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Supplementary Information Text 
 
SI Materials and Methods 
 
RNA extraction and RNA-Seq. ∼100 mg of frozen tissue was grinded with a Polytron PT 2500 E homogenizer in extraction 

buffer consisting of 3.9 M guanidium thiocyanate, 0.03 M sodium citrate, 0.2 M sodium acetate, and 1% (vol/vol) 2-

mercaptoethanol. An equal volume of 0.5 volume of chloroform/isoamyl alcohol (49:1 [vol/vol]) and phenol (saturated in 
H2O) was added to the homogenate. The mixture was vortexed and then centrifuged for 20 min at 12,000 × g at 4 °C for 

phase separation. Precipitation of RNA of the aqueous phase was performed in an equal volume of isopropanol at −20 °C 

for at least 20 min before precipitate was pelleted by centrifugation for 15 min at 12,000 × g at 4 °C. The pellet was 

resuspended in 4 M lithium chloride and then repelleted by centrifugation for 15 min at 12,000 × g at 4 °C. Subsequently, 

the pellet was washed with 75% ethanol for 15 min at 12,000 × g at 4 °C, dried at room temperature, and finally dissolved 

in RNase/DNase free water. Quantification of total RNA was done with Ribogreen (Life Technologies), and RNA quality 

was assessed with a Fragment Analyzer (Advances Analytical). 
Libraries of the Bmal1 KO and Cry1/2 KO animal series were prepared using the TruSeq Stranded mRNA Library Prep 

protocol (Illumina) following the manufacturer’s protocol. We used 250 ng of total RNA as starting material and performed 

11 PCR cycles for library amplification. The optimal number of PCR cycles was assessed by qPCR (Kapa BioSystems). All 

96 samples (Fig. 1B) were pooled, denatured, spiked with 3% of the PhiX Control v3 Library and loaded onto a paired-end 

read flow cell v3 at a final concentration of 9 pM for a paired-end 126 cycles run on a HiSeq 2500 (Illumina). Sequencing 

depth was equivalent to six samples per lane. For the data on Hlf/Dbp/Tef KO mice, sequencing libraries were prepared 

from 3 µg of total RNA using the TruSeq Stranded mRNA Library Prep Kit following the manufacturer’s protocol. Purified 

libraries were quantified with Qubit DNA HS (Thermo Fisher Scientific), and profile analyses were retrieved on a TapeStation 

TS4200 (Agilent). Paired-end sequencing with 75 cycles were performed on a NextSeq 500 following Illumina’s 

recommendations. We mapped the reads on the Ensembl M. musculus genome (GRCm38/mm10) using STAR-2.7.3a (1) 

with the annotation from Ensembl release 98 (2). To count uniquely mapped reads per gene, we used the quantMode 

GeneCounts option of STAR. 

 
Modeling Temporal Gene Expression Profiles across Multiple Conditions. To assess rhythmicity and mean differences 

of gene expression in RNA-Seq count data, we developed a model selection framework based on generalized linear models 

(GLMs) (SI Appendix, Fig. S1A). As proposed (3), we modeled counts 𝑌!" that have been uniquely mapped to a gene 𝑔 in 

a sample s as a negative binomial (NB) with a fitted mean 𝜇!" and a gene-specific but sample-independent dispersion 

parameter 𝜃!.  

 
𝑌!"~𝑁𝐵(𝜇!", 𝜃!) 

 

The fitted mean is proportional to the quantity 𝑞!" of fragments that correspond to a gene g in a sample 𝑠 scaled by a 

sample-specific scaling factor 𝜆" (3). This scaling factor depends on the sampling depth of each library and was estimated 

using the median-of-ratios method of DESeq2 (3).  

 

𝜇!" = 𝜆"𝑞!" 

 

A gene-specific distribution	𝜃! was estimated using empirical Bayes shrinkage (4). 

The fit was performed using a GLM with a logarithmic link function implemented in DESeq2. Sample specific size factor (𝜆") 

was defined as an offset. The full GLM was defined as follows:  

 



log#4𝜇!$%"5 = 𝑚!%
& +𝑚!$

# + 𝛼!% cos4𝜔	𝑡(𝑠)5 + 𝛽!% sin4𝜔	𝑡(𝑠)5 + log#(𝜆") 

 

where 𝜇!$%" is the mean of the NB distribution for gene 𝑔 and condition 𝑐 in sample 𝑠 at Zeitgeber/circadian time 𝑡(𝑠). The 

index 𝑏 refers to a batch of samples. The parameters 𝛼!% and 𝛽!% are coefficients of the cosine and sine functions, 

respectively. 𝑚!%
&  is a coefficient to describe a condition specific mean expression level. We included a batch specific 𝑚!$

#  

to account for technical batch effects when detected in the data. Specifically, we included 𝑚!$
#  to account for a batch effect 

observed for one series of Cry1/2 KO mice under ad libitum feeding regimen (GSM4037515 – GSM4037520). To select an 

optimal gene-specific model, we proceeded in two steps. First, we assessed rhythmicity across the different conditions, 

where the parameters 𝑚!%
&  and 𝑚!$

#  were free but the parameters 𝛼!% and 𝛽!% had constraints depending on the particular 

model considered. To this end, we defined different models for four (e.g., Bmal1 WT, Bmal1 KO, Cry1/2 WT, Cry1/2 KO) 

or two conditions (i.e., Hlf/Dbp/Tef KO and Hlf/Dbp/Tef WT). Models were defined to have either zero (nonrhythmic pattern) 

or nonzero (rhythmic pattern) 𝛼 and 𝛽 coefficients for each analyzed condition. Moreover, for some models, the values of 

𝛼 and 𝛽 can be also shared within any combination of the four conditions (SI Appendix, Fig. S1 E and F). For example, for 

four conditions, there are 52 such models (SI Appendix, Fig. S1A). The coefficients 𝛼 and 𝛽 were used to calculate the 

phase [atan2(𝛽, 𝛼)] and amplitude (log2 fold-change peak-to-trough; 2D𝛼# + 𝛽#) of a gene. Bayesian information criterion 

(BIC) based model selection was employed to account for model complexity (5) using the following formula:  

 

BIC' = 𝑘 log(𝑛) − 2log	(𝐿I'). 

 

𝐿I' is defined as the log-likelihood of the model j from the regression, n is the number of data points, and k is the number 

of parameters. To assess the confidence of the selected model j, we calculated the Schwarz weight (BICW): 

 

BICW' =
(
!
"∆BIC$

∑ (
!
"∆BIC%&

%'!

, 

 

where ∆BIC' is defined as the difference in BIC between model 𝑗 and the minimum BIC value in the entire model set BIC*∗: 

 

∆BIC' = BIC' − BIC*∗. 

 

BICW' is interpreted as the probability for model 𝑗. The model with the highest BIC was selected as the optimal model within 

the set of all defined models. In the second step, we analyzed the mean levels (SI Appendix, Fig. S1A) and thus set the 

coefficient 𝛼 and 𝛽 to the values of the selected model in the first regression. A new regression was performed where the 

parameter 𝑚!%
&  was either free or subject to constraints between conditions based on several competing models. We 

considered all possible combinations for the mean coefficient 𝑚!%
&  with differing or shared means between conditions. For 

example, for four conditions, there are 15 such models (SI Appendix, Fig. S1 A and D). Each model was solved using 

generalized linear regression, and each gene was assigned to a preferred model based on the BICW as described above 
for the first iteration. Cook’s distance is an estimate of how much a data point influences the fitted coefficients for a gene. 

A large value of Cook’s distance is considered to be an outlier.  Thus, genes that did not reach at least a BICW above 0.4 

for the preferred model or genes that had at least a Cook’s distance of more than 1 were categorized as "ambiguous" 

(model 0). In the case of two conditions (i.e., PARbZip KO dataset) the threshold on BICW was set to 0.95. The difference 

in the two BICW thresholds reflected that the number of possible models is much larger for four compared with two 

conditions. Also, we considered only genes with a log2 amplitude of at least 0.25 to be rhythmic in the corresponding 

condition. To asses temporal variation of normally distributed measurements (e.g., relative liver size, nuclear abundance of 



PPARa), we modified model selection approach described above to deal with gaussian noise and therefore used linear 

models. A function handling normally distributed data is implemented in the dryR package. To assess differences in mean 

expression levels between Bmal1 and Cry1/2 KOs, we calculated a double-difference score that is the difference of the log2 

fold-changes in mean levels of Bmal1 KO vs. Bmal1 WT and Cry1/2 KO vs. Cry1/2 WT:  

 

∆∆(𝐵𝑚𝑎𝑙1KO, 𝐶𝑟𝑦1/2KO, 𝐵𝑚𝑎𝑙1+,, 𝐶𝑟𝑦1/2WT) = (𝑚-*./&	KO−𝑚-*./&	WT) − (𝑚123&/#	KO −𝑚123&/#	WT), 

 

where 𝑚	is the condition specific log2 mean expression level retrieved from dryR. 

 
Functional and Gene Set-Enrichment Analysis. We tested enrichment for annotated gene sets of several sources 

including Gene Ontology (GO) (6), Molecular Signatures Database (MSigDB) (7), Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (8) and Reactome Pathway database (9). For phase-shifted rhythmic genes in Cry1/2 and Bmal1 KO 

animals, we performed an untargeted ChIP-enrichment analysis as described in ref. (10) to screen for potentially interesting 

transcription factors. Target genes for circadian clock regulators and PPARa were defined as outlined below. We used 

GOseq 3.1 (11) to assess overrepresentation of all gene sets for genes assigned to a statistical model. Temporal-resolved 

enrichments were calculated using a Fisher’s exact test. We defined foreground genes as genes with a peak phase within 

in a sliding 4-h window. The gene universe was defined as all expressed genes. For each gene set, the window was moved 

by 0.1 h to calculate the P value. 
 

Simulated Count Data and Comparing dryR with Other Methods. We simulated rhythmic count data from a NB 

distribution for four conditions and 5,000 features in an interval of 4 h using Simphony (12). The ratio of rhythmic genes in 

each condition was set to 25%. The period was 24 h with a minimum amplitude (log2 peak-to-trough) of 0.25 and a maximum 
of 6. The mean was between 100 to 106 counts. To test the aspect of rhythm detection across four conditions, we considered 

rhythm detection as true positive if all conditions were correctly detected as rhythmic or nonrhythmic. We compared dryR 

to the following alternative methods for rhythmicity detection algorithm: Jonckheere-Terpstra-Kendall (JTK) (13), Lomb-

Scargle (14) and meta2d (15) on log-transformed count data. To compare dryR to a harmonic regression without using the 

BIC model selection, we fitted the full GLM model outlined in the previous paragraph. Subsequently, we employed a Wald 

test to test for significance of the a or b coefficients in a negative binomial GLM using DEseq2 (4). The retrieved P values 

were corrected for multiple testing according to Benjamini and Hochberg (16). The simulated data to test the performance 

for differential rhythmicity analysis was generated similarly as described above with minor modifications. We simulated data 

for 2 conditions with only rhythmic genes. Two datasets were generated with a phase shift of 0 or 4 h and an amplitude 

change of log2 fold-change of 0 or 1 between the two conditions. The standard datasets had a sampling interval of 4 h and 

consisted of two replicates. Differences in amplitude and phase were assessed with dryR. We compared the performance 

with CircaCompare (17), LimoRhyde (18) and DODR (19) on log-transformed data. CircaCompare was run with either 

default settings or an alpha threshold of 1 (test for presence of rhythmicity). dryR was run either with or without a threshold 
for a minimum phase difference of 2 h or minimum log2 peak-to-trough of 0.25. For the extended analysis using simulated 

datasets, we varied the sampling interval (i.e., 1, 2, and 6 h), or we changed the number of replicates (i.e., one, three, four, 

and eight replicates) while keeping the other parameter at the standard value. We also generated a standard dataset with 

one, two, or three missing samples in each condition. 
 
Data resources and analysis. Target genes for clock genes and PPARa in mouse liver have been identified by published 

ChIP-Seq. ChIP-Seq data was retrieved from the National Center for Biotechnology Information (NCBI) Gene Expression 

Omnibus (GEO) (20) for BMAL1, CLOCK, NPAS2, CRY1, CRY2, PER1 and PER2, which are available under GEO Series 

accession no. GSE39977 (21); NR1D1 and NR1D2 are available under GEO Series accession no. GSE34020 (22). ChIP-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39977
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34020


Seq data for NFIL3 and DBP were retrieved from the European Nucleotide Archive (ENA) (23) under accession no. 

PRJDB7796 (24). We mapped reads on the Ensembl M. musculus genome (GRCm38/mm10) using STAR-2.7.3a (1). 
Peaks were called using macs/2-2.1.1 (25) and peak annotation was performed with ChIPseeker 3.10 (26) using the 

genome annotation of Ensembl release 98 (2). Binding sites were visualized using the Integrative Genomics Viewer (27). 

Proteomics data were retrieved from the study of ref. (28), which are available in the ProteomeXchange Consortium (29) 

under accession number PXD003818. RNA-Seq data for Nfil3 KO mice series in liver were retrieved from ENA (accession 

no. PRJDB7789) (24). Mapping and downstream analysis of the published reads followed the same procedures outlined in 

section RNA extraction and RNA-Seq. 

 

Web application. We built a web application (https://clockprofile.epfl.ch), providing a user-friendly interface of the datasets 
and the statistical analysis. The application was built using the Ruby-on-Rails framework. The backend consists in a 

PostgreSQL relational database in which analysis results are stored. In the user interface, dynamic plots are produced with 

the Plotly.js library. 
 

https://www.ebi.ac.uk/ena/browser/view/PRJDB7796
http://bioconductor.org/packages/release/bioc/html/ChIPseeker.html
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD003818
http://www.ebi.ac.uk/ena/data/view/PRJDB7789
https://clockprofile.epfl.ch/




Fig. S1. Benchmarking of dryR to analyze rhythmic datasets that consist of multiple conditions.  
A. Overview of all rhythmic and mean models that are fitted in case the data consists of four conditions. Same color indicates 
shared mean levels and rhythmic parameters between indicated conditions for mean and rhythmic models, respectively. 
B. Schematic definition of an example rhythmic model. For model R_21 rhythmic parameters (i.e., amplitude and phase) 
are shared between condition A and B. Condition C shows an altered rhythmicity pattern compared to condition A and B. 
No rhythm is detected for condition D. 
C. Scatterplots to assess the differences of predicted and simulated values in function of mean expression for amplitude 
(left), phase (middle) and mean levels (right). 
D. Rhythm detection across four conditions in a simulated dataset using dryR and other methods including JTK, Lomb-
Scargle (LS), ARSER, meta2d and LimoRhyde on log transformed count data and a cosin fit on count data using 
generalized linear model (GLM_cos). P values were adjusted for multiple testing using Benjamini-Hochberg correction if 
indicated (_adj). The dashed lines represent a typical threshold used for rhythm detection (P value ≤ 0.05 and BICW ≥ 0.4). 
E. Percentage of correctly detected rhythms across 4 condition at a typical threshold (P value ≤ 0.05 and BICW ≥ 0.4) for 
datasets with altered sampling intervals (left), number of missing samples in each of the 4 conditions (middle) and number 
of replicates (right).  
F-G. ROC curves illustrating false positive rate (FPR, 1-specificity) and true positive rate (TPR, sensitivity) to detect a 2-
fold change in amplitude (F) and a 4 hours phase difference (G) between two conditions. We compared dryR with 
CircaCompare (default settings and an alpha threshold of 1), LimoRhyde and DODR. For dryR_threshold, only features 
with differences in amplitude ≥ 0.25 and phase ≥ 2 h were considered, respectively. In contrast to DODR and CircaCompare 
which use P values to indicate differential rhythmicity of a certain feature, dryR provides likelihoods for a set of fitted models, 
which can then be converted to probabilities using the Bayesian Information Criterion weight (BICW, see methods). The 
model with the highest BICW is selected. ROC curves for dryR differ in shape from the other methods as loosening the 
decision threshold for the p-value based methods will ultimately result in a TPR/FPR ratio of 1, as true positives and false 
positives will reach their maximum number. A loosening of BICW threshold will still result in a selection of a model and 
therefore will not result in a TPR/FPR of 1 as the detection of false positive and true positive feature will reach a plateau. 
H-I. Level of TPR at an FPR of 0.05 for differential rhythmicity analysis for amplitude (H) and phase (I) in synthetic rhythmic 
datasets with altered sampling intervals (left), number of missing samples in each of the four conditions (middle) and number 
of replicates (right). 



 



 
Fig. S2. Rhythmicity in Bmal1 and Cry1/2 KO mice in ad libitum (AL) or night restricted feeding (NRF) conditions.  
A. Assignment of circadian clock genes to their corresponding temporal expression pattern (right). 
B. Cumulative number of genes that show a larger amplitude than the value on the x-axis in the indicated model: circadian 
clock-driven genes (orange) have higher amplitudes than food-driven (green), clock and food independent rhythmic (blue), 
or clock-modulated genes (purple). 
C. Amplitude vs. phase of rhythmic genes of indicated rhythmic model. 
D. Amplitude represented as boxplot for the indicated model. 
E. Temporal expression pattern of the cold inducible RNA-binding protein (Cirbp) and the heat shock protein Hsp90ab1. 
Rhythmic gene expression is food and clock independent for these genes as rhythmicity is kept under all conditions. 
  



 

 



Fig. S3. Rhythmic expression of clock genes is blunted in the liver of Bmal1 KO and Cry1/2 KO mice, independent of 
feeding patterns. Circadian clock gene expression in Bmal1 WT, Bmal1 KO, Cry1/2 WT, and Cry1/2 KO under an ad libitum 
(AL) and night restricted feeding (NRF) regimen. 
  



 



Fig. S4. System-driven and clock-driven hepatic gene expression under conditions of night restricted feeding.  
A. Enrichment analysis of core circadian clock targets for genes classified into the indicated rhythmic model. Target genes 
have been identified using published chromatin immunoprecipitation sequencing (ChIP-Seq) data in mouse liver. 
B. Amplitude vs. phase of rhythmic genes of indicated rhythmic model. 
C. Amplitude represented as boxplots for indicated rhythmic model. 
D. Most genes that show a consistent change in rhythmic expression in both KO model (clock modulated) show a declined 
amplitude in the absence of a functional circadian clock. 



 
Fig. S5. Cry1/2 KO but not Bmal1 KO mice display a phase advance under night restricted feeding in liver gene expression 
A. Phase distribution of differentially rhythmically expressed genes in Bmal1 KO (left) and Cry1/2 KO (right). Bmal1 KO 
show a less pronounced phase advance than Cry1/2 KO mice despite a matching NRF regimen. 
B. Enrichment analysis of PPARa target genes that display differential rhythmicity in Bmal1 KO and Cry1/2 KO mice. Target 
genes have been identified by published chromatin immunoprecipitation sequencing (ChIP-Seq) data in mouse liver.  
C. Representative examples of PPARa target genes that show a Cry1/2 KO specific advance in phase in gene expression. 
D. Hepatic Ppara expression exhibit lower mean levels in Bmal1 KO animals. 
E. Cry1/2 KO mice show a specific phase advance in nuclear PPARa protein levels (data from ref. (28)). 
 
 



 



Fig. S6. Differential gene expression in the liver of Hlf/Dbp/Tef KO animals. 
A. Clock gene expression in the liver of Hlf/Dbp/Tef WT, Hlf/Dbp/Tef KO, Nfil3 WT, and Nfil3 KO mice. 
B. Assignment of circadian clock genes to their corresponding temporal expression pattern (right) in the indicated mouse 
model (row). 
C. Relative number of genes that lose rhythmicity in Hlf/Dbp/Tef KO compared to wild-type in function of minimal amplitude. 
D. Cumulative number of genes classified in indicated rhythmic model in function of minimal amplitude in wild-type or 
Hlf/Dbp/Tef KO animals. 
E. Volcano plot of mean differences between Hlf/Dbp/Tef KO and WT mice. 
F. Cumulative number of genes that are considered up or downregulated with a BICW equal or larger than the value 
indicated on the x-axis. 



 



Fig. S7. Liver expression in Hlf/Dbp/Tef KO and WT mice. 
A. Temporal profiles of genes associated with xenobiotic and bile acids metabolic network with altered expression in 
Hlf/Dbp/Tef KO mice. 
B. Enrichment analysis of PXR targets for differentially rhythmically expressed genes in Hlf/Dbp/Tef KO and WT mice. 
Target genes have been identified by published chromatin immunoprecipitation sequencing (ChIP-Seq) data in mouse liver. 
C-D. Gene expression of example genes associated with ribosomes (C) and oxidative phosphorylation (D). 
E. The rhythmic fluctuation in relative liver weight (% body mass) is blunted in Hlf/Dbp/Tef KO mice. 
F. Schematic representation of gene expression of xenobiotic metabolic gene network in the liver of Hlf/Dbp/Tef KO mice. 
Direction of triangles indicate if a gene is up (▲) or downregulated (▼) in Hlf/Dbp/Tef KOs.



 
 
Fig. S8. The web app “ClockProfile” to assess temporal gene profiles in Bmal1 KO, Cry1/2 KO and PARbZip deficient mice. 
Screenshots from ClockProfile (https://clockprofile.epfl.ch/) illustrating features such as visualizing gene expression in WT 
and KO models, assessing statistical results from dryR, and browsing gene set enrichment analysis. 
A. Homepage of ClockProfile with two options: search for 1. gene sets (search for gene set) or 2. individual genes (search 
by genes).  
B. Gene expression visualization of Cry1 as an example. 
C. Summary table of Cry1 as an example.  

https://clockprofile.epfl.ch/


Dataset S1 (separate file). RNA-Seq analysis results of animal models with a genetically disrupted circadian clock under 
ad libitum or night restricted feeding regimen. 
Sheet 1. Detailed table legend. 
Sheet 2. Results of the rhythmicity analysis using multiple generalized linear regression and model selection in liver of WT 
and Bmal1 KO series. 
Sheet 3. Results of the rhythmicity analysis using multiple generalized linear regression and model selection in liver of WT 
and Cry1/2 KO. 
 
Dataset S2 (separate file). RNA-Seq analysis results of animal models with a genetically disrupted circadian clock under 
night restricted feeding regimen. 
Sheet 1. Detailed table legend. 
Sheet 2. Results of the rhythmicity analysis using multiple generalized linear regression and model selection in liver of WT, 
Bmal1 KO and Cry1/2 KO series. 
Sheet 3. Functional enrichment analysis in system-driven genes. 
Sheet 4. Functional enrichment analysis in clock-driven genes. 
Sheet 5. Functional enrichment analysis in clock-modulated genes. 
Sheet 6. Functional enrichment analysis of rhythmic genes that lose rhythmicity specifically in Bmal1 KO. 
Sheet 7. Functional enrichment analysis of rhythmic genes that lose rhythmicity specifically in Cry1/2 KO. 
 
Dataset S3 (separate file). RNA-Seq analysis results of Hlf/Dbp/Tef KO and WT under ad libitum feeding regimen. 
Sheet 1. Detailed table legend. 
Sheet 2. Results of the rhythmicity analysis using multiple generalized linear regression and model selection in liver of WT 
and Hlf/Dbp/Tef KO series. 
Sheet 3. Functional enrichment analysis of genes that show an unaltered rhythmicity in Hlf/Dbp/Tef KO.  
Sheet 4. Functional enrichment analysis of genes that lose rhythmicity in Hlf/Dbp/Tef KO.  
Sheet 5. Functional enrichment analysis of genes that gain rhythmicity in Hlf/Dbp/Tef KO.  
Sheet 6. Functional enrichment analysis of rhythmic genes with altered phase and/or amplitude in Hlf/Dbp/Tef KO. 
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