
1

Supplementary Information for2

Unsupervised Neural Network Models of the Ventral Visual Stream3

Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo, and Daniel L. K. Yamins4

Chengxu Zhuang.5

E-mail: chengxuz@stanford.edu6

This PDF file includes:7

Supplementary text8

Figs. S1 to S169

SI References10

1 of 23



Supporting Information Text11

Methods.12

Neural Network Training. We used ResNet-18 (1) without its final pooling layer and the categorization readout layer as visual backbones for13

all objectives except PredNet. For each objective, we trained three networks with different network initializations. Most objectives were14

performed by adding an additional header upon the visual backbone and then training the whole network with the objective-specific loss in15

addition to a L2-regularization loss of the network weights with a weight decay coefficient 10−4. Unless specified, the input image to the16

networks was in resolution 224× 224 and there were two learning rate drops during training. The learning rate was dropped by 10 times after17

the validation performance saturates. Most training hyperparameters such as the batch size and the initial learning rate were set according to18

the papers of these objectives. Most of the networks were trained with batch size of 128.19

Auto-Encoder. The image (x) was first projected into a 128-dimension hidden vector (h) through passing through a ResNet-18, which
produces a 512-dimension vector output, and then a linear projection layer that produced 128-dimension vector output. An output image (x̄)
was then generated from this vector using another linear projection layer that produced 512-dimension vector output from h and a reversed
ResNet-18. The Auto-Encoder loss optimized (LAE) was the sum of the per-pixel average of the L2 different between the output and the input
images and the L1-norm of the hidden vector multiplied by 10−4:

LAE = ‖x− x̄‖
2
2

2242 + 10−4‖h‖1

20

PredNet (2). PredNet network was trained to predict the responses to the next frame using previous frames. This method used a
specifically-designed recurrent neural network architecture consisting of three stacked modules, each of which includes four basic parts: an
input convolutional layer (Al), a recurrent representation layer (Rl), a prediction layer (Âl), and an error representation (El) (2). These layers
and the loss function were computed as following:

Atl =
{
xt, l = 0
MaxPool(ReLU(Conv(Etl−1))), l > 0

Âtl = ReLU(Conv(Rtl ))

Etl = [ReLU(Atl − Âtl );ReLU(Âtl −Atl )]

Rtl = ConvLSTM(Et−1
l , Rt−1

l ,Upsample(Rtl+1))

LPredNet =
∑
t

λt
∑
l

λl
nl

∑
nl

Etl

where λt, λl, nl are correspondingly the weighting factors by time, the weighting factors by layer, and the number of units in the lth layer.21

These hyperparameters were directly taken from the original paper (2). We used 10 consecutive frames as inputs. As ResNet-18 is a22

feedforward network, it cannot be used in PredNet. We also found that PredNet failed to train more layers added to each module. Therefore,23

we used the same network architecture as the original paper (2). Later neural fitting, object position/pose estimation task, and categorization24

tasks were all performed using each of the twelve layers and we reported the best number across these layers. As the network architecture is25

very different from others, we cannot show comparable neural fitting layer trajectories. The PredNet model reported in Fig. 2 and Fig. 1 was26

trained on Kinetics-400 (3).27

Depth Prediction. A multi-layer header was added to the visual backbone to output a per-pixel depth image (D̂) (4). This depth image was28

then compared to the ground truth normalized depth image (D), of which the mean was 0 and the standard deviation was 1 within one image.29

The per-pixel average L2-norm of the difference was used as the optimization loss: LDepth = ‖D̂ −D‖2
2/2242. This objective was trained on30

PBRNet, which is a large-scale synthetic dataset containing 0.4 million images which are physically-based rendered from 45K realistic 3D31

indoor scenes (5).32

Contrastive Predictive Coding (CPC) (6). The input image was first resized into 256× 256. Then a grid of small crops in the resolution of
64× 64 were taken from the resized input image. As these crops were taken every 32 pixels, this procedure generated 7× 7 crops. These
crops were then fed into the network to generate a grid of low-dimension embeddings in the shape of 7× 7× 512. For each column of the grid,
a GRU recurrent head (7) was added to take the first five embeddings (e0−4) to generate a final 128-dimension embedding (c). This embedding
was transformed into 512-dimension vector as predictions to the final two embeddings (e5,6) in the same column. The loss optimized is:

LCPC = −
∑
i=5,6

log
exp(cTWiei)∑

j=0−6 exp(cTWiej)

where Wi is in the shape of 128 × 512. Although this method has “contrastive” in its name, CPC is very different from deep contrastive33

embedding methods as it predicts the current embedding in the context of the embeddings of some of the other small crops within the same34

image, while for deep contrastive embedding methods, the “contrastive” usually represents the context of the embeddings of other images.35

Colorization (8). The input image was first converted into Lab color space. The L channel, which is in the shape of 224× 224× 1 was36

then used as the input to the network. As regression problem is typically harder to optimize than categorization problem, Zhang, Isola, and37

Efros developed a quantization method that quantizes the ab output space in to 313 bins (8). They also downsample the ab channels to 28× 2838

resolution to reduce the computation requirement. As the spatial resolution of usual ResNet-18 outputs before the final spatial pooling is39

2 of 23



only 7× 7, we changed the convolution operations in the last 4 residual modules to be dilated convolutions, which did not reduce the spatial40

dimension but increase the dilation step instead. This change increased the spatial dimension of the output from 7 × 7 to 28 × 28. Three41

additional convolution layers were added upon this output to generate a 28× 28× 313 prediction, following settings proposed by Doersch and42

Zisserman (9). The final loss optimized was the cross entropy loss between the prediction and the ground truth ab channels.43

Relative Position (10). Two image crops of shape 96× 96 were first randomly chosen from a 2× 2 grid of image crops generated from the44

original input image and then fed into the network. The outputs of ResNet-18 towards these two crops were first sent to two bottlenecked45

residual blocks separately and then concatenated together. The concatenated vector was sent to three additional bottlenecked residual blocks46

and a final fully connected layer to produce a 8-dimension output as predictions to what spatial relative position these two crops were. The47

final loss was therefore the cross entropy loss between the prediction and the ground truth relative position label. We followed Doersch and48

Zisserman (9) for the structures of the additional residual blocks and the methods to sample image crops.49

Deep Cluster (11). All training images were first embedded into a 4,096-dimension space. These embeddings were then clustered into50

10,000 small clusters using the KMeans algorithm. The index of the cluster one image belonged to was used as a “category” label for this51

image. A linear layer to generate a 10,000-way category prediction was added upon the 4,096-dimension layer. The loss optimized was the52

cross entropy loss between the category prediction and the KMeans cluster label. At the end of every training epoch, the embeddings were53

regenerated for all training images, the KMeans algorithm was used again to cluster the embeddings into 10,000 clusters, and the weights of54

the added linear layer were also reset to random values as the new cluster labels were different from the previous cluster labels.55

Instance Recognition (12). For each original input image x ∈ X , a random data augmentation v ∈ V was first applied to generate a view of
this image v(x) as the input to the network. The network f was used to embed the input into a 128-dimension unit-sphere (e = f(v(x))).
Conceptually, this objective optimized the network to minimize the following loss:

Lconcept
IR = −log

exp(f(v′(x))T e/τ)∑
i
exp(f(vi(xi))T e/τ)

As recomputing f(vi(xi)) for the whole dataset in each step is intractable for large datasets, a “memory bank” mechanism was used to avoid
these computations through replacing f(vi(xi)) and f(v′(x)) with their corresponding items in the “memory bank” (m(xi) and m(x)), which
were running averages maintained across the training. This memory bank was maintained by updating m(x) with 0.5m(x) + 0.5e after each
optimization step. Moreover, s examples were randomly chosen from the memory bank to compute the actual loss defined as below:

h(a) =
exp(aT e/τ)

Z

exp(aT e/τ)
Z

+ s/n
, a ∈ R128

LIR = −logh(m(x))−
∑
j

log(1− h(m(xj)))

where Z was a large constant to approximate the denominator
∑

i
exp(m(xi)T e/τ), n was the number of training images, and j iterated over56

s sampled indexes. Following Wu et al. (12), we set s = 4096, τ = 0.07, and Z as the initial value of the denominator. The data augmentation57

included random cropping, random horizontal flip, random color jittering, and random color dropping (transforming to grayscale images).58

Contrastive Multiview Coding (CMC) (13). The input image was first converted into Lab color space. The L channel (xL) and ab channels59

(xab) were then sent into two ResNet-18 networks (fL and f ab) to get the corresponding 128-dimension embeddings (eL and eab). Similar60

to the IR method, two separate memory banks (mL and mab) were maintained as running averages of L channel embeddings and ab channel61

embeddings. If LIR is viewed as a function of the memory bank m and the current embedding e as LIR(m, e), the CMC loss is then computed62

as following:63

LCMC = LIR(mL, eab) + LIR(mab, eL) [1]64

Optimizing this loss would push together the embeddings of corresponding L and ab channels and separating them away from the embeddings65

of other images. We used the L-ResNet18 to evaluate the neural predictivity and the behavior consistency metric, as the stimulus used there are66

all gray-scale images. We dropped random color jittering and random color dropping from the data augmentation procedure, as they influenced67

the ab channels too much.68

SimCLR (14). The loss optimized by SimCLR was close to the conceptual loss of the IR method. However, it did not use the memory bank
mechanism, but used an extremely large batch size so that the images in one batch can be treated as reasonable representatives of the training
dataset. More specifically, SimCLR sampled 4,096 images as one batch, noted as {xi}. For each image xi, two data augmentation instances
(v0
i and v1

i ) were generated. A three-layer Multi-Layer-Perceptron (MLP) was also used to produce the corresponding final embeddings e0
i

and e1
i for these two views, from the ResNet-18 output (the output of the spatial pooling layer). This is different from other deep contrastive

embedding methods, which only use one linear layer to produce the final embedding from the ResNet-18 output. The optimized loss is defined
as following:

LSimCLR = 1
bs

bs∑
i=0

∑
j=0,1

exp(eji
T
e1−j
i /τ)∑bs

k=0

∑
l=0,1 exp(eji

T
elk/τ)

where bs is the batch size, typically 4,096. Through a hyper-parameter grid search, SimCLR also found that a higher τ = 0.15 and a Guassian69

blur augmentation both helped improve the performance.70

Local Aggregation (LA) (15). As described in the main text, this method first identified close neighbors (C(x) ⊂ X) and background
neighbors (B(x) ⊂ X) for each image x and optimized the following loss:

LLA = −log

∑
xa∈C(x) exp(m(xa)T f(v(x))/τ)∑

xb∈B(x)∪C(x) exp(m(xb)T f(v(x))/τ)

3 of 23



C(x) was identified through aggregating 10 independent KMeans clustering results on the embeddings of all the training images. Each of the71

KMeans result clustered the embeddings into 30,000 clusters and the aggregation was done through computing the union of the 10 clusters x72

belonged, i.e. any image that was in the same cluster with x in any of the 10 clustering results would be identified as a close neighbor of x.73

This aggregation helped avoid the randomness in KMeans results. Given the computation efficiency of KMeans clustering procedure, we only74

performed the clustering at the end of every epoch. The background neighbors were identified through getting the nearest 4,096 embeddings in75

the embedding space for f(v(x)). They typically also included all the close neighbors, which usually only had 200 to 300 images.76

VIE (16). VIE extends the deep contrastive embedding methods into videos through treating samples from the same video at different time77

points as data augmentation instances. For example, VIE was mostly trained on Kinetics-400 in the original paper (16). This video dataset78

contains around 240,000 videos, each of which is 10s long. VIE then treated each video as one data example and added the temporal sampling79

from the same video into the data augmentation functions, which means that one view v could be from the beginning part of the video while80

another view v′ could be from the ending part of the video. As for SAYCam, of which the videos are usually in minutes or even hours, we split81

them into 10s short videos and treated each of the 10s videos as one data example. This helped VIE leverage the temporal context information82

in the video to better train networks. The final loss optimized was still the same as LLA. However, as the number of videos is lower than the83

number of images in ImageNet, we changed how C(c) was identified to use only one clustering result with 10,000 clusters. On both SAYCam84

and Kinetics, we trained two pathways using VIE loss: static pathway with ResNet-18 and dynamic pathway with 3D-ResNet-18, which85

receives 16 consecutive frames and applies temporal and spatial convolutions (16). The pretrained two pathways were concatenated across the86

channel dimension in each layer as the final network. When testing on static stimuli, we repeated the images for 16 times and averaged the87

responses of the dynamic pathway across the temporal dimension.88

Mean Teacher (MT) (17). This method maintained another ResNet-18 as a “teacher” network f̂ , whose weights were not trainable and were
running averages of the main ResNet-18 weights across the training. Assuming the weights of the main ResNet-18 as θ and the weights of the
teacher network as θ̂, the teacher network was then maintained through updating θ̂ with 0.999θ̂ + 0.001θ after every optimization step. At
every step, a batch of images from the labeled dataset as well as a batch of images from the unlabeled dataset were sent to both the main and
the teacher networks, from which four category predictions were generated. These predictions were used to define the loss as following:

LMT = 1
‖BL‖

∑
x∈BL

(CE(f̂(x), f(x)) + CE(f(x), y))

+ 1
‖BU‖

∑
x∈BU

CE(f̂(x), f(x))

where BL is the batch from the labeled dataset, BU is the batch from the unlabeled dataset, ‖B‖ is the number of images in B, CE(a, b) is the89

cross entropy loss between a and b, and y is the category label for x.90

Local Label Propagation (LLP) (18). As described in the main text, two steps were iterated in LLP: a label propagation step and a
representation optimization step. The first step generated pseudolabels for unlabeled images. We then combined these pseudolabels with the
ground truth labels for labeled images and used the combined labels to optimize the representation using the following loss function:

LLLP = (CE(c, y) +
∑

xa
exp(m(xa)T e/τ)∑

xb
exp(m(xb)T e/τ)

) · cf(x)

where c is the 1000-way category prediction and e is the 128-dimension embedding output, both of which were generated by adding one
linear layer to the ResNet-18 output, y is the label for the current input x, cf(x) is the confidence of the label of x defined in the label
propagation step, xa iterates over all images sharing the same labels, and xb iterates over all training images. In the label propagation step,
LLP infers the pseudolabels for the unlabeled images from the labeled images. This step was adopted from the conceptually simpler weighted
K-Nearest-Neighbor classification algorithm. In weighted-KNN, the nearest K labeled embeddings (NK(x)) of the current embedding e
were used to decide the pseudolabels through a “vote” process of these labeled examples. The vote of each xi ∈ NK(x) is weighted by
exp(m(xi)T e/τ). Assuming S classes, the total weight for x as class j is thus:

wj(x) =
∑
i∈I(j)

exp(m(xi)T e/τ), where I(j) = {i|xi ∈ NK(x), yi = j}

Therefore, the probability pj(x) that datapoint x is of class j, the associated inferred pseudo-label y, and the corresponding confidence cf(x),
are defined as:

pj(x) = wj(x)/
S∑
k=1

wk(x), y = arg max
j

pj(x), and cf(x) = py(x).

However, this simple KNN procedure "introduced a spurious positive correlation between the local density of a labeled example and the
number of unlabeled examples whose pseudo-labels are propagated from this labeled example". (18) To correct this correlation, LLP modified
wj(x) to the following:

wj(v) =
∑
i∈I(j)

exp(m(xi)T e/τ)∑
k∈NT (xi) exp(m(xi)Tm(xk)/τ)

where NT (xi) are T nearest examples of xi in the embedding space and the denominator is a measure of the local density of xi in the91

embedding space.92

4 of 23



Neural Response Datasets. Neural response dataset for V1 area. This dataset was collected by presenting stimulus to two awake and fixating93

macaques, where responses of 166 neurons in V1 area were collected by a linear 32-channel array (19). The stimulus consisted of 1450 images94

from ImageNet and texture-like synthesized images matching the outputs of different layers of a ImageNet trained deep neural networks. The95

images were presented for 60ms each in one trial without blanks and centered on the population receptive field of the neurons in each session.96

A total of 262 neurons were isolated in 17 sessions. The response latency of these neurons is typically 40ms. Therefore, spike counts between97

40-100ms were extracted and averaged across trials to get the final responses. Neurons were further selected based on whether at least 15% of98

their total variance could be attributed to the stimuli, which left 166 neurons. Among these neurons, we computed the median of the split-half99

correlations of all neurons as a measure of reliability. The split-half correlation of one neuron was computed through randomly splitting all the100

trials of one stimuli into two parts of the same size and computing the Pearson correlation between the averages of two parts (20). We found101

that the reliability of this V1 area neural response dataset is 0.428. This reliability value was also used to correct neural predictivity of the102

models.103

Neural response dataset for V4 and IT areas. This dataset was collected by presenting stimuli to two fixating macaques, on which three104

arrays of electrodes were implanted with one array in area V4 and the other two arrays in area IT (21). The stimuli were constructed by105

rendering one of 64 3-dimensional objects at randomly chosen position, pose, and size, on a randomly chosen naturalistic photograph as106

background. These objects belonged to 8 categories (tables, planes, fruits, faces, chairs, cars, boats, animals), each of which consisted of 8107

unique objects. According to the scale of variances position, pose, and size are sampled from, three datasets were generated, corresponding to108

low, medium, and high variations. For example, low variation images had objects placed in the center of the images with a fixed position, pose,109

and size, while objects in high variation images are placed with a highly varied setting. There were in total 5,760 images, of which 2,560 were110

high variation images and 2,560 were medium variation images. These images were presented to the primates for 100ms with 100ms of gap111

between images. During presentation, a circular mask was applied to each image, which subtended around 8 degree of visual angle. From the112

three arrays, the neural responses of 168 IT sites and 88 V4 sites were collected (21, 22). It is unknown exactly which cortical layers these sites113

were in, but because the macaque brain is gyrencephalic, while the Utah array used in the recordings was rigid and contained electrodes of a114

fixed length (1.5mm), it is possible that the dataset contained units from a mixture of cortical layers. Following the previous studies (22), we115

used the averaged responses between 70-170ms after stimuli presentation as this window contained most of object category-related information.116

The low and medium variation images were used to select hyperparameters of neural fitting and only the prediction results on high variation117

images were reported. We computed the reliability of neurons in both V4 and IT area and found that the reliability of V4 area is 0.895 and that118

of IT area is 0.822.119

Downstream Task Performance Evaluation. ImageNet object categorization task. This task is a standard procedure to evaluate the quality of120

unsupervised representations in previous studies (12, 14, 15, 23). Results of this task are shown in Fig. S1. A linear readout layer was added121

to the pretrained visual backbones. This layer was trained on ImageNet training set to perform the ImageNet categorization task through a122

cross-entropy loss. The performance was then evaluated on the official ImageNet validation set. The initial learning rate was 0.01 and the123

training took 160 epochs. We dropped the learning rate at 40th, 80th, and 140th epochs. Each learning rate drop was by 10 times. A L2124

regularization loss on the linear readout weights was used with the regularization coefficient 10−4. We used the same data augmentations used125

in previous studies (12, 15): random cropping, random horizontal flip, random color jittering, and random gray-scale transform. We reported126

the best categorization performance on the official ImageNet validation set throughout the training.127

Object categorization task. For this and the following three tasks, we used the same dataset, on which the V4 and IT neural data was128

collected. For the pretrained visual backbones except the PredNet models, we took the outputs from the first pooling layer and all eight residual129

blocks. For the PredNet models, we took the outputs from all twelve layers. A PCA-based dimension reduction method was applied to the130

network output of one layer to reduce its dimension to 1000. This is done through first extracting the responses of the same network and the131

same layer to 1000 ImageNet validation images and then computing the PCA components for this layer, see (20). After this dimension reduction132

step, we fit a linear Support Vector Classifier for each layer to predict the category of the object in the input image. As the regularization133

parameter can significantly influence the final performance, we chose the best parameter from “1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1” using the low134

and medium variation subsets separately for each network and each layer of the network. We then did the fitting on the training split of the high135

variation subset and computed the categorization performance on the test split of the same subset. Four different train-test splits were randomly136

selected. The performance of the best layer was finally reported.137

Object position estimation task. After getting the dimension-reduced representations using the same method as the object categorization138

task, we then fit a linear Support Vector Regression model from these representations to predict both the vertical and the horizontal locations of139

the object center in the image. We chose the regularization parameters from “1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1” on the low and140

medium variation subsets and tested the fitting on the high variation subset. The Pearson correlations between the predicted and the ground141

truth positions were computed for all layers. For each network, we picked the best layer and reported the correlation averaged across both142

locations.143

Object pose estimation task. The only thing different in this task compared to the position prediction task was that the prediction target was144

the z-axis (vertical axis) and the y-axis (horizontal axis) rotations, both of which ranged between -90 degrees and 90 degrees. The (0, 0, 0)145

angle was defined in a per-category base and was chosen to make the (0, 0, 0) angle “semantically” consistent across different categories. Hong146

et al. (24) described these choices as the following:147

1. Animals: animal is facing forward, with its head upright.148

2. Boats: boat is oriented with bow facing forward and keel point downward.149

3. Cars: car grille is facing forward, while tires on the bottom.150

4. Chairs: chair legs are facing downward, with the seat facing forward.151

5 of 23



5. Faces: looking straight the viewer, with top of the head oriented upward.152

6. Fruits: stem attachment at the top. Note that many of the fruits possess a rough rotational symmetry around the vertical axis.153

7. Planes: cockpit facing forward, with plane in upright position.154

8. Tables: table legs facing straight downward, with longest side along the horizontal axis.155

More details can be found in (24). This category-specific definition of the canonical pose, combined with the results shown in Fig. S3 that156

these object-centric tasks are better supported by higher layers than lower layers, possibly explains the gap between the unsupervised and157

supervised models in performing this pose estimation task, as the higher layers of the supervised model are more category-related.158

Object size estimation task. The prediction target was the three-dimensional object scale, which was used to generate the image in the159

rendering process. This target varied between 0.625 to 1.6, which meant a relative measure to a fixed canonical size (=1). When objects were160

at the canonical size, they occluded around 40% of image on longest axis.161

Neural response fitting procedure. We mostly followed the fitting method proposed in (25) but slightly modified it to run it more efficiently.162

This method is different from what is used by Schrimpf et al. (20) as the latter uses a PCA-based dimension reduction method to reduce163

the dimensions of the network activations and then runs a PLS-Regression, while the former factorizes the linear weight matrix into spatial164

and channel weight matrices to reduce the number of fitting parameters. We found that the method we used achieves better absolute neural165

predictivity compared to the method used by Schrimpf et al., though we have also found that the relative order of different models are very166

similar across different fitting methods.167

For the neural network response no of one layer whose output shape is [sx, sy, c], we fit a spatial mask ms of shape [sx, sy] and a channel168

mask mc of shape [c] for each neuron to predict its response r. The predicted response can be written as:169

r̂ =
sx∑
i=1

sy∑
j=1

c∑
k=1

ms[i, j]mc[k]no[i, j, k]

The optimized loss is then:170

L = (r̂ − r)2 + w(‖ms‖2
2 + ‖mc‖2

2)

We chose w from “0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1” on low and medium variation images used in collecting V4 and IT neural responses.171

The weights were trained on the training split (0.8) and evaluated on the validation set (0.2). The Pearson correlation was computed between r̂172

and r and further corrected by the noise ceiling of that neuron. This correction is done through dividing the raw correlation by the square173

root of cross-trial neural response correlation (20). The median value of the corrected correlations of all neurons within one cortical area174

was reported for one layer as its neural predictivity for this area. For each neuron, the neural predictivity is first averaged across all three175

networks and all four training-validation splits. The error bars are the standard deviations of means generated through bootstrapping from176

neural predictivity of all neurons for 200 times.177

Optimal Stimuli Computation. Following a previous study (26), we optimized the 2D discrete Fourier transform of the input image to maximize178

the spatially averaged responses of one channel in a given layer. We used Adam optimizer with learning rate 0.05 and trained for 512 steps. In179

each training step, random augmentations including jitterring, scaling, and rotations were applied to the input image (26).180

Human Behavior Consistency Metric. The behavior dataset consists of 2400 images generated by putting 24 objects in front of high-variant181

and independent naturalistic backgrounds (27). For each pretrained network, a linear classifier was trained from the penultimate layer on 2160182

training images to predict the category. As the number of features may be too large, we tested three dimension reduction methods and report183

the best consistency among them. These methods are: 1. averaging across spatial dimensions; 2. PCA projections to 1000 components using184

ImageNet validation images; 3. Training a 1000-dimension linear category-centric projection through adding a linear layer outputting 1000185

units upon the current layer and another linear readout upon this linear layer and then training only these two added layers to do ImageNet186

categorization tasks. The resulted confusion matrix on 240 validation images was compared to that of human subjects, for which 1,472 human187

subjects were recruited from Amazon Mechanical Turk (details can be found in Rajalingham et al. (27) and Schrimpf et al. (20)). As we188

directly took the data from (27), IRB approval is not required for us. The Pearson correlation between the matrixes was computed and then189

corrected by dividing it using the square root of human split-half correlation (20).190

Data Availability. ImageNet can be downloaded from http://www.image-net.org/. SAYCam can be downloaded from https://nyu.databrary.org/volume/564.191

Neural data is available through the public BrainScore repo.192

Code Availability. Our codes can be found at https://github.com/neuroailab/unsup_vvs.193

6 of 23



60

20

40

ImageNet Object Categorization

P
re

dN
et

A
ut

o-
E

nc
od

er

C
M

C

S
im

C
LR

Lo
ca

l A
gg

.

In
st

. R
ec

og
.

D
ee

p 
C

lu
st

er

C
ol

or
.

R
el

. P
os

.

C
P

C
D

ep
th

U
nt

ra
in

ed

Su
pe

rv
is

ed

C
at

eg
or

iz
at

io
n 

A
cc

ur
ac

y
(%

 c
or

re
ct

)

70.4
70.4
70.3

34.1
34.1
34.2

54.5
54.8
55.0

48.7
47.5
47.1

33.1
33.2
32.8

33.0
33.2
32.8

43.8
44.0
44.131.4

31.4
31.5

27.8
27.9
27.9

3.9
4.0
4.2

51.4
51.7
51.5

51.8
51.7
52.1

47.6
47.6
47.7

45.2
45.6
46.1

48.8
48.9
46.6

32.4
31.6
33.3

34.4
35.3
34.322.7

21.5
22.6

20.3
20.7
20.3

4.2
4.3
4.7

9.8
9.9
9.6

5.3
5.3
5.2

S
im

C
LR

-S
Y

IR
-S

Y

M
ea

n 
T.

LL
P

V
IE

-S
Y

Fe
w

 L
ab

el

V
IE

-K
in

et
ic

s
LA

-S
Y

P
re

dn
et

-S
Y

Fig. S1. Transfer performance on ImageNet object categorization task. Three numbers on top of each bar represent the transfer performance from three networks of different
initializations. Models ending with “SY” were trained on SAYCam. Green bars are for semi-supervised models.

7 of 23



CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

Object Size

Object Pose
Object Position

Object Categorization

CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

Fig. S2. T-test results of transfer task performance. If the performance of the method in the i-th row is better than that of the method in the j-th column, the number in the i-th
row and j-th column is then in black color and means the unpaired and two-tailed t-test p-value between two methods. Otherwise, if the i-th method is worse than the j-th
method, then the number is in white color with black background. The degree of freedom is 11, as there were 4 train-validation splits for each of the three models and we used
all 12 numbers to perform the t-tests.

8 of 23



80

0

40

C
at

eg
or

iz
at

io
n 

A
cc

ur
ac

y 
(%

 c
or

re
ct

)

E
st

im
at

io
n 

A
cc

ur
ac

y 
(P

ea
rs

on
 r)

0.90

0.40

0.65

0.40

0

0.20

0.60

0

0.30

SimCLR & Local Aggregation

Deep Cluster & Instance Recognition

Relative Position & CMC

CPC & Colorization

Auto-Encoder & Depth Prediction

Untrained

Supervised

Object SizeObject PoseObject Categorization Object Position

Layers
HighMiddleEarly

Fig. S3. The per-layer transfer task performance of all methods. This figure shows that the methods which perform good in transfer tasks achieve their best performance in high
or middle layers, instead of early layers. The line width is the standard deviation across three models with different initializations and four train-val splits.

9 of 23



CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

IT

V4

V1

CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

Fig. S4. Statistical test results of neural predictivity results. We computed statistical significance through a bootstrapping method. The meaning of the text color and the
background color is the same as that in Fig. S2. When using the bootstrapping method, we repeatedly sampled neurons with replacement in each area for 10,000 times. For
each sampled group of neurons, we computed the median of neural predictivity of models across these sampled neurons and compared the medians of two methods. The
numbers were computed by counting the number of samples one method is better/worse than another method and dividing this number by 10,000. “<1e-04” means that this
counting returns 0. This bootstrapping method simulates the situations where new neurons are sampled from the same distribution. Therefore the resulting numbers represent
the probability of one method being better than another method for a newly sampled group of neurons.

10 of 23



0.70

0.30

0.50

0.80

0.50

0.65

0.80

0.40

0.60

N
oi

se
-C

or
re

ct
ed

 P
re

di
ct

iv
ity

IT

SimCLR

Depth Prediction & Instance Recognition

Deep Cluster & CMC

CPC & Relative Position
V4V1

Untrained

Supervised

Layers
HighMiddleEarly

Fig. S5. Neural predictivity of DCNNs across layers. Most methods have correct model-layer-to-brain-area correspondence, e.g. V1 area is best predicted by early layers, V4
area is best predicted by middle layers, and IT area is best predicted by high layers. This correspondence is more correct for models with good neural predictivity for one area.
For example, depth prediction models have lower IT neural predictivity, its best layer for IT neurons is also lower than supervised or SimCLR models. The line width is the
standard deviation of the neural predictivity medians generated from the bootstrapping method.

11 of 23



 B
es

t P
re

di
ct

ed
 L

ay
er

 R
at

io

0.60

0

0.30

0.60

0

0.30

0.60

0

0.30

SimCLR & Local Aggregation

Deep Cluster & Instance Recognition

Relative Position & CMC

CPC & Colorization

Auto-Encoder & Depth Prediction

Untrained

Supervised

ITV4V1

Layers
HighMiddleEarly

Fig. S6. Best predicted layer ratio for neurons. This ratio is computed in the following way: for each DCNN layer, we compute the number of neurons that are best predicted by
this layer and then divide this number by the number of neurons of this area. Similar to Fig. S5, this figure also shows that most methods have correct model-layer-to-brain-area
correspondence, though models with better neural correspondence for one area also have more correct correspondence for that area. For example, SimCLR and DeepCluster,
both of which have lower V4 neural predictivity, are also peaking at later layers for V4 area compared to the supervised and the Local Aggregation models. The line width is the
standard deviation of the ratios generated from the bootstrapping method.

12 of 23



CPC

SimCLRCMC
Super-
vised

Local
Aggregation

Instance
Recognition

Deep
Cluster

Untrained
Relative
Position

Coloriza-
tion

Depth
Prediction

Auto-
Encoder

1611 px

Fig. S7. First layer filters of DCNNs. Most of the models have Gabor-like and center-surrounding filters, corresponding to their comparable V1 neural predictivity to the
supervised model.

13 of 23



Relative PositionColorization

Instance RecognitionDeep Cluster

SupervisedLocal AggregationSimCLR

CMC

CPC

Untrained Depth PredictionAuto Encoder

Fig. S8. Optimal stimuli for intermediate layers of DCNNs. The optimal stimuli for models with good V4 neural predictivity, such as the supervised and the Local Aggregation
models, are also more texture-like, compared to models with worse V4 neural predictivity, like the DeepCluster and the Relative Position models.

14 of 23



Relative PositionColorization

Instance RecognitionDeep Cluster

SupervisedLocal AggregationSimCLR

CMC

CPC

Untrained Depth PredictionAuto Encoder

Fig. S9. Optimal stimuli for high layers of DCNNs. Best viewed when scaled. The optimal stimuli for models with good IT neural predictivity, such as the supervised and the
Local Aggregation models, are also more object-like, compared to models with worse IT neural predictivity, like the Colorization and the Relative Position models.

15 of 23



U
nt

ra
in

ed

R
el

at
iv

e 
P

os
.

D
ep

th
 P

re
d.

C
ol

or
iz

at
io

n

Lo
ca

l A
gg

.

In
st

. R
ec

og
.

Su
pe

rv
is

ed

N
oi

se
-C

or
re

ct
ed

 
P

re
di

ct
iv

ity

ITV4V1
0.8

0.6

0.4

0.84

0.77

0.70

0.78

0.74

0.70

Fig. S10. Neural predictivity results of ResNet-50 models, which are significantly deeper than ResNet-18 models and have different block designs compared to ResNet-18 (1).
These models were trained with the same hyperparameters and the same loss functions used for the ResNet-18 models. Similar to the neural predictivity results of ResNet-18
models, the deep contrastive embedding methods (red bars) also achieve comparable neural predictivity to the supervised model and are better than the self-supervised
methods (blue bars).

16 of 23



80

40

C
at

eg
or

iz
at

io
n 

A
cc

ur
ac

y
(%

 c
or

re
ct

)

Object Categorization

0.2

0.1

E
st

im
at

io
n 

A
cc

ur
ac

y
(P

ea
rs

on
 r)

Object Pose

Object Position

Object Categorization

d.

b.

f.

Mean Teacher

Supervised
Local Aggregation

Instance Recognition
Local Label Prop.

VIE-SAYCam
Few Label Cate.

VIE-Kinetics

IR-SAYCam
SimCLR-SAYCam

LA-SAYCam

PredNet-SAYCam
Untrained

e.

c.

a.

S
im

C
.-S

Y
IR

-S
Y

M
T

Lo
ca

l A
gg

.
In

st
. R

ec
og

.
LL

P

V
IE

-S
Y

Fe
w

 L
.

V
IE

-K
in

et
ic

s
LA

-S
Y

P
re

dN
et

-S
Y

U
nt

ra
in

ed

Su
pe

rv
is

ed

Object Position
0.6

0.4

0.2
E

st
im

at
io

n 
A

cc
ur

ac
y

(P
ea

rs
on

 r)

Object Size

0.8

0.6

0.7

E
st

im
at

io
n 

A
cc

ur
ac

y
(P

ea
rs

on
 r)

Mean Teacher

Supervised
Local Aggregation

Instance Recognition
Local Label Prop.

VIE-SAYCam
Few Label Cate.

VIE-Kinetics

IR-SAYCam
SimCLR-SAYCam

LA-SAYCam

PredNet-SAYCam
Untrained

Object Size

Object Pose

Fig. S11. Transfer task performance (a to d) and the corresponding t-test results (e and f) of models not shown in Fig. 1, including models trained on SAYCam (SY) and
semi-supervised models trained with 36K labels (green bars). VIE-Kinetics is the same architecture as the VIE-SAYCam model, but trained on Kinetics. The t-test results are in
the same format as Fig. S2.

17 of 23



b.

a. 0.80

0.40

0.60

0.84

0.77

0.70

0.76

0.73

0.70N
oi

se
-C

or
re

ct
ed

 
P

re
di

ct
iv

ity

S
im

C
LR

-S
Y

IR
-S

Y

M
ea

n 
Te

ac
he

r

Lo
ca

l A
gg

.
In

st
. R

ec
og

.
LL

P

V
IE

-S
Y

Fe
w

 L
ab

el

V
IE

-K
in

et
ic

s
LA

-S
Y

P
re

dn
et

-S
Y

U
nt

ra
in

ed

Su
pe

rv
is

ed

ITV4V1

V1

Mean Teacher

Supervised
Local Aggregation

Instance Recognition
Local Label Prop.

VIE-SAYCam
Few Label Cate.

VIE-Kinetics

IR-SAYCam
SimCLR-SAYCam

LA-SAYCam

PredNet-SAYCam
Untrained

V4

Mean Teacher

Supervised
Local Aggregation

Instance Recognition
Local Label Prop.

VIE-SAYCam
Few Label Cate.

VIE-Kinetics

IR-SAYCam
SimCLR-SAYCam

LA-SAYCam

PredNet-SAYCam
Untrained

IT

Mean Teacher

Supervised
Local Aggregation

Instance Recognition
Local Label Prop.

VIE-SAYCam
Few Label Cate.

VIE-Kinetics

IR-SAYCam
SimCLR-SAYCam

LA-SAYCam

PredNet-SAYCam
Untrained

Fig. S12. Neural predictivity (a) and the corresponding statistical test results (b) of models not shown in Fig. 1, including models trained on SAYCam (SY) and semi-supervised
models trained with 36K labels (green bars). The statistical test results are in the same format as Fig. S4.

18 of 23



CMC

Few Label Categorization
Mean Teacher

Local Label Propagation
Supervised

Local Aggregation
SimCLR

Instance Recognition
Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

Fig. S13. T-test results of human behavior consistency results (Fig 4d). The format is similar to that in Fig. S2. The t-test performed is unpaired and two-tailed. The degree of
freedom is 2, as each method has three models of different initializations.

19 of 23



Semi-Supervised Learning: 
Mean Teacher

Teacher
DCNN

Student
DCNN

R
unning

Average

“Poodle”

Categorization

Labeled Images

Unlabeled Images

C
onsistency 

Loss

Cross-Entropy 
Loss

Fig. S14. Schematic for the Mean Teacher (MT) method. In addition to the optimized “student DCNN”, MT maintained a “teacher DCNN”, whose weights were running averages
of the student DCNN. The loss was the sum of the categorization loss on labeled images and the consistency loss between two DCNNs on unlabeled images.

20 of 23



CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

IT

CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

V4

CMC

Supervised
Local Aggregation

SimCLR
Instance Recognition

Deep Cluster

Colorization
Relative Position

CPC

Auto-Encoder
PredNet

Depth Prediction

Untrained

V1

Per-Site Neural Predictivity Correlation

0.5 1

IT (Pearson r: 0.872)V4 (Pearson r: 0.983)V1 (Pearson r: 0.968)

Local Agg. Neural Predictivity

S
up

er
vi

se
d 

N
eu

ra
l P

re
di

ct
iv

ity

1.0

0.8

0.6

0.0
1.00.80.60.40.20.0

0.2

0.4

b.

a.

Fig. S15. Correlation of per-site neural predictivity results of DCNNs and scatter plots. (a) The per-site neural predictivity result is first computed for each of the three networks
of one method. Then, for each pair of methods, the correlation (the number before the ± symbol) is computed by averaging all possible pairs of networks chosen from each
method (for two different methods, there are 9 pairs; for the same method, there are 3 pairs). Therefore, the diagonal numbers represent noise ceiling of this measure. The
number after the ± symbol is the standard deviation of all possible correlations for one pair of methods. (b) Scatter plots of neural predictivity of one Local Aggregation network
and one supervised network for all three areas. Each dot represents one neuron in that area.

21 of 23



Object Categorization Object Position

0.80

0.65

0.50E
st

im
at

io
n 

A
cc

ur
ac

y
(P

ea
rs

on
 r)

Orientation Selectivity IT
(no orientation selectivity)1

0.8

0.6

0.8

0.6

0.4

Colorization

Supervised
Deep Cluster

Local Aggregation

C
irc

ur
la

r V
ar

ia
nc

e

N
oi

se
-C

or
re

ct
ed

 P
re

di
ct

iv
ity 0.8

0.2

0.5

C
at

eg
or

iz
at

io
n 

A
cc

ur
ac

y
(%

 c
or

re
ct

)

Relative Training Progress (log scale)
10.40.10.010

Fig. S16. Training trajectories for (left to right): orientation selectivity measured by circular variance on early layer of DCNNs, IT neural predictivity of best layer, object
categorization, object position predicting performance. Local Aggregation networks show slower learning speed at the beginning stage, mainly as they need to bootstrap their
representations from scratch and slowly accumulate more accurate running averages of the embeddings in the memory banks used in these networks. Although the learning
progress of IR and SimCLR is not shown here, this slowness at the beginning stage is also the case for both of these two methods.

22 of 23



References194

1. K He, X Zhang, S Ren, J Sun, Deep residual learning for image recognition in Proceedings of the IEEE conference on computer vision195

and pattern recognition. pp. 770–778 (2016).196

2. W Lotter, G Kreiman, D Cox, Deep predictive coding networks for video prediction and unsupervised learning in arXiv preprint197

arXiv:1605.08104. (2016).198

3. J Carreira, A Zisserman, Quo vadis, action recognition? a new model and the kinetics dataset in proceedings of the IEEE Conference on199

Computer Vision and Pattern Recognition. pp. 6299–6308 (2017).200

4. I Laina, C Rupprecht, V Belagiannis, F Tombari, N Navab, Deeper depth prediction with fully convolutional residual networks in 2016201

Fourth 3DV. (IEEE), pp. 239–248 (2016).202

5. Y Zhang, et al., Physically-based rendering for indoor scene understanding using convolutional neural networks in 2017 CVPR. (IEEE),203

pp. 5057–5065 (2017).204

6. Avd Oord, Y Li, O Vinyals, Representation learning with contrastive predictive coding in arXiv preprint arXiv:1807.03748. (2018).205

7. K Cho, et al., Learning phrase representations using rnn encoder-decoder for statistical machine translation in arXiv preprint206

arXiv:1406.1078. (2014).207

8. R Zhang, P Isola, AA Efros, Colorful image colorization in ECCV. (Springer), pp. 649–666 (2016).208

9. C Doersch, A Zisserman, Multi-task self-supervised visual learning in The IEEE International Conference on Computer Vision (ICCV).209

(2017).210

10. C Doersch, A Gupta, AA Efros, Unsupervised visual representation learning by context prediction in Proceedings of the IEEE International211

Conference on Computer Vision. pp. 1422–1430 (2015).212

11. M Caron, P Bojanowski, A Joulin, M Douze, Deep clustering for unsupervised learning of visual features in ECCV. pp. 132–149 (2018).213

12. Z Wu, Y Xiong, SX Yu, D Lin, Unsupervised feature learning via non-parametric instance discrimination in CVPR. pp. 3733–3742214

(2018).215

13. Y Tian, D Krishnan, P Isola, Contrastive multiview coding in ECCV. (2020).216

14. T Chen, S Kornblith, M Norouzi, G Hinton, A simple framework for contrastive learning of visual representations in ICML. (2020).217

15. C Zhuang, AL Zhai, D Yamins, Local aggregation for unsupervised learning of visual embeddings in Proceedings of the IEEE International218

Conference on Computer Vision. pp. 6002–6012 (2019).219

16. C Zhuang, T She, A Andonian, MS Mark, D Yamins, Unsupervised learning from video with deep neural embeddings in Proceedings of220

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9563–9572 (2020).221

17. A Tarvainen, H Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep222

learning results in Advances in neural information processing systems. pp. 1195–1204 (2017).223

18. C Zhuang, X Ding, D Murli, D Yamins, Local label propagation for large-scale semi-supervised learning in arXiv preprint224

arXiv:1905.11581. (2019).225

19. SA Cadena, et al., Deep convolutional models improve predictions of macaque v1 responses to natural images. PLoS computational226

biology 15, e1006897 (2019).227

20. M Schrimpf, et al., Brain-score: Which artificial neural network for object recognition is most brain-like? in BioRxiv. (Cold Spring228

Harbor Laboratory), p. 407007 (2018).229

21. NJ Majaj, H Hong, EA Solomon, JJ DiCarlo, Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict230

human core object recognition performance. J. Neurosci. 35, 13402–13418 (2015).231

22. DL Yamins, et al., Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. 111,232

8619–8624 (2014).233

23. K He, H Fan, Y Wu, S Xie, R Girshick, Momentum contrast for unsupervised visual representation learning in Proceedings of the234

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738 (2020).235

24. H *Hong, DL *Yamins, NJ Majaj, JJ DiCarlo, Explicit information for category-orthogonal object properties increases along the ventral236

stream. Nat. neuroscience 19, 613–622 (2016).237

25. D Klindt, AS Ecker, T Euler, M Bethge, Neural system identification for large populations separating “what” and “where” in Advances in238

Neural Information Processing Systems. pp. 3506–3516 (2017).239

26. C Olah, A Mordvintsev, L Schubert, Feature visualization in Distill. (2017) https://distill.pub/2017/feature-visualization.240

27. R Rajalingham, et al., Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and241

state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).242

23 of 23


