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SI Methods 

Animals 

Mice were housed in the animal facilities of Washington University in St. Louis. All animal experiments 

were conducted in compliance with Institutional regulations, under authorized protocols # 20160220 

and 19-0981 approved by the Institutional Animal Care and Use Committee of Washington University 

and Amgen South San Francisco. Only male mice were used for pharmacodynamic analysis, 

pharmacokinetic analysis and scRNA-seq analysis were performed on both male and female mice in 

this study.  

 

Anti-hTREM2 antibodies  

hTREM2-specific serum titers obtained from immunized mice were monitored by live-cell FACS 

analysis (Accuri FACS). Lymphocytes from draining lymph nodes of animals with the highest 

antigen-specific serum native titers directed against hTREM2 were used for hybridoma generation. 

 

Hybridoma supernatants were screened for binding to human TREM2 by ELISA using 384-well plates 

coated with Neutravidin overnight or coated with control hIgG1 at 2 µg/mL at 37 °C for 1 hour followed 

by coating with biotinylated-hTREM2 extracellular domain fused to the Fc portion of hIgG1 Fc 

(hTREM2-Fc, Amgen). After a wash step, the exhausted hybridoma supernatants were diluted with 1% 

milk/1X PBS (1:5) and added to hTREM2-Fc or control hIgG1 coated 384 well plates and incubated at 

room temperature for 1 hour. A mixture of goat α-human κ-HRP (2060-05, Southern Biotech) and goat 

α-human λ-HRP (2070-05, Southern Biotech) were used for detection.  

 

The variable heavy and light chain sequences from a lead candidate identified in the hybridoma 

screening campaign were cloned and recombinantly expressed with an hIgG1 constant region lacking 

effector function to generate hT2AB. A murinized version of hT2AB, mT2AB, was generated by 

grafting the hT2AB variable domains on an effectorless mIgG1 backbone. Preparations of hT2AB, 

mT2AB, and the effectorless isotype control hIgG1 and control mIgG1 used in animal and cell-based 

experiments were tested for endotoxin and found to be comparable with < 0.5 EU/mg assuring that 

responses were not due to TLR signaling. 
 

Antibody binding assay  

The purified hT2AB was diluted to 5 µg/ml in assay buffer (10 mM Tris, 0.13 % Triton X-100, 150 mM 

NaCl, 1 mM CaCl2, 0.1 mg/ml BSA, pH 7.6) and captured on anti-hFc kinetic sensors (18-5090, 
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ForteBio). Recombinant hTREM1:GSS:Flag:6xHis and recombinant hTREM2:GSS:Flag:6xHis were 

minimally biotinylated (0.3-0.4 biotin/mol) and immobilized at 70-80 nM onto high precision 

Streptavidin fiber optic biosensors (SAX, #18-5119) over 2000 seconds to a final loading level of ~2 

nm. Each loaded TREM2 protein was then incubated with a dilution series of hT2AB Fab protein (30, 

10, 3.3 nM) for 300 seconds and then 500 seconds in buffer alone (dissociation). Raw data was 

processed with the Octet data analysis software (v10) and processed data were globally fit to a 1:1 

binding model and a dissociation constant (KD) of 50 nM was calculated. An anti-hTREM1 antibody 

and an isotype-matched hIgG2 control antibody were used as controls. 

 

To test the binding capacity to the hTREM2R47H mutation, bone marrow-derived macrophages (BMMs) 

from TREM2CV, TREM2R47H and Trem2–/– mice were harvested on day 5 and incubated in FACS buffer 

(10% FCS in PBS) with hT2AB or control hIgG1 for 30 min, followed by staining with anti-hIgG Fc-PE 

(9040-09, SouthernBiotech). Dead cells were excluded by DAPI staining. 

 

Generation of differentiated human monocyte-derived macrophages 

Large, single donor lots (50-100 million cells per differentiation run) of cryopreserved CD14+ 

monocytes from healthy human de-identified donors were collected through leukapheresis and 

negative immunomagnetic selection (Lonza) and used to generate macrophages (hMacs). 

Suspensions of cryo-recovered monocytes were differentiated in RPMI-1640 medium using 

plant-derived recombinant M-CSF (50 ng/mL, plant-derived, ultra-low endotoxin 0.05 EU/µg, 

PromoCell # C-60442A) in a semi-adherent manner with CellGenix VueLife 118-C bio-process bags 

(Saint-Gobain Performance Plastics). A maximum of 50 million cells were loaded in differentiation 

medium into each bag (~30 mL of cell suspension initial loading). Differentiation medium was 

composed of RPMI-1640 + 10% FBS (Gibco PerformancePlus Certified, heat inactivated, ≤5 EU/mL 

endotoxin, #10082139), 1X GlutaMAX (Gibco #35050061), 1X Pen/Strep (Gibco # 15140122), 1X 

NEAA (Gibco # 11140050), and 1X Sodium Pyruvate (Gibco # 11360070) in addition to the 50 ng/mL 

M-CSF. With bags placed on racks in standard tissue culture incubators (humidified, 5% CO2, 37 

degrees C) to maximize gas exchange, differentiation was conducted for 9 days total with infusions of 

fresh differentiation medium on day 3 and day 6. After 9 days of differentiation, macrophages were 

collected from bio-process bags after agitation to dislodge cells and cryopreserved in BamBanker 

Serum Free Medium (Wako Chemicals USA # 30214681). Each large-scale production run of human 

macrophages was qualified for consistent TREM2 expression relative to undifferentiated monocytes 

by flow cytometry. Throughout the production process, every effort was made to monitor and minimize 

endotoxin exposure. 
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Syk phosphorylation assay 

Clone G13 cells (8 x 105 cell/mL) or hMacs (2 x 105 cell/mL) were seeded overnight at 25 µL per well 

in a 384-well PDL-coated assay plate. On the day of the assay, cells were incubated with a serial 

dilution of hT2AB for 45-60 min at RT. After removal of the supernatant, the cells were lysed with 

M-Per+ containing 0.0625 nM anti-pSyk (Tyr525/526, 2710, Cell Signaling Technology) and 0.5 nM 

biotinylated mouse anti-Syk antibodies, Custom order: BD Bioscienes) at room temperature for 1 hour 

incubated with 2.5 µg/mL anti-rabbit IgG-Acceptor beads (AL104C, Perkin Elmer) at room 

temperature for 2 hours followed by addition of 10 µg/mL streptavidin-Donor beads (6760002B, Perkin 

Elmer) at room temperature for 2 hours. The antibody and bead concentrations stated are final. The 

AlphaLISA signals (counts) were measured by an EnVision Multilabel Reader.  

 

Measurement of sTREM2 and CCL4 levels in hMacs by MSD  

hMacs were used for measuring the CCL4 and sTREM2 in conditioned media after treatment with 

hT2AB or hIgG1 isotype control antibody. Briefly, hMacs (500000 cells/well/ml) were plated in 6-well 

plates and incubated overnight at 37 °C. Growth media was replaced by culture media (RPMI + 

GlutaMax + 1% FBS) for 24 hours and the following day an appropriate amount of media was 

removed and replaced with media that contains hT2AB, hIgG1 isotype control antibody or acetylated 

LDL at a final concentration of 200 nM. At specified time points (4, 8 or 24 hours) media from each 

treated well (conditioned media) was removed and saved for analysis until all samples were collected. 

CCL4 (4, 8 or 24 hours) and sTREM2 (24 hours) levels were measured in conditioned media with an 

MSD platform-based assay as per manufacturer instructions (Meso Scale Discovery).  

 

Survival assay of BMMs 

BMMs from TREM2CV, TREM2R47H and Trem2–/– were harvested at day 5 of culture with CSF1 and 

transferred to 24-well flat-bottomed plates that were coated with hT2AB or control hIgG1 at 5 × 104 

cells/well in complete RPMI without CSF1. Survival, measured as % of Propidium Iodide negative cell 

population, was detected after 48 hours culture by a FACSCalibur. 

 

GFP reporter assay 

2B4 NFAT:GFP reporter cells expressing hTREM2CV and hTREM2R47H were used to test the activation 

of hTREM2 variants. Briefly, stock solutions of hT2AB or control hIgG1 were diluted to the indicated 

concentrations in a sodium carbonate-bicarbonate buffer, and 50 µl of the resulting solution was 

added to distinct wells of a 96-well plate for overnight. Each condition was performed in triplicate. The 
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antibody coated plates were washed three times by cold PBS before transferring 2B4 NFAT:GFP 

reporter cells expressing hTREM2CV or hTREM2R47H into the corresponding wells at 1000 cells/µl. 

After stimulating for 16 hours, the cells were transferred to FACS tubes and read on a FACSCalibur 

for GFP expression. 

 

Pharmacodynamics and Pharmacokinetics of hT2AB  

Groups of 10-week old TREM2CV, TREM2R47H and Trem2–/– male mice were injected intravenously 

(i.v.) with different doses of hT2AB. After 48 hours, mice were sacrificed and brain lysates were used 

to measure the concentrations of CXCL10, CCL4, CCL2, CXCL2 and CST7 by MSD. In a different 

treatment group, TREM2R47H and Trem2–/– male mice were injected i.v. with hT2AB at 30 mg/kg. Mice 

were sacrificed at 4, 8 and 24 hours after injection. The relative gene expression levels of Cxcl10, Ccl2, 

Ccl4, Cst7 and Tmem119 were measured by qRT-PCR.  

 

For pharmacokinetic analysis, groups of 8-month old TREM2CV, TREM2R47H and Trem2–/– male or 

female mice were injected intraperitoneally with a single injection of 30 mg/kg hT2AB. Concentrations 

of hT2AB in mouse serum samples and in homogenate of cold PBS-perfused cerebellum were 

measured 48 hours later with two different assays. Both assays were sandwich immunoassays, using 

a recombinant human TREM2 (Amgen, Inc. CA) and a ruthenium conjugated mouse anti-human Fc 

monoclonal antibody (Amgen, Inc. CA). The Lower Limit of Quantification (LLOQ) for serum and 

cerebellum homogenate assays were 100 ng/mL and 1 ng/mL, respectively.  
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Single-cell RNA-seq Analyses 

Computational resources 

Resource Source Version 

CellRanger https://www.10xgenomics.com/ 3.0.2 

PANTHER http://www.pantherdb.org/ 15.0 

R Statistical Software https://www.r-project.org/ 3.6.0 

-- irlba https://CRAN.R-project.org/package=irlba 2.3.3 

-- scran  http://doi.org/10.18129/B9.bioc.scran 1.14.5 

-- batchelor  http://doi.org/10.18129/B9.bioc.batchelor 1.2.4 

-- dbscan  https://CRAN.R-project.org/package=dbscan 1.1.5 

-- SingleR  http://doi.org/10.18129/B9.bioc.SingleR 1.0.5 

-- igraph https://CRAN.R-project.org/package=igraph 1.2.4.2 

-- caret https://CRAN.R-project.org/package=caret 6.0.86 

-- slingshot http://doi.org/10.18129/B9.bioc.slingshot 1.4.0 

-- tradeSeq http://doi.org/10.18129/B9.bioc.tradeSeq 1.0.1 

Python https://www.python.org/ 3.7.4 

-- umap-learn https://pypi.org/project/umap-learn/ 0.3.10 

Java http://java.com 1.8.0 

-- Leiden https://doi.org/10.5281/zenodo.1466831 1.0.0 

 

Read alignment 

We build a reference genome by extending mouse mm10 by human TREM2 from GRCh38; 

transcriptome annotations from Ensembl 93 (https://www.ensembl.org/) were used. Sequenced reads 

from the microfluidic droplet platform were de-multiplexed and aligned using CellRanger version 3.0.2, 

available from 10x Genomics (www.10xgenomics.com), with default parameters.  

 

Quality control 

We performed a multi-step quality assessment. First, each sample was analyzed individually (Fig. 

S1A). Here, all 24 samples passed an initial quality control evaluating the distribution of all mapped 

reads over the genome and the fraction of sequenced bases with a Phred quality score (Q) > 30. Each 

sample encompasses thousands of captured events, 𝑘, which are either genuine cells or empty 

droplets with ambient RNA; each event is identified by a unique barcode 𝑏. To distinguish single cells, 

we used a method based on the conventional thresholding on the total UMI count, 𝐮 = 𝑢!  ∈ ℕ𝒌. 
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First, each barcode 𝑏 meeting  𝑢! >  !!
!

!
!!!  was rank transformed in order of decreasing number of 

total UMI count resulting in a vector 𝐫 = 𝑟! ∈ ℕ𝒌; typically, !!
!
≈ 72. For barcodes with equal UMI 

counts, a permutation was used with increasing values at each index set of ties. We then modeled the 

total UMI count as a function of barcode rank, ln (𝐮) ~ ln (𝐫), by fitting cubic smooth splines with 20 

degrees of freedom. Each inflection point of this function may be interpreted as a transition between a 

subset of barcodes with a larger number of total UMIs, i.e., potentially cell-containing droplets, and the 

majority of barcodes with ambient RNA. Inflection points were determined by local minima of the first 

differentiation of the spline basis functions. For each sample, we chose the inflection point 𝜑 closest 

to the expected number of recovered cells and retained all barcodes meeting 𝑢! > 𝜑. The choice of 

𝜑  was further guided by the following descriptive metrics of the selected set of barcodes: i) 

percentage of all reads allotted to the selected barcodes, ii) median number of reads per barcode, iii) 

median fraction of reads mapped to mitochondrial genes per barcode, iv) median number of UMI per 

barcode, v) median number of genes with at least one UMI count per barcode, and vi) median fraction 

of reads originating from an already-observed UMI (saturation). The cell selection was further refined 

by evaluating the distributions of metrics ii-vi) to remove low quality cells and doublets. Finally, we 

estimated the cell cycle effect in each sample. We predicted the cell cycle phase per cell using the 

machine learning based approach proposed by Scialdone et al. (1). Briefly, a classifier was trained on 

pairs of genes that change expression directionality across cell cycle phases. Each cell’s cell cycle 

state can then be projected by examining the sign of the expression difference in the new data set. 

Cells with a predicted G1 or G2M score above 0.5 were assigned to the G1 or G2M phases, 

respectively; cells were classified to be in S phase, if the predicted G1 and G2M scores were below 

0.5. All calculations were performed using the cyclone function in the R package scran. Predicted cell 

cycle scores and phases were not used for cell filtering. 

Next, we conducted an integrative quality control step to identify unwanted technical artifacts in the 

data. All filtered 94488 cells from all samples were pooled, and the resulting UMI count matrix was 

normalized and log-transformed (see Normalization). To reveal technical artifacts in the data, we 

calculated principal components that capture the maximal variance within the data while controlling for 

the manifest variables sex, age, and treatment. For this purpose, manifest variables were 

partialled-out from the normalized UMI count matrix. Informative genes were unbiasedly determined 

by their mean expression-dependent variance in the data (see Gene expression variance modeling) 

and used for calculating principal components of the corrected UMI count matrix (see Spectral 

dimensionality reduction). The resulting 38-dimensional latent space was further modeled with a fuzzy 

topological structure using Uniform Manifold Approximation and Projection (UMAP; Python package 
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umap-learn) (2) to unfold the data structure that is either driven by cell type or technical variance. 

While varying library sizes can be normalized between cells, a large fraction of missing values (i.e., 

drop-outs) due to poor transcriptome coverage cannot be accurately recovered in the data and will 

significantly impact downstream analyses. Thus, to score cell quality, we calculated the first principal 

component of a set of seven quality metrics assessing the transcriptome coverage per cell: i-iv) 

fraction of reads consumed by the top {500, 200, 100, 50} expressed genes, v) fraction of 

mitochondrial reads, vi) relative distance to the maximum total number of UMIs (i.e., 1 − !!
!"# 𝐮

), vii) 

relative distance to the maximum number of genes with at least one UMI count. The resulting cell 

quality (CQ) score was then superimposed onto the UMAP revealing a technical confounder in the 

data (Fig. S1B). Using density-based spatial clustering (R package dbscan), we extracted a 

representative group of cells with low CQ score. We determined an optimal CQ score cut-off of -0.1 

which removes a maximum fraction of cells within this group (91.4%) and a minimum fraction of cells 

otherwise (11.1%) by determining the knee of the inverse empirical cumulative CQ score distribution 

function (Fig. S1C). This resulted in a final data set of 71303 high quality single cells (Fig. S1D). 

Normalization 

Library sizes were normalized as proposed by (3). In a nutshell, size factors are computed from pools 

of similar cells, which are then deconvoluted to cell-based factors and used to scale the counts in each 

cell. First, for each batch scaling factors for each cell were calculated using the R package scran. An 

initial guess of cell populations contained in the data was calculated by using the function quickCluster 

on a shared nearest neighbor graph; we required a minimum cluster size 𝜑 of 10% of the total 

number of cells, and a minimum average gene expression of 1 for the shared nearest neighbor graph 

construction. Size factors were then calculated using the function computeSumFactors with pool sizes 

ranging in 21,max{101,𝜑 + 1} ∈  ℕ. Then, we normalized scaling factors between batches based on 

their ratio of average UMI counts to provide comparable results to the lowest-coverage batch using 

the R package batchelor. Finally, the scaled UMI count matrix 𝐗 was log2 transformed by log!(𝐗 +

1). 

 

Supervised CD45+ cell type annotation  

Rather than determining cell identities by a biased selection of marker genes, we intended to 

unbiasedly characterize cell types using the total available transcriptome. For this purpose, we first 

filtered robustly expressed genes with more than 4 molecules in at least 50 cells, removed ribosomal 

and mitochondrial genes (obtained from Gene Ontology GO:0005840 and Ensembl, respectively), 

retained only protein-coding genes, and removed a set of 136 genes highly correlating with 
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dissociation-induced stress response (4). This resulted in a single-cell expression matrix 𝐗 composed 

of 𝑛 data vectors 𝐱.! with 𝑗 ∈ 1,… ,71303 of dimensionality 𝑚 = 4453: 𝐗 = 𝑥!" ∈ ℝ!!"#×!"#$#. We 

used log-normalized microarray gene expression data of 20 immune cell types measured in 830 pure 

samples of sorted cells by the Immunological Genome Project (ImmGen) (5); the processed 

expression matrix 𝐘 = 𝑦!" ∈ ℝ!!"#$×!"# was obtained from the SingleR R package. We filtered 

3697 genes that were highly variable in this dataset by assessing the mean expression-dependent 

variance (see Gene expression variance modeling). Spearman’s rank correlation coefficients, 

𝜌(𝐱.! , 𝐲.!), were calculated between all single cells, 𝐱.! ∈ ℝ!!", and all ImmGen samples, 𝐲.! ∈ ℝ!!", 

using 992 genes overlapping between both datasets. Each single cell was assigned the cell type with 

the most similar expression profile by arg max! 𝜌(𝐱.! , 𝐲.!). In this step 15 cell types were detected in the 

dataset. Since the original expression space of single-cell data is rife with noise and the underlying 

distributions of scRNA-seq UMI counts and microarray signal intensities differ, we aimed to refine the 

initial cell type classification. For this purpose, the manifest variables sex, age, and treatment, as well 

as, three technical confounders (fraction of reads mapped to mitochondrial genes, total number of 

reads, fraction of reads assigned to dissociation-related stress response genes) were regressed-out 

from 𝐗 . Then, a 39-dimensional principal component space was calculated (see Spectral 

dimensionality reduction) on highly variable genes (see Gene expression variance modeling) and 

subjected to UMAP (Python package umap-learn) to unfold the data structure driven by cell identity. 

Next, we generated a weighted cell adjacency matrix; weights were calculated by the Jaccard index 

between cells using the overlap of their 15-nearest neighborhood. We identified 30 cell communities 

(segments) in the adjacency matrix using the Leiden algorithm (6) (Java package Leiden) with a 

resolution of 3×10-4. The data was then tabulated by counting for each segment 𝑖 the number of cells 

with cell type 𝑗 resulting in matrix 𝐀 = (𝑎!") ∈ ℕ!"×!". To avoid division by 0 in the subsequent 

calculation, a pseudocount was added by  𝐀 = 𝐀 + 1 . An enrichment score matrix 𝐀! = 𝑎!!" ∈

 ℝ!"×!" was derived by 

𝑎′!" = ln
𝑎!"
𝑎!"!"

!!! − 𝑎!"
− ln

𝑎!"!"
!!! − 𝑎!"

𝑎!"!"
!!!

!"
!!! − 𝑎!" − 𝑎!"!"

!!! + 𝑎!"!"
!!!

 

Finally, each cell in each segment was assigned the cell type with the highest enrichment score. This 

revealed 64274 microglia cells in our dataset. 

 

Differential gene expression analysis 

To identify differentially expressed genes between two groups of cells, we developed an intuitive and 

scalable approach based on Bayesian statistics. Here, we calculated the specificity and the detection 
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rate for each gene in each group. We defined specificity by the posterior probability 𝑃 𝑗 = 𝑍 | 𝑥!" > 𝜑 . 

It defines the probability that cell 𝑗 is a member of group 𝑍  if feature 𝑖  was observed higher 

expressed than a threshold 𝜑. Detection level is defined by the posterior probability 𝑃 𝑥!" > 𝜑 | 𝑗 =

𝑍 , i.e., the relative fraction of cells expressing a gene 𝑖 above threshold 𝜑 in group 𝑍.The threshold 

parameter 𝜑 was set to 2 (i.e. at least 4 molecules per cell). All conditional probabilities were 

calculated using Bayes’ theorem with adjusted marginal probabilities to avoid sample size bias: 

𝑃 𝑗 = 𝑍 = 0.5 

𝑃 𝑥!" > 𝜑 =
𝑃 𝑥!" > 𝜑 | 𝑗 = 𝑍 𝜆 + 𝑃 𝑥!" > 𝜑 | 𝑗 ≠ 𝑍 𝜆

2𝜆
 

with 𝜆  is the maximum cardinality of both groups. In addition, absolute differences between 

expression intensity means of gene 𝑖 were estimated using the effect size defined by Cohen's d:  

𝑑 𝐱!., 𝐱!. =
𝜇! − 𝜇!
𝜎!,!

 

with 𝜇 is the gene expression mean and 𝜎!,! is the pooled standard deviation of two samples {1,2}: 

𝜎!,! =
𝑛! − 1 𝜎!! + 𝑛! − 1 𝜎!!

𝑛! + 𝑛! − 2
 

with 𝜎! is the gene expression variance in one group. 

 

Microglia baseline annotation 

For subsequent downstream analyses, we filtered the normalized and processed gene expression 

matrix 𝐗 by robustly expressed genes with more than 2 molecules in at least 50 cells, removed 

ribosomal and mitochondrial genes (obtained from Gene Ontology GO:0005840 and Ensembl, 

respectively), retained only protein-coding genes, and removed a set of genes highly correlating with 

dissociation-induced stress response (4). To annotate the microglia baseline cell heterogeneity, we 

extracted 5694 cells from male and female control hIgG1 treated TREM2CV-5XFAD mice. This 

resulted in the filtered single-cell expression matrix 𝐗′ = 𝑥′!" ∈ ℝ!!"#!×!"#$. We embedded the data 

vectors of highly variable genes (see Gene expression variance modeling) proximal to a non-linear 

lower dimensional manifold using Diffusion Maps (see Spectral dimensionality reduction). This 

revealed a temporal axis in the data, presumably a microglia activation trajectory. A weighted cell 

adjacency matrix was calculated from the diffusion components by using the Jaccard index of the 

overlap of each cell’s nearest neighborhoods. The resulting graph was clustered using Louvain’s 

community detection method available in the R package igraph. To better understand the underlying 

temporal topology of the data, we fitted an unconstrained maximum parsimony tree between all 11 
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clusters using the getLinages function from the slingshot R package. It revealed a branching trajectory 

with 5 terminal ends. The cluster with the highest expression of common microglia marker was 

determined to be the resting microglia population. 

 

We further compared our clusters to a reference expression profile of DAMs from a previous study (7). 

First, we calculated vectors with gene expression log2 fold-changes between all clusters and the 

resting microglia population in our data. Then, we computed a single vector of log2 fold-changes 

between stage 2 DAMs and the resting population in the reference study. Overall, 10124 genes 

overlapped between both studies, resulting in a log2 fold-change vector 𝐳! ∈ ℝ!"!#$ for each cluster 

and the reference. Only genes with an absolute log2 fold-change of > 0.5 were considered 

differentially expressed and retained for the subsequent analysis. Each log2-fold change vector was 

binarized by using the signum function sign(𝐳!). We tabulated the data by counting the agreements 

and disagreements in expression directionality between our data and the reference study resulting in 

a contingency table, 𝐀 = (𝑎!") ∈ ℕ!×!. We interpreted this table as confusion matrix, i.e., how well our 

data predicts the expression trend of the refence DAM population. Here, we calculated a similarity 

score by subtracting the sum of the off-diagonal values (false positives + false negatives) from the 

matrix trace (true positives + true negatives). We further tested the null hypothesis that the overall 

agreement between both datasets defined by trace(𝐀) / 𝑎!"!!  is less or equal than the 

no-information rate defined by the fraction of the largest class in the data; test statistics were 

calculated using the R package caret. 

 

The predicted cell cycle phases of each cell were used to identify a cluster of cycling microglia cells; 

cell cycle phase prediction and scoring were performed in the quality control step (see Quality control). 

Gene Ontology term enrichment analyses were performed using the PANTHER classification system 

(8) to functionally characterize the expression profile of selected clusters. Marker genes were 

determined by contrasting one cluster against a cell pool of all other clusters (see Differential gene 

expression analysis); genes were selected by meeting minimum specificity/detection rate/effect size 

thresholds (IFN-R: 75.0%/10.0%/1.5, MHC-II: 50.0%/10.0%/1.0). We used the 11361 genes 

contained in our dataset as reference list for each statistical overrepresentation test. False discovery 

rate was used to correct Fisher's exact test P-values for multiple testing. 

 

Sample harmonization 

Given that hT2AB and control hIgG1 injections were performed in mice of different sex and carrying 

distinct TREM2 variants, we next developed a supervised sample harmonization approach to define 
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the impact of sex, genotype, and treatment on the four microglial trajectories (Fig. S3A). We used our 

results from the baseline analysis of microglia control hIgG1-treated mice as a reference for 

classifying cells of samples from different conditions. To minimize classification errors, diffusion 

components of the reference dataset and each query dataset were calculated (see Spectral 

dimensionality reduction). Machine learning was applied on the lower-dimensional manifold to learn 

cell types from the reference set and to classify the query dataset using Xtreme gradient boosting. 

Hyperparameters of the machine learning model were optimize using grid search provided by the R 

package caret. Since the manifold is describing a developmental continuum with overlapping cell 

cluster boundaries, we accepted a reasonable average training accuracy of 87.5% to avoid overfitting. 

To assess overall classification accuracy, we used reverse projection. We trained a classifier on the 

predicted classes of the query dataset and projected the cell types for the reference dataset. An 

average training accuracy of 92.9% indicates that the predicted classes of the query dataset are highly 

coherent. Our model achieved a high overall average prediction accuracy of 86.3% (Fig. S3B). 

 

Microglial cell type trajectory reconstruction 

To analyze distinct trajectories for each microglia cell type, we extracted the branching cluster, all 

terminal clusters, and the intermediate cluster t6 from the expression matrix 𝐗 containing all samples. 

The data was then split by cell type: DAM trajectory = {t5, t6, DAM}, Cyc-M trajectory = {t5, Cyc-M}, 

IFN-R trajectory = {t5, IFN-R}, MHC-II trajectory = {t5, MHC-II}. Cells of each cell type trajectory were 

embedded onto a lower-dimensional manifold using diffusion maps (see Spectral dimensionality 

reduction) on the highest variable genes (see Gene expression variance modeling) and projected onto 

2-dimensions with UMAP to unfold the latent temporal axis. To further order cells chronologically, we 

fitted smooth trajectory curves for each linage using principal curves and projected datapoints 

orthogonally using the R package slingshot; here, arc lengths were interpreted as pseudotime values 

(9).  

 

Cell type compositional analysis 

We aimed to delineate differences in microglial cell-type proportions due to sex, genotype and 

treatment. Cell type fractions in the single-cell data are not linearly corresponding to true proportions 

in vivo due to technical artifacts, including cell damage induced by sample preparation and handling or 

by pressure changes during cell sorting, amongst others. Further, small sample sizes may not 

properly represent the actual population. This may cause large variances in cell type proportions 

between biological replicates. By using stratified bootstrap resampling we can estimate the population 

mean and correct the sampling bias of individual replicates, as well as, measure estimate uncertainty. 
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Let 𝐖 = (𝑤!") ∈ ℕ!×! a label matrix composed of 2-dimensional vectors with a label indicator (e.g., 

cell type or time interval) and a biological replicate indicator for 𝑚 cells, 𝑙  label levels, and 𝑑 

biological replicates. For example, 𝐰!. = {10, 2} is the label vector for the first cell listed in 𝐖, which 

was sampled from time interval 10 and from the second biological replicate. We constructed stratified 

resamples of size 𝑘, where 𝑘 was set to the maximum replicate size. Each resample was then 

tabulated resulting in a matrix 𝐕 = (𝑣!") ∈ ℝ!,! which contained absolute numbers of cells per cell 

label and replicate. To conservatively correct biases in single replicates, resamples were aggregated 

by  

𝐛 =
min! 𝑣!"

𝑘
, 𝑗 = 1,… 𝑙 

The resulting vector 𝐛 ∈ ℝ! represented a sample of cell type proportions. We performed 𝑁 = 500 

bootstrapping iterations resulting in a matrix 𝐁 = b!" ∈ ℝ!×! . Estimates of cell-type proportions 

𝛍 ∈ ℝ! were derived by  

𝛍 =
𝑏!"!

!!!

𝑁
, 𝑗 = 1,… 𝑙 

The standard error for the 95% confidence interval for an estimated cell type proportion of label 𝑗 

were derived by: 

SE! = 1.96
𝜎!
𝑁

 with 𝜎! =
𝑏!" − 𝜇!!

!!!
𝑁 − 1

 

 

Inference of expression dynamics  

We fitted gene expression as a function of pseudotime for each microglia cell type trajectory on a 

subset of cells from a specified genotype, sex and treatment using negative binomial generalized 

additive models (NB-GAM) (10). Wald tests were performed to test the hypothesis if the beginning or 

the end of a gene’s dynamic curve differs between conditions and corresponding log fold-changes 

were calculated using parameters of the NB-GAM smoothers. These computations were performed 

with the R package tradeSeq. To statistically classify gene dynamics, Wald test P-values were 

corrected for multiple testing via false discovery rate. Each corrected P-value 𝑝 was weighted by the 

sign of the log fold-change 𝑆 by 𝑝! and -log10 transformed. Resulting negative values denoted 

downregulation and positive values indicated upregulation, respectively. 

 

Gene expression variance modeling 

By assuming that biological heterogeneity is driven by a subset of genes having high variance 

between cells, we aim to improve resolution by removing genes driven by technical noise. Total 



14 

variance of each gene is decomposed into its biological and technical components by fitting the 

variance as a function of mean expression (11). Significance is inferred by modeling the residuals of 

this fit with an F-distribution. To retain condition-specific variance, the union of all highly variable 

genes of all batches is always used. Variance decomposition and F-distribution statistics were 

calculated using the R package scran. 

 

Spectral dimensionality reduction 

This step aims to reduce redundancy and to improve the signal-to-noise ratio in the data, which 

eventually will reveal latent biological factors in the data. For this purpose, we employed spectral 

dimensionality reduction methods. Linear spectral embedding is obtained by a Principal Component 

Analysis (PCA). This method captures the maximal variance in the data. It may miss substructures in 

the data but is sufficient for data with low intrinsic complexity or may be used to get a first insight into 

the data structure. PCA was calculated with the R package irlba. Non-linear embedding was 

performed by using Diffusion Maps (12). This method resolves non-linear and linear substructures in 

the data based on a cell dissimilarity matrix calculated from a distance function 𝐷 on each cell’s 

expression profile. However, instead of calculating the diffusion components using an estimated 

global sigma in the diffusion kernel 𝐾 with K 𝐱! , 𝐱! = exp !! 𝐱!,𝐱!
!

!!
, we used multiple local sigmas 

as proposed by Haghverdi et al. (13):  

𝐾 𝐱! , 𝐱! =
2𝜎!𝜎!
𝜎!! + 𝜎!!

exp
−D 𝐱! , 𝐱!

!

𝜎!! + 𝜎!!
 

We account for batch effects in the data as follows. For PCA, we center the input expression matrix by 

the mean of the center vectors of each batch and scale the covariance matrix by the total cell count of 

each batch. This ensures that each batch contributes equally to the identification of the loading 

vectors (i.e., the PCA won’t be dominated by samples with high cell count). For Diffusion Maps, we 

use the robust pairwise cosine correlation distance. For both techniques, the resulting 

lower-dimensional matrix was corrected for batch effects using mutual nearest neighbors’ batch 

correction (14) (R package batchelor). The number of selected components was guided by a scree 

plot analysis. 

Immunostaining for Aβ  and Image Analyses  
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Free-floating brain sections were initially blocked and permeabilized with PBS + 3% BSA solution 

containing 0.25% Triton X-100. Primary antibodies were added at a dilution of 1:1,000 for Aβ1-16 (6E10, 

conjuncted Alexa Fluor 488, 803013, BioLegend), and 1:500 for Aβ42 (rabbit recombinant monoclonal, 

Thermo Fisher Scientific) at 4°C for overnight. Secondary antibodies, anti-rabbit IgG Alexa Fluor 647 

(goat recombinant polyclonal,1:1,000; Invitrogen) and methoxy-X04 (3 µg/ml; Tocris) were added for 

1.5 hours at room temperature. The confocal pictures were taken on a Nikon A1Rsi+ confocal 

laser-scanning microscope using a 20 × 0.95-NA objective. z-Stacks with 1.1-mm steps in the z 

direction, 1,024 × 1,024-pixel resolution, were recorded. The percentage of Aβ area coverage was 

calculated automatically by batch processing in ImageJ.  

 

 

Aβ and Chemokine/Cytokines Quantification   

Human Aβ1-40 and Aβ1-42 were measured by MSD V-plex 6E10 kit (Meso Scale Discovery) and mouse 

IL-1b, CXCL10 (IP-10) and CCL4 (MIP-1b) were measured by MSD U-plex biomarker group 1 Assay 

(Meso Scale Discovery). Briefly, cortical tissues from antibody or control hIgG1 treated mice were 

homogenized with Tissue Lyser II (Qiagen) in 12x v/w of PBS containing 0.5% of Triton x-100 and 1x 

Halt protease inhibitor cocktail. The insoluble fraction was pelleted by ultracentrifugation at 100,000g 

for 1 hour. Supernatant was collected as soluble PBS fraction. The pellet was resuspended in 250 µl 

of 6 M guanidine and 50 mM Tris, pH 8.0, buffer, and was further homogenized by sonication, followed 

by ultracentrifugation at 75,000 rpm to clarify the denatured pellet. The supernatant was collected as 

the insoluble guanidine fraction.  
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Fig. S1. Single-cell RNA-seq quality control. (A) 24 samples were collected and subjected to 

individual read alignment, droplet, and cell quality control. (B) Integrative data quality assessment 

revealed technical artifacts in the data, likely driven by low cellular transcriptome coverage. Cells are 

colorized by the cell quality (CQ) score derived from a principal component analysis of selected quality 

metrics. Groups enriched in cells with low CQ scores are indicated. (C) Determination of the cut-off for 

cell filtering using the inverse empirical cumulative CQ score distribution function. The determined 

threshold of –0.1 retained 8.6% of cells within the low CQ enriched group and 88.9% of all other cells. 

(D) Distribution of common quality metrics for each cell per sample. Samples are characterized by 

human TREM2 variant, sex, and measured hT2AB brain exposure. Shown is also the ratio between 

the raw expression of the endogenous Trem2 locus and the human TREM2 transgenic locus in all 

collected cells. 
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Fig. S2. GO Term Enrichment of IFN-R microglia marker genes. IFN-R marker genes meeting a 

specificity threshold of 0.75 and an effect size of 1.5 were subjected to a Gene Ontology term 

enrichment analysis. Shown are biological process terms with a false-discovery rate (FDR) corrected 

Fisher’s exact test P-value < 0.05. Terms are grouped and colored by their ontological relation, square 

sizes correspond to the number of IFN-R marker genes found in this category, and color depth is 

scaled by FDR.  
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Fig. S3. Sample harmonization. Annotated microglia cells from control hIgG1-treated female and male 

TREM2CV-5XFAD mice were used as reference to classify cells from the remaining 5 conditions 

(query Q1-Q5). First, each query set was co-embedded with each reference set using diffusion maps 

and subsequently corrected for batch effects using mutual nearest neighbor correction. Then cell 

types were projected using an Extreme Gradient Boosting classifier trained on the diffusion 

components of the query cells. (B) Model accuracy assessments. Training accuracy on the reference 

or query dataset, as well as prediction accuracy of projecting cell types on the reference dataset using 

a classifier trained on the query dataset. 
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Fig. S4. Mouse sex-associated differences in microglia fates in control hIgG1-treated 

TREM2CV-5XFAD mice. Shown are the distributions of the estimated fractions of cells in the terminal 
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90-100% pseudotime interval using Bootstrapping (upper panel) and the fitted expression dynamics 

for the top 10 marker genes (lower panel) for the DAM (A), Cyc-M (B), IFN-R (C), and MHC-II (D) 

clusters. (E) Quantification of soluble and insoluble Aβ1-40 and Aβ1-42 in the hippocampus lysates of 

control hIgG1-treated TREM2CV-5XFAD mice. *, P < 0.05; **, P <0.01; ***, P < 0.001 by two-way 

ANOVA with Sidak’s multiple comparisons test. Data are shown as mean ± SD. 
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Fig. S5. Acute treatment with mT2AB does not change Aβ load. (A) Quantification of soluble and 

insoluble Aβ1-40 and Aβ1-42 in the cortex lysates among different treatment groups. (B) Representative 

confocal images from TREM2CV-5XFAD mice treated with mT2AB stained with 6E10 (white), 

methoxy-X04 (blue), and Aβ42 (red), displaying the distribution of Aβ in the cortex. Bar = 100 µm. (C) 

Fold changes of 6E10+, methoxy-X04+ or Aβ42
+ area coverage in the cortex between mT2AB and 

control mIgG1 treated groups. Data are shown as mean ± SEM. TREM2CV-5XFAD, male, mIgG1, n = 

8; TREM2CV-5XFAD, male, mT2AB, n = 9; TREM2CV-5XFAD, female, mIgG1, n = 5; TREM2CV-5XFAD, 

female, mT2AB, n = 6; TREM2R47H-5XFAD, male, mIgG1, n = 4; TREM2R47H-5XFAD, male, mT2AB, n 

= 4; TREM2R47H-5XFAD, female, mIgG1, n = 4; TREM2R47H-5XFAD, female, mT2AB, n = 6. ***, P 

<0.001; ****, P < 0.0001 by two-way ANOVA with Sidak’s multiple comparisons test. Data are shown 

as mean ± SEM. 
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Table S1. Cerebellar and serum concentration of hT2AB after a single i.p. injection. Analysis of 

hT2AB dosed samples in serum/brain showed exposure to hT2AB and the ratio of BBB passing for 

hT2AB was around 0.19% - 0.76%.  

 
 

  

Genotype Gender Treatment (48 h) Serum Brain % Ratio (Concentration Br/Sr)
TREM2 CV -5XFAD Male hT2AB 2153.33 6.56 0.30
TREM2 CV -5XFAD Male hT2AB 2020.00 3.75 0.19

TREM2 CV -5XFAD Female hT2AB 394.67 2.98 0.76
TREM2 CV -5XFAD Female hT2AB 2460.00 7.27 0.30
TREM2 CV -5XFAD Female hT2AB 2793.33 7.53 0.27

TREM2 R47H -5XFAD Male hT2AB 1773.33 8.00 0.45

TREM2 R47H -5XFAD Female hT2AB 1733.33 4.18 0.24
TREM2 R47H -5XFAD Female hT2AB 1673.33 9.07 0.54

Trem2-/- -5XFAD Female hT2AB 2100.00 7.20 0.34
Trem2-/- -5XFAD Female hT2AB 1993.33 5.42 0.27
Trem2-/- -5XFAD Female hT2AB 2280.00 5.69 0.25

hT2AB (nM) 
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Dataset S1. Differential Gene Expression Analysis. Listed are contrasted gene expression profiles of 

(A) each CD45-positive, (B) each microglia cell group against all other cells, as well as (C) IFN-R 

microglia against MHC-II microglia, respectively. Genes are characterized by their Ensembl 

(https://www.ensembl.org/) identifiers, symbols, and names. Absolute differences in expression are 

quantified by effect size and log2 fold-change. Gene expression specificity and gene detection rate 

were determined using conditional probabilities. Specificity is defined by the posterior probability of a 

cell being a member of a cell type; the detection level is defined by the relative fraction of cells 

expressing a given gene in a group. A gene was classified as expressed in a cell, if it had at least four 

RNA molecules detected. Posterior probabilities are calculated using uniform priors for cell types to 

avoid a sample size bias. 
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Dataset S2. Expression Dynamics Analysis. For each trajectory gene expression was fitted as a 

function of pseudotime. Genes that are expressed in at least 10% of cells with an average expression 

of at least 2 mRNA molecule counts in any condition were used. Early and late terminal timepoints of 

the resulting expression dynamic curves were compared between sex and genotype matched hT2AB 

and control hIgG1 treated samples. P-values were calculated using Wald Statistics and corrected for 

multiple testing via false discovery rate (FDR). The FDR was weighted by the sign of the log 

fold-change S by FDRS and -log10 transformed. Negative values denote hT2AB -induced 

downregulation, positive values indicate upregulation. The resulting -log10(FDRS) values for early and 

late terminal timepoints, as well as, the type of expression change are listed for the (A) DAM, (B) 

Cyc-M, (C) IFN-R, and (D) the MHC-II trajectory. Genes are characterized by their Ensembl 

(https://www.ensembl.org/) identifiers, symbols, and names. 
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