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Supplementary methods for species distribution models (SDMs) 
We predicted the potential distribution of 403 plant species at a 93 m spatial grid resolution in 
Switzerland by using species distribution models (SDMs (1)). We used valid (expert-based) and 
precise (< 100 m) occurrences from the National Data and Information Center of the Swiss Flora 
(Infoflora.ch), which were disaggregated at 300 m to reduce spatial autocorrelation in model 
residuals and to reduce the potential effect of observations sampled on similar populations. 
SDMs were performed only for species presenting at least 150 occurrences (403 species out of 
the 416 species). We selected 8,000 pseudo-absences in Switzerland with a higher frequency in 
regions presenting higher number of occurrences to account for spatial bias in sampling 
intensities. The density layer was generated by calculating the number of occurrences into a grid 
of 5 km resolution. We finally added 2,000 pseudo-absences selected following a stratified 
sampling as a background to represent all possible combination of environmental conditions of 
the predictors used in the species modelling. We built SDMs by relating occurrence and pseudo-
absence observations to ten environmental variables: 1) annual mean temperature (Tave), 2) 
annual precipitation sum (Precip), 3) annual sum of solar radiation (Srad), 4) topographic 
position index (i.e. topographic orientation, TPI), 5) topographic roughness index (TRI), 6) 
topographic wetness index (TWI), 7) inner forest density (Forest height Q25), 8) mean 
normalized difference vegetation index (NDVI), 9) soil moisture (EIV-F), and 10) soil pH (EIV- 
R). Tave, Precip, and Srad (direct and diffuse potential solar radiation) layers were retrieved 
from (2). TPI and TRI were calculated using the “terrain” function from the raster package (3) in 
R 3.5.1 (4) and TWI with SAGA (5), by using a 93 m resolution DEM (6). Inner forest density 
(Forest height Q25) was measured by analysing swisstopo and cantonal LiDAR data acquired 
during multiple seasons between 2000 and 2014 with a density of 0.5–35 points/m2 (7, 8). We 
calculated the 25th height-percentile of returns above 40 cm as a measure of inner forest density 
(8), respectively, at a spatial resolution of 25 m, and aggregated them at 93 m using bilinear 
interpolation (8). NDVI was calculated by using Landsat data (https://espa.cr.usgs.gov/) 
collected for the years 2007-2015 from 1 July to 15 September at 30 m resolution. Soil moisture 
(EIV-F) and soil pH (EIV- R) were averaged by grid cell, and modelled at 93 m spatial 
resolution with Random Forest algorithm and 16 predictors representing meso-climate, land use, 
topography and geology (see (9) for further details). Because SDM predictions have the tendency 
to vary among different statistical techniques (10, 11), we implemented an ensemble approach 
(12) by averaging the results of five statistical algorithms: generalized linear models (13), 
gradient boosting machines (14), generalized additive models (15, 16), random forests (17) and 
maximum entropy models (18, 19). We gave equal weights to presences and pseudo-absences in 
the calibration of the model and ran 5 iterations of the models with different sets of pseudo-
absences (20, 21). For model evaluation, we calibrated the model on 80% of the data and 
evaluated them on the remaining 20% (random split-sampling). We used the True Skill Statistics 
(TSS)(22), which evaluates the ability of the model to discriminate presences from absences, 
defined by the following equation: Sensitivity + Specificity - 1. We used the threshold 
maximising the TSS for converting model probabilities to simulated presences and absences, and 
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calculated the rate of true positive (sensitivity) and true negative (specificity) using functions 
implemented in the PresenceAbsence package (23). TSS scales between -1 and 1, with 0 
indicating random predictions. Models are considered to have reliable predictive performances 
with TSS values > 0.40 (i.e. excellent TSS > 0.75; good 0.40 < TSS < 0.75; poor TSS < 0.40) 
(24). Finally, metrics of predictive performance were averaged across replicates and across 
algorithms for every species. We considered only specie presenting TSS values >= 0.4 for 
further analyses (i.e. 391 species). All models were used to predict the potential distribution of 
plant species in Switzerland. We generated an Ensemble projection, by averaging single model 
projections across replicates and across algorithms of the model considering all the data. The 
Ensemble projection was finally converted into simulated presences and absences using the 
threshold maximising the TSS evaluated on the Ensemble. Additionally, for each plant species 
we extracted the mean, the median and quantiles (0.95-0.05) for all the environmental variables. 
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Figure S1. Scheme illustrating the methodological framework for developing molecular 

distribution models (MDMs) across the landscape. The workflow is summarized as follows: 1) 

exhaustively sampling species along ecological transects that cover the gamut of regional plant 

growth geographic boundaries, 2) build plant species distribution models (SDMs), 3) assess 

species-level phytochemical composition, 4) combine phytochemical information for each 

species with species distribution models (SDMs) for extracting climatic and topographical 

variables associated with each unique molecule observed across all species, 5) build distribution 

maps for each molecules (MDMs), and 6) stack them for predicting phytochemical diversity 

across the landscape.  
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Figure S2. Sampling map of vegetation transects across Switzerland. Each dot represents a 
transect in the Swiss landscape where vegetation was inventoried and sampled from the bottom 
of the valley up to about 2000 m, for a total of 38 vegetation plots. The map of Switzerland is 
color-coded based on the different biogeographic regions as described in the legend. Figure 
modified from swisstopo (www.geo.admin.ch).  
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Figure S3. Molecular clustering based on spectral similarities. The clusters were generated by a 
molecular networking process (cosine >0,7). Each sub-network corresponding to specific 
compounds family. Each point represents the raw fragmented spectrum. Out of the 416 species 
and 69 families of plants, we aligned about 40’000 spectra, out of which, we were able to cluster 
>6000 molecular families of compounds and around 10’000 unique unclustered compounds. 
Green colour shows the annotated molecular families, while black shows the undetermined 
molecular families. MS/MS data and molecular network can be accessed through GNPS in the 
webpage : https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a5a98ddc777a42d29ac33c3faca41a11 .  
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Figure S4. Sensitivity analyses for interpreting the correlation between plant species richness 
and molecular family diversity. Sensitivity of such correlation (A) was tested by building 
randomization-based null models, first by randomly varying molecular identity within species 
(blue ribbon), or by randomly varying species diversity (yellow ribbon). Panel (B) shows the 
error associated with each line. By comparing the null models with the real data value (green 
ribbon) we show that phytochemical diversity based on plant species richness is dependent on 
the specific structure the molecular diversity and frequency of molecules across plant species. 
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Figure S5. Frequency distribution of chemical classes of annotated molecular families found 
across 416 plant species About 40% of all molecular families were assigned to a known 
compound class or infraclass. 
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Figure S6. Field manipulation of molecular diversity and arthropods’ abundance. The 
experiment consisted in building plant communities of high or low molecular families diversity 
by randomly selecting ten plant species per community from a pool of 50 species (inset: 
communities of high molecular families diversity were in average 11% richer compared to 
communities of low molecular family diversity; ANOVA: F1,190 = 1220, p < 0.001). Five pairs of 
high and low chemical diversity communities were placed at low (430, and 900 m above sea 
level (asl)), mid (1520, and 1470 m asl) and at high (1875 and 1950 m asl) elevation along the 
transects 1 and 5 as shown in Fig. S1, respectively. Pairs of plots were separated in average by 
30 cm. All arthropods in each plant community were sampled by sucking through a fine-meshed 
net with inverted leaf blower (Hilti, AG, Switzerland) four times during the growing season 
(10.07.2019, 29.07.2019, 22.08.2019, 15.09.2019) and counted. Overall, insect abundance was 
1.41 times higher in low molecular families diversity communities, independently of elevation 
(mixed effect linear model with transect as random factor: chemical diversity treatment effect: 
F1,185 = 5.21, p = 0.023; elevation effect: F2,185 = 5.78, p = 0.004, and treatment by elevation 
interaction: F2,185 = 5.21, p = 0.33, p = 0.714).   
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Figure S7. Regression analysis between the richness of molecules and the number of intervening 
nodes in the phylogeny for each plant species surveyed. (Pearson correlation: N = 416, r = 0.5, P 
< 0.001, estimate = 20). 
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Figure S8. Correlation plot among all predictive variables, including: Phytochemical diversity 
(Chem_richness), annual mean temperature (Tave), annual precipitation sum (Precip), annual 
sum of solar radiation (Srad), mean normalized difference vegetation index (NDVI), soil 
humidity (EIV-F), and soil pH (EIV-R), cophenetic distance 1 and 2, and number of intervening 
nodes (Nn). Pairwise significant correlations are highlighted with colours (blue = positive, and 
red = negative correlations).  
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Figure S9. Variable importance for all the environmental predictors used to build the spatial 
distribution of molecular families richness across the landscape.  
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Figure S10. Correlation between plant species richness and molecular families diversity. Black 
ribbon corresponds to the correlation between SDMs-based species richness and real 
phytochemical composition of each plant species (i.e. calculated from chromatographic analyses 
of field-sampled plants). The green ribbon shows the correlation between SDMs-based species 
richness and the MDMs phytochemical predictions (i.e. predicted phytochemical diversity). The 
observed slight underestimation of phytochemical diversity based on the MDMs is an artifact 
based on model parameters calibration, and not a true difference.  
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Figure S11. Testing the accuracy of MDMs predictions of phytochemical diversity across plant 
species assemblages. Shown are prediction errors derived from a model aiming at predicting 
phytochemical diversity from predicted SMDs species richness (yellow bars), or from MDMs 
models (green bars). Species assemblages were obtained by randomly sampling 50’000 
locations. Overall, the MDMs model increase accuracy by up to 12-fold, and this effect is 
particularly important for communities with less than 100 species. 
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Figure S12. Community-level species a) and molecular b) diversity. Each dot represents a 
community of plants sampled along the six elevation transects in the Alps. The size of the dots is 
scaled according to the diversity of unique molecules found across all species in each 
community. Second-degree regression curves are the best fit for the diversity distributions along 
elevation (for species diversity; elevation: N = 48; estimate = 0.08, t = 4.18, p < 0.0001, and 
elevation2 : estimate= -2.5e-05, t = -4.09, p < 0.001. For chemical diversity; elevation:  estimate 
= 7.133e-02, t = 3.444, p < 0.0001, and elevation2 : estimate= -2.403e-05, t = -3.488, p < 0.001).  
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Figure S13. Elevational distribution of endemic molecular families. (a) Optimal distribution of 
the endemism of 6’012 molecular families found in the Alps along elevation (km a.s.l.). The 
distribution of the molecular families along elevation is based on the niche of each species 
retrieved from spatial modeling occurrence data in Switzerland. Red colors indicate maximal 
probability of occurrence, and blue colors indicate absence. The dotted white line represents the 
average value of presence across all molecular families. Molecular endemism was estimated by 
filtering the quantile 0.8 of molecular families elevational range for probability of presence 
corresponding to 0.5. (b) Spatial representation of molecular endemism in Switzerland. The map 
is color-coded as the described for panel (a), except for the white layer of snow on the top of the 
mountains and the lakes. 
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