wei(const T& t, const T& p, const T& lambda) {return p*lambda*pow (

lambda*t, p-1.0);}

template<typename T1,

Tl tanhsinh(const Tl& a,
T1(1.0e-10)) {

y p, Tl eps =
Tl p = (a + b) * 0.
Tl g= (b - a) * 0.

class T2>

const Tl& b, int lmax, const T2& y, const std::vector<Tl>&

g o

r
r

C

if (abs(g) < eps) return T1(0);

Tl integral =
int m = (2 < lmax)
m = (4 < lmax) ? 4

for (int 1 =

Tl (weights tanhsinh[0]) * y(p, v p)~’

? lmax : 2;
1lmax;

offsets tanhsinh[0]; i<offsets tanhsinh[m]; ++i) {

integral += T1(weights tanhsinh[i]) *

(y(p + g * Tl(nodes tanhsinh[i]), v p) + y(p - g * Tl(nodes tanhsinh[i]l), v p));

}

integral *= g*pow (0.5, m-1);

return integral;

}

template<typename T>

T h t(const T& t, const std::vector<T>& p) {

// pl0]l, pl1]
T h = h0 t wei(t,
// next 3 params

T yl =

// next 3 params
T y2 =y t bcl(t,
// pl8] =

h *= exp(p[8]*yl
return h;

template<typename T>

koef y1, pl[9] =

- weibull params

pl0l, pll]);
are related to the 1lst biomarker

y t explin(t, pl[2], p[31, p[4]);

are related to the 2nd biomarker

pl>1, plel, pl71);

koef y2, p[l0] = koef yly2, p[ll] =
+ pl9]1*y2 + p[10]*yl*y2 + p[11]);

factor impact

T s _t(const T& t, const std::vector<T>& p, const T& maxtime) {
if (t < maxtime) return tanhsinh(T(0), t, 2, h t<T>, p);
else return tanhsinh(T(0), t, 3, h t<T>, p);

}

template <typename Tl , typename T2 , typename T3 >

typename boost::math:
11 (const inté& n,
const std::
length=n*6
const std::
const std::
const std::
const inté&

:tools::promote args<Tl , T2 , T3 >::type

// n - number of patients

vector<Tl >& fixranef, // array of individual parameters
vector<T2 >& params, // array of params length=6
vector<T3 >& event times,

vector<int>& events,

threads, //

std::ostream* pstream) {

typedef typename

boost::math::tools::promote args<Tl , T2 , T3 >::type

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166

167
168
169
170
171

result type;
result type logl = 0;
// global cycle for each id

std::vector<result type> p i(12);

p_1[0] = result type(params[0]); // p

p i[1] result type(params[1]); // lambda

p i[8] result type(params[2]); // assoc 1

p_1[9] = result type(params[3]); // assoc 2

p_1[10] = result type(params[4]); // assoc 12

result type maxtime = result type(params[5]); // time to ease on integration

for(int i=0; i<n; ++i) {

p i[2] = result type(fixranef[/*i + 0]); // yl
p i[3] = result type(fixranef[/*i + 1]); // yl
p i[4] = result type(fixranef[/*i + 2]); // yl
p i[5] = result type(fixranef[/*i + 31); // y2
p i[6] = result type(fixranef[/*i + 41); // y2
p i[7] = result type(fixranef[/*i + 51); // y2
p i[11] = result type(fixranef[/*i + 6]); // factor hazard

logl += -s_t(result type(event times[i]), p 1, maxtime); // log(S(t)) =
int 0"t{h(x)dx}
if (events[i]==1) {logl += log(h t(result type(event times[i]), p 1));} // +
log(h(t))

return logl;

