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STAR Protocols Supplemental Methods

1 Introduction

This protocol represents the extended methods supplement for the STAR Protocols paper with the same title.

All data analysis and visualizations in this protocol should be fully reproducible. We provide the data files
and the source Rmd file with the complete R code and text narrative, which can be loaded into RStudio
and knitted into a PDF or HTML file for a full reproduction of all results and figures. The source Rmd file
together with the data files are posted in the GitHub repository Fernandez et al. [2]. For the circular data
analysis and visualizations, we use the actual phase data generated for the study Fernandez et al. [3].

2 Programming Environment

We use R as the programming environment and RStudio as the IDE. The following freely available software
installers are available for Windows, Mac, and Linux.

o MiKTeX installers (for PDF output): http://miktex.org/download
o R installers: http://cran.stat.ucla.edu/
o RStudio installers: https://www.rstudio.com/

Note that MiKTeX is required only for generating PDF documents from the source Rmd file. After you
load the source Rmd document inside RStudio, you must first install and load the following R packages:

library(tidyverse)
library(signal)
library(pracma)
library(circular)
library(scales)
library (reshape2)
library(svglite)

As an introduction to R, RStudio, ggplot2 and the tidyverse collection of R packages for doing modern
data science, we refer the reader to Wickham and Grolemund [5].

3 Phases Analysis on LD5

3.1 Initial Data Processing

We use the DAMFileScan111X (V1.11) to scan DAMSystem3 and DAMSystemMB Monitor data
(text) files and aggregate the data into 15 min bins for a certain time range. Note that file names must be of
the form MonitorNNN.txt or MonitorNNN.csv, where NNN = 1 to 120, and files must consist of 42 columns,
tab or comma delimited, containing data for 32 flies. In particular, we used the DAMFileScan111X
program to scan a tab delimited full monitor text file and save the fly activity in 15 min bins, for the last,
fifth day of the LD cycle, into the text file LD5APm15mCtMO016. txt.

We are interested in computing the evening phases for the entire sample of 32 flies on the last (5th) day of
the LD cycle (LD5). Since for this experiment, lights on is 10:00AM and lights off is 10:00PM, we want to
save the data into 15 min bins, within 12 hours around 10:00PM on LD5. For this purpose, we load the
full monitor text file into the DAMFileScan111X program, then select the first bin to be 10:15AM on
LD5 and the last bin to be 10:00AM the next day (DD1). Note that the bin 10:15AM represents the fly
activity between 10:00AM and 10:15AM, and the 10:00AM bin represents the fly activity between 09:45AM
and 10:00AM. The resulting output is saved in the text file LD5APm15mCtM016. txt.


http://miktex.org/download
http://cran.stat.ucla.edu/
https://www.rstudio.com/
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Table 1: The head of the LD5 data.

X1 | X2 X3 X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12
401340 | 6 Jul 20 | 10:15:00 1] 14 0 0 0 0 1 10 45
401355 | 6 Jul 20 | 10:30:00 1] 14 0 0 0 0 1 35 37
401370 | 6 Jul 20 | 10:45:00 1| 14 0 0 0 0 1 30 25
401385 | 6 Jul 20 | 11:00:00 1] 14 0 0 0 0 1 24 35

Next, we use the statistical programming language R and the Integrated Development Environment (IDE)
RStudio (both open source and free) to load the text file LD5APm15mCtM016.txt and do some initial
processing before we start computing the evening phases. We use the tidyverse collection of R packages for
modern data analysis and visualizations developed by RStudio.

The R code below shows how we load the text file LD5APm15mCtM016.txt and save it to the data dataframe.
Note that since this is a tab delimited file we use the readr (a part of the tidyverse) function read_delim()
with second argument "\t" and col_names = FALSE. If the col_types argument is not set to specify
character type for column three (X3) then the 3rd column will be saved as a time column (of type hms), given
its structure.

# load the text data file
data <- read_delim("LD5APm15mCtM0O16.txt",delim="\t",col_names = FALSE)

The dataframe data has 96 observations for the 96 bins covering the 24 hours that we have selected (centered
at 10:00PM on LD5), divided into 15 min bins. It has 42 variables, where the last 32 variables (columns) are
representing the 32 flies. In Table 1 below, we show the first 12 columns and the first 4 rows of the data.
Column 11 (X11) represents the first fly.

# from data select the first 12 columns then print the first 4 rows
data %>%

select (1:12) %>

head(4) %>%

knitr::kable(caption = "The head of the LD5 data.")

Note that the pipe operator %>% used for composition of functions plays a very prominent role in the
tidyverse, and the select () function is from the dplyr package in tidyverse. The last pipe above chains
the selected data into the kable () function from the knitr package to print Table 1.

The fly activity for the 32 flies is given in the last 32 columns, so we need to remove the first 10 columns, but
it is useful to keep for now column 3, which is the column of times that specify the bins. We also rename the
resulting first column from its default name X3 (it was the 3rd column of times in the original data) to time.

# keep only columns 3 and then 11:42
data <- data %>’ select(c(3,11:42)) %>}, rename(time = X3)

Now, data has 33 columns for time and the 32 flies. It may also be useful to rename the fly columns 2:33 as
fly1, £1y2, etc. For this purpose, we define a function to rename the fly columns. The function flyname (x)
takes as an argument x the name of a fly column, say X11 (for the first fly), and it returns the name f1y1.
We use the str_sub() function from the stringr package in the tidyverse, which extracts a substring.

# to rename the fly columns

flyname <- function(x){
flyindex <- as.numeric(str_sub(x,2,3)) - 10
return(paste("fly",flyindex,sep=""))

}

Using the flyname function, we can rename the fly columns 2:33 as f1y1, f1y2, etc.
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Table 2: The LD5 data around 10:00PM, showing rows 47:50.

time state | flyl | fly2 | fly3 | fiy4 | flys | fly6 | fly7 | fly8 | fly9 | flyl0
21:45:00 | light 37 33 30 22 30 23 27 55 37 23
22:00:00 | light 22 25 25 18 19 23 33 41 30 18
22:15:00 | dark 38 33 40 36 34 30 49 7 56 36
22:30:00 | dark 34 33 42 40 32 51 41 71 54 32

# rename fly columns
data <- rename_with(data, flyname, .cols = 2:33)

For plotting, it is useful to add to the data a new variable state for the 96 bins with 48 1light and 48 dark
values, depending on which part of the light/dark cycle the bin belongs.

# add a “state’ wariable after time
data <- data %>’ mutate(state = c(rep("light",48), rep("dark",48)), .after=time)

Table 2 shows the first 12 columns and a slice of rows 47:50 of the resulting data, created with the code
below:

# from data select the first 12 columns and then take a slice of rows 47:50
data %>%

select(1:12) %>%

slice(47:50) %>%

knitr: :kable(caption="The LD5 data around 10:00PM, showing rows 47:50.")

Note that the state changes from light to dark at bin 49 that corresponds to time 22:15, which captures
the fly activity between 10:00PM and 10:15PM. This is an important observation for computing the evening
phase.

3.2 Visualizing the fly activity

We use the ggplot2 package of the tidyverse for all visualization purposes. For more details on using
gegplot2, we refer the reader to the book R for Data Science.

For illustration purposes, we visualize the activity of £1y1 by using bars centered at the corresponding bins
obtained by seq_along(f1lyl), set as the x variable. The bars are colored in light or dark gray based on their
state value (with fill=state). The two shades of gray are provided manually by their HEX values #b2b2b2
and #dedede. The time of the day under darkness is also shaded in gray using the annotate("rect",...)
function, where we used appropriate coordinates for xmin and xmax to make the shaded area consistent with
the positioning of the bars. We also add the labels ZTO and ZT12 at the appropriate positions. Note that in
the title we paste the name fly1 using the name of the 3rd column given by names(data) [3]. The code
below creates Figure 1.

data %>%
ggplot (aes(x=seq_along(flyl),y=flyl)) +
geom_col(aes(fill=state),col="black", alpha=0.8) +
scale_fill_manual(values = c("#b2b2b2", "#dedede"), guide = FALSE) +
annotate("rect",xmin=48.5,xmax=96.5,ymin=0,ymax=Inf,alpha=0.3) +
annotate("rect",xmin=-Inf,xmax=0.5,ymin=0,ymax=Inf,alpha=0.3) +
scale_x_continuous (name="",breaks=c(0.5,48.5,96.5) ,labels=c("ZT0","ZT12","ZT0")) +
ggtitle(paste("Activity of an AP male",names(data)[3],"on LD5")) +
ylab("Activity (beam crosses/min)") +
theme_bw ()
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Activity of an AP male flyl on LD5
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Figure 1: Plot of fly activity centered at ZT12.

3.3 Average activity plot

We want to visualize the average activity of all flies, excluding dead flies, on LD5, which is the last day
of LD for our data. This means that we need to compute averages across all live flies for each bin in the
data, which amounts to row-wise averages being applied to the data data frame. The dplyr package in
the tidyverse, and R in general, are particularly well suited to performing operations over columns, but
performing operations over rows is harder. The dplyr package allows for grouping the data row-wise using
the rowwise () function, which offers a more general approach that will work for any summary function.
However, there is already a built-in function rowMeans () for computing row averages without having to
group the data into rows as it operates on the data frame as whole.

Before we compute the row averages, we need to find out which flies are dead. We define a fly to be “dead” if
it has zero activity in every single bin. In particular, having a non-zero activity in one bin only would classify
the fly as “alive”. A simple check then would be to sum the total activity of the fly and if it is zero, we define
it as “dead”.

Below is the function dead_flyname (), which takes the full data frame data and returns the names of the
dead flies with zero total activity. The key line of code is summarise(data,across(3:34,sum)), where we
apply the sum() function to columns 3:34, which represent the 32 flies (the first two columns are time and
state). Note that even though live is a vector with numbers that represent the total activity for that
particular fly, applying the logical negation operator !1ive will coerce the non-zero numbers to the logical
value TRUE and the zero numbers to the logical value FALSE, and then negate. This way !1ive will become a
logical vector with TRUE values only for the “dead” flies. We can then extract the names of the “dead” flies
from the names of all flies with simple indexing f1y_names[!1live].

dead_flyname<- function(data){
live <- summarise(data,across(3:34,sum)) # sum data across columns 3:34 (flies only)
fly_names <- names(datal,c(-1,-2)]1) # column names of data without first 2 columns
return(fly_names([!livel) # return the names of dead flies

}

We can now call this function to get the names of the “dead” flies:



STAR Protocols Supplemental Methods

dead_flyname(data)

## [1] "fly28" "fly29" "fly30" "fly31" "fly32"

In addition to knowing the names of the “dead” flies, it is very useful to have the index vector of all
live flies. The function live_flyindex() below does exactly that. The key new line of code is 2 +
which(as.logical(live)), which returns the index vector of all live flies in the original data frame, since
which(as.logical(live)) is the index vector of all live flies within all 32 flies, and adding 2 to all indices
will shift them to represent all live flies within the original data that has two extra columns.

live_flyindex <- function(data){
live <- summarise(data,across(3:34,sum)) # sum data across columns 3:34 (flies only)
return(2 + which(as.logical(live))) # indices of live flies in original data (+2)

}

Thus, the index vector of all live flies is the following:

alive <- live_flyindex(data) # index vector of all live flies
show(alive)

## [1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
## [26] 28 29

Finally, we can compute the average activity across all live flies on LD5 and visualize it. For this purpose, we
need to update the data data frame and add a new variable avg to it (after state), which is the average
activity across live flies only, computed with rowMeans (across(alive), where alive is the index vector of
all live flies. This can be done in one line of code:

data <- data ’>), mutate(avg = rowMeans(across(alive)), .after=state)

We can now create the average activity plot, shown in Figure 2, using the new avg variable.

data %>%
ggplot (aes(x=seq_along(avg) ,y=avg)) +
geom_col(aes(fill=state),col="black", alpha=0.8) +
scale_fill_manual(values = c("#b2b2b2", "#dedede"), guide = FALSE) +
annotate("rect",xmin=48.5,xmax=96.5,ymin=0, ymax=Inf,alpha=0.3) +
annotate("rect",xmin=-Inf,xmax=0.5,ymin=0,ymax=Inf,alpha=0.3) +
scale_x_continuous (name="",breaks=c(0.5,48.5,96.5) ,labels=c("ZT0","ZT12","ZT0")) +
ggtitle("Average activity of live flies on LD5") +
ylab("Average activity (beam crosses/min)") +
theme_bw ()

#ggsave (file="average_activity.svg", device="svg", width=10, height=6, dpi=300)

3.4 Smoothing the data

Next, our goal is to apply a filter on the fly counts that removes the high frequencies in the spectrum, i.e. a
low-pass filter that smooths out the data. For this purpose, we use a Butterworth filter, which is a recursive
filter of the form:

P Q
vj = Z apuj—p + Z bqvj—q (1)
p=0 q=1

where {u;}}, is the original signal, and {v;}}_, is the filtered signal. Note that this filter depends not
only on the current and the previous P original data points, but also on the previously filtered @) points,
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Figure 2: The average activity of all live flies on LD5.

relative to the current point. Thus, the current filtered value depends not only on a weighted average of
the unfiltered values (first sum), but also recursively on the previously computed @ filtered values (second
sum). The magic of filter design is to compute the values of the P 4 1 parameters {a,})_ (it is really P

since they sum to 1), and the @) parameters {bq}(?:1 so that the frequency requirements are met. Using more
weights (bigger P and @), one can design a filter with a sharper frequency cutoff at the expense of more
boundary issues. For our purpose, a sharp frequency cutoff is not really needed and a lower-order filter should
work just fine. We use a 2nd order low-pass Butterworth filter with P = @ = 2.

This filter is causal since it uses only past data and this leads to a phase delay in the filtered data. The
phase delay can be removed by additional filtering backward in time. Note that Butterworth filters with
order bigger than 1 can overshoot and yield negative values even if all original data points are non-negative.

In order to compute the Butterworth filter weights, we use the function butter () from the signal package.
We also use the function £filtfilt (), which applies a linear digital filter twice, once forward and once
backward in time. The combined filter has zero phase delay and a filter order twice that of the original.
Having a zero phase delay is essential for the phase computations in the context of fly activity.

The description of this function in the signal R package suggests that it is still work in progress. If one needs
a more mature version of the functions in the signal R package, we suggest using the Python signal library
in scipy.

We give the following example to illustrate the phase delay that occurs if only a single forward filter is applied
to the signal. The signal here is generated by a 2.3 Hz shifted sinusoid y = sin(27wt) 4+ 2 and then adding
some white noise y = sin(27wt) + 0.4N(0, 1) + 2, where w = 2.3, N(0,1) is the standard Normal random
variable, and we can generate a random sample from it using rnorm(). Figure 3 shows the results of applying
single and double filter to noisy data generated by a pure sinusoid. The double filter traces very closely the
original pure sinusoidal signal used to generate the noisy data, except for the boundary issues at the end
points. The phase delay of the single filter is also quite clear.

set.seed(777)

# Example of Butterworth filter applied to moisy data

bf <- butter(n = 2, W = 0.1, type = "low", plane = "z") # order 2, 10 Hz low-pass filter
t <- seq(0, 1, len = 96) # 1 second sample of time values
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<- sin(2*pi*t*2.3) + 2 # 2.3 Hz pure sinusoid

<- sin(2*pi*t*2.3) + 2 + 0.4*rnorm(length(t)) # 2.3 Hz sinusotd + white noise
<- filtfilt(bf, x) # forward and backward filter

<- filter(bf, x) # forward filter only

= N< X

3- /r< \ /"".-\ | "J"" Data:
| AJ

) N / \\ /'/ —e— X: pure sinusoid
2- ¢ \ f \ y: noisy data from x
\ ‘/ \\ (/ z: double filter on 'y
1- \.._."“ D w: single filter on'y
O L 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00

Figure 3: Applying single and double Butterworth filter to noisy data.

3.5 Obtaining the evening phase of a single fly

We apply a Butterworth filter to smooth out the fly data and compute the evening phase for a single fly
using a window centered at 10:00 PM on LD5. For the 15 min bin data, we use the 49th bin, which is the
first bin in dark state, to represent the evening phase bin relative to which we compute the phase shift. Of
course, if the data come in different format, say 30 min bins then one must use the appropriate bin for the
evening phase computations.

As we mentioned earlier, to generate the Butterworth filter parameters, we use the butter () function from
the signal R package. The function has the following signature:

butter(n, W, type = 'low', plane = 'z')

The arguments are:

1. n is the filter order. We use n=2, a 2nd order filter.

2. W is the critical frequency of the filter and it must be a scalar for a low-pass filter. For digital filters, W
must be between 0 and 1, where 1 is the Nyquist frequency. We start our explorations with W=0.1.

3. type is set to 'low' for a low-pass filter.

4. plane is set to 'z' for a digital filter.

The function butter () returns an ARMA object with list elements:

1. a autoregressive (AR) polynomial coefficients for the recursive part.
2. b moving average (MA) polynomial coefficients for the weighted sum part.

Next, we show how to compute the evening phase for the first fly in the data, column f1y1l. We add to the
original data the smoothed data for the single fly, using the mutate () function and applying the double filter
filtfilt () to the fly data using the Butterworth filter, described above. Then, we use the findpeaks ()
function from the pracma R package to find a single peak (the maximum) in the time series of fly activity.
We use the following function signature:
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peak <- findpeaks(x, npeaks = 1, sortstr = TRUE) # finding the single highest peak

where x is the time series of fly activity, npeaks=1 specifies returning the highest peak after all local peaks
are sorted in decreasing order of their maximum value using sortstr = TRUE. In this case, the function
returns a matrix with one row that represents the maximum peak found. The first column gives the height,
the second column gives the position (index) where the maximum is reached, the third and forth columns
give the indices of where the peak begins and ends, which can be useful to detect phase peak onsets and
offsets. Knowing the index of the peak, we can find how far it is from the 49th bin, and we can scale the
difference into hours to find the evening phase shift as positive or negative hours relative to the lights off
time point of 10:00 PM. More precisely, the phase shift in hours is given by:

phase <- (peak[1,2] - C)/4 # phase shift in hours for 15 min bin data

where peak[1,2] is the index of the peak (1st row, 2nd column), and C=49 is the index of the bin that
represents the lights off time point (10:00 PM). Finally, if the fly is dead, we want to return NA. Here is the
complete code that computes the evening phase shift for the first fly £1y1 on LD5:

C <- 49 # 4index for lights off (first "dark" bin for the evening phase)
binsize <- 15 # for data with 15 min bins

bins_hour <- 60/binsize # number of bins in one hour

# create the Butterworth filter

bf <- butter(n=2, W=0.1, type='low', plane='z')

# add to data the smoothed data for flyN -> change N to change the fly

data <- data %>}, mutate(flysmooth = filtfilt(bf,flyl), .after = flyl)

# find peaks in smoothed data, sort the peaks and extract the single max peak
peak <- findpeaks(data$flysmooth,sortstr=TRUE,npeaks = 1)

# peak[1,2] is the index of the single peak

phase <- (peak[1,2] - C)/bins_hour # peak index relative to lights off (ZT12) in hours
# dead flies have zero data, so return NA in this case

phase <- ifelse(is_empty(phase),NA,phase)

print (phase)

## [1] -0.5

Thus, the evening phase of the first fly in the data is -0.5 hours.

3.6 Plotting the raw, filtered data and the evening phase

For additional insight, let us visualize the raw data for the first fly (f1y1), along with the filtered data and
the evening phase, all on one plot. In Figure 4, we plot the raw data for the first fly (£1y1) using bars shaded
according to the 1light or dark state of the bin. The filtered data flysmooth for this particular fly is plotted
using a line plot in blue color. We label the evening phase that corresponds to the single, highest peak in
the filtered data.

# INPUT #HHRAAG AR AR AR AR AR AR AR AR R A AR
C <- 49 # index for lights off (first "dark" bin for the evening phase)

binsize <- 156 # for data with 15 min bins

bins_hour <- 60/binsize # number of bins in one hour

# create a Butterworth filter

bf <- butter(n=2, W=0.1, type='low', plane='z')

flyname <- as.name("flyl") # to change the fly, change N in flyN (N=1,2,...,32)

# END OF INPUT ####HHHAARHARAAHARAARRRA AR AR AR AR AR AR AR AR R AR AR
# add to data the filtered data for flyN

data <- data %>’ mutate(flysmooth=filtfilt(bf,eval(flyname)), .after=all_of(flyname))
# find peaks in smoothed data, sort the peaks and extract the single maxz peak
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peak <- findpeaks(data$flysmooth, sortstr=TRUE, npeaks = 1)
# peak[1,2] is the index of the single peak
phase <- (peak[1,2] - C)/bins_hour # peak tindex relative to lights off (ZT12) in hours
# dead flies have zero data, so return NA in this case
phase <- ifelse(is_empty(phase), NA, phase)
# ggplot breaks
breaks <- c(0.5, C - 0.5, 2%(C-1) + 0.5)
data %>%
ggplot (aes(x=seq_along(flysmooth))) +
geom_col (aes(y=eval(flyname), fill=state),col="black") +
scale_fill_manual(values = c("#b2b2b2", "#dedede"), guide = FALSE) +
annotate("rect", xmin = breaks[2], xmax = breaks[3], ymin = 0, ymax = Inf,alpha=0.3) +

annotate("rect", xmin = -Inf, xmax = breaks[1], ymin = O, ymax = Inf, alpha = 0.3) +
geom_label(aes(x = peak[1,2], y = peak[1,1],label=paste("phase = ",phase,"h",sep="")),
hjust = "center", vjust = 0, size = 2.5, col = "blue") +

geom_line(aes(y = flysmooth), col = "mediumblue", size = 0.9, alpha = 0.7) +
scale_x_continuous(breaks = breaks, labels = c("ZTO0", "ZT12", "ZT0")) +
ggtitle(paste("Evening Phase for",flyname,"on LD5")) +

labs(x = "", y = "Activity (beam crosses/min)") +

theme_bw ()

Evening Phase for flyl on LD5
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Figure 4: Raw and filtered data for a single fly and its evening phase on LD5.

Unfortunately, using the highest peak in the filtered data for a given fly does not always work. The reason is
that there are could be cases where the highest peak is not the appropriate peak to use for computing the
evening phase. For example, this is the case with £1y18 in our data. In Figure 5, we show this case where
the highest peak is clearly not the right peak to use for the evening phase, but we should rather use the
second highest peak. This problem can be addressed in a couple of different ways. One way is to find the
peak closest to the ZT12 (lights off) time point, even if it is not the highest among all peaks in the filtered
data. Another way is to use a window centered at ZT12 that could eliminate peaks that are too far, but
perhaps some could still be left, unless the window is small enough, but then there could be an issue with the
much smaller number of data points left to produce an accurate filtering, thus the evening phase could get
distorted.

We implement the first approach based on finding the peak closest to ZT12, in terms of the time difference.
For this purpose, we find all peaks in the filtered data, using findpeaks(), and then we find the peak whose
time index minimizes the distance from the time index of ZT12. Note that distance is given as the absolute
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Figure 5: Raw and filtered data for a single fly and its evening phase on LD5.

value of the difference.

More precisely, the function findpeaks () returns the matrix peaks (see the code below), where each row
represents one peak found: the first column holds the height, the second column holds the position (index)
where the maximum is reached. We still sort the heights in decreasing order, but we use the second column
peaks[,2] to find the index that corresponds to the minimum distance between the peaks and the index for
ZT12 (given by C), implemented by the code which.min(abs(peaks[,2]1-C)).

The code chunk below gives the full implementation of this approach applied again to £1y18, which gives a
new phase.

flyname <- "fly18"

filter_order <- 1

filter_freq <- 0.2

C <- 49 # index for ZT12 lights off (first "dark" bin for the evening phase)
binsize <- 15 # for data with 15 min bins

bins_hour <- 60/binsize # number of bins in one hour

## End of Input ##HHHAAHHHHARHHRHBHHRHAAHARABHRRAAGY

# Create a Butterworth filter

bf <- butter(n=filter_order, W=filter_freq, type='low', plane='z')

flyname <- as.name(flyname) # flyname is converted from string to name

# add to pre—processed data the filtered data for the fly

data <- data %>’ mutate(flysmooth=filtfilt(bf,eval(flyname)), .after=all_of(flyname))
# UPDATED CODE

# find all peaks in smoothed data, sort the peaks

peaks <- findpeaks(data$flysmooth, sortstr=TRUE)

row.index <- which.min(abs(peaks[,2]-C)) # index of min distance from C (ZT12)
peak.index <- peaks[row.index,2] # time index for the corresponding peak to be used
phase <- (peak.index - C)/bins_hour # peak index relative to lights off (ZT12) in hours
# dead flies have zero data, so return NA in this case

phase <- ifelse(is_empty(phase), NA, phase)

print (phase)

## [1] -0.5

This way we obtain the evening phase value of -0.5 hours for £1y18.
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We can bundle the code above into the function phase() that computes the evening phase of a single fly.

# compute the phase for a given fly and pre-processed data
phase <- function(data, flyname, filter_order, filter_freq){

}

C <- 49 # index for ZT12 lights off (first "dark" bin for the evening phase)

binsize <- 15 # for data with 15 min bins

bins_hour <- 60/binsize # number of bins in one hour

# create a Butterworth filter

bf <- butter(n=filter_order, W=filter_freq, type='low', plane='z"')

flyname <- as.name(flyname) # flyname ts converted from string to name

# add to pre-processed data the filtered data for the fly

data <- data %>J, mutate(flysmooth=filtfilt(bf,eval(flyname)), .after=all_of(flyname))
# find all peaks in smoothed data, sort the peaks

peaks <- findpeaks(data$flysmooth, sortstr=TRUE)

row.index <- which.min(abs(peaks[,2]-C)) # index of min distance from C (ZT12)
peak.index <- peaks[row.index,2] # time index for the corresponding peak to be used
phase <- (peak.index - C)/bins_hour # peak index relative to lights off (ZT12) in hours
# dead flies have zero data, so return NA in this case

phase <- ifelse(is_empty(phase), NA, phase)

return(phase)

As a check, we apply the phase() function to £1y18 to make sure we get the same phase.
phase(data, "fly18", 1, 0.2)

## [1] -0.5

We can also bundle into the function phasePlot() the updated version of the code that we used for
visualization, based on the updated algorithm for finding the peak closest to the lights off time point. We
still need to pre-process the data before we use it in both the phase and the visualization functions.

phasePlot <- function(data, flyname, filter_order, filter_freq ){

# INPUT #HHRHARH AR AR AR AR AR AR AR AR AR AR AR AR AR AR
C <- 49 # index for lights off (first "dark" bin for the evening phase)
binsize <- 15 # for data with 15 min bins
bins_hour <- 60/binsize # number of bins in one hour
# END OF INPUT ###A##HHHAAAHARAAHRRAAG R AR R AR AR AR AR
# ggplot breaks
breaks <- c(0.5, C - 0.5, 2%x(C-1) + 0.5)
flyname <- as.name(flyname) # flyname ts converted from string to name
# create a Butterworth filter
bf <- butter(n=filter_order, W=filter_freq, type='low', plane='z')
# add to pre-processed data the filtered data for the fly
data <- data %>’ mutate(flysmooth=filtfilt(bf,eval(flyname)), .after=all_of(flyname))
# find all peaks in smoothed data
peaks <- findpeaks(data$flysmooth, sortstr=TRUE) # all peaks, sorted
row.index <- which.min(abs(peaks[,2]-C)) # indez of min distance from C (ZT12)
peak.index <- peaks[row.index,2] # time index for the corresponding peak to be used
phase <- (peak.index - C)/bins_hour # peak index relative to lights off (ZT12) in hours
# dead flies have zero data, so return NA in this case
phase <- ifelse(is_empty(phase), NA, phase)
if (is.na(phase)) {
return(NA)
b
# ggplot begins
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p <- data %>%
ggplot (aes(x=seq_along(flysmooth))) +
geom_col (aes(y=eval(flyname), fill=state),col="black") +
scale_fill_manual (values = c("#b2b2b2", "#dedede"), guide = FALSE) +

annotate("rect", xmin = breaks[2], zmax = breaks[3], ymin = 0, ymax=Inf,alpha=0.3) +
annotate("rect", xmin = -Inf, xmax = breaks[1], ymin = O, ymax = Inf, alpha = 0.3) +
geom_label (aes(x = peak.index, y = peaks[row.index,1],
label = paste('"phase=", phase, "h", sep = "")),
hjust = "center", vjust = 0, size = 2.5, col = "blue") +

geom_line(aes(y = flysmooth), col = "mediumblue", size = 0.9, alpha = 0.7) +
scale_x_continuous(breaks = breaks, labels = c("ZTO0", "ZT12", "ZT0")) +
ggtitle(paste("Evening Phase for",flyname)) +
labs(x = "", y = "Activity (beam crosses/min)") +
theme_bw ()

return(p)

}

In particular, using phasePlot (), we obtain the plot for £1y18 in Figure 6 based on the updated algorithm
for finding the peak closest to ZT12.

phasePlot(data, "fly18", 1, 0.2)
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Figure 6: Raw and filtered data for a single fly and its evening phase on LD5.

3.7 The full phase sample on LD5

Next, we want to compute the full phase sample for all 32 flies on LD5. The statistics of the phase sample on
LD5 could be used for calibrating the Butterworth filter parameters: order and critical frequency. So far,
we have been smoothing the data using a first order low-pass Butterworth filter with critical frequency of
0.1 (10Hz). For example, for £1y2, the evening phase on LD5 is computed using the phase () function and
visualized in Figure 7.

phase(data, 'fly2', 1, 0.2)

## [1] -0.25
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phasePlot(data, "fly2", 1, 0.2)
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Figure 7: Raw and filtered activity for fly2 and its evening phase on LD5.

Since the phase () function takes the name of the fly, in order to be able to compute all 32 phases, we need a
vector of all fly names, which we can get from the column names of data, but we need to remove the first
two names time and state. This is done with the code tail (names(data),-2).

We use map_dbl(.x, .f, ...) from the purrr package in tidyverse, which transforms the input vector .x
by applying the function .f to each element of the vector and returning a double vector of the same length
as the input. In our case, the function .f will be the phase function, the input vector .x will be the vector
with the fly names and ... is used to bind the other arguments of the function phase (), which are data,
filter_order and filter_freq. The result will be the vector with all 32 phases. The code below computes
the full phase sample in the vector phase_sample. Note that there are 5 dead flies, which return NA for the
phase.

# Butterworth filter parameters
filter_order <- 1
filter_freq <- 0.2
flynames <- tail(names(data),-2) # all 32 fly names "fly1", "fly2", ..., "fly32"
phase_sample <- map_dbl(flynames, phase, data=data,
filter_order = filter_order, filter_freq = filter_freq)

The summary statistics of the phase_sample are as follows:

summary (phase_sample)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -1.00000 -0.25000 0.00000 -0.05172 0.00000 0.50000 5

We can visualize the distribution of the phase sample by plotting its histogram, shown in Figure 8.

tibble(phase_sample) %>Y%
ggplot (aes(x=phase_sample)) +
geom_histogram(col="black",fill="gray") +
labs(title=paste("Histogram of phase sample (N=32) with n=",
filter_order,"and W=",filter_freq), x="phase")

For these specific filter parameters, the phase sample on LD5 appears to have a symmetric distribution
centered at zero. However, the sample phase distribution depends on the filter parameters and we need to
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Figure 8: The frequency histogram of the phase sample on LD5.

make some effort to choose them properly.

The filter should be calibrated to some specific conditions using LD fly activity data. Once the filter is
calibrated on LD data, it should capture in a more consistent way the phases for the DD data, relative to LD.

Using some arbitrary parameters for the filter may introduce some bias in the LD phases, but if this bias
propagates in a consistent way so that the relative difference between the LD and DD phases captures the
real effect, then there is no need to worry too much about the filter parameters. However, it may be the
case that the bias does not propagate properly if the filter is not calibrated properly, and this could lead to
potential issues.

One possible approach to calibrating the filter could be based on plotting the average fly activity on the
last day of LD (or the last several days of LD), for the entire monitor of 32 flies. Then, we could calibrate
the filter so that we get an average for the phase sample that matches the observed phase from the average
activity plot, which we can determine manually (subjectively) from the plot shown in Figure 2.

Once we have determined manually the observed phase from the average activity plot, we can find the optimal
filter parameters n and W that minimize the distance between the observed average phase and the
computed mean of the phase sample on LD5 (the last day of LD), by grid optimization, using a grid of
values for the two parameters. More precisely, we consider only two values for the filter order n=1 and n=2
(since we want a low order filter):

n<-1:2 # filter order
W<-seq(0.05, 0.15, by=0.001) # filter frequency wvector
comb<-expand_grid(n,W) # all combinations of n and W

and a vector of 101 values for W between 0.05 and 0.15 with step 0.001. We then form all possible combinations
between the values of n and W, which gives a 202 by 2 matrix, with the help of the expand_grid(n,W)
function from the tidyr package in the tidyverse.

Then, we write a function matchPhase(data,n,W,observedPhase), which returns the distance between the
observed phase from the average activity plot (held in observedPhase), and the computed mean of the phase
sample for the given pair of n and W values. This part is based on our previous computations using the
phase () function, which computes the phase of a single fly, given by name, for the given pair of parameter
values.
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Table 3: The optimal filter parameters.
L L
2 | 0.077

# we use the phase() function inside

matchPhase<-function(data, n, W, observedPhase){
flynames <- tail(names(data),-2) # all 32 fly names "fly1", "fly2", ..., "fly32"
phase_sample <- map_dbl(flynames, phase, data=data, filter_order = n, filter_freq = W)
avg <- mean(phase_sample, na.rm = TRUE) # mean of phase sample, remove NAs (dead flies)
return(abs (observedPhase-avg)) # distance between observedPhase and computed sample mean

}

Next, we map the matchPhase() function to all pairs of n and W values from the combinations matrix
comb and obtain each element in the vector distances for each pair (n,W). We use the handy function
which.min() to find the index that corresponds to the minimum distance and use it to find the values of
the corresponding filter parameters n and W. Here, we have to provide the observed phase from the average
activity plot, shown in Figure 2, which we determined manually to be -0.5h.

# Grid Optimization:

distances <- map2_dbl(comb$n, comb$W, matchPhase, data=data, observedPhase=-0.5)
opt_index <-which.min(distances) # the index for the minimum value

knitr: :kable(comb[opt_index, ], align = "c", caption="The optimal filter parameters.")

Thus, minimizing the desired distances over all combinations of (n,W) pairs gives the optimal filter parameters
n=2 and W=0.077. The function meanPhase () computes the mean of the phase sample.

meanPhase<-function(data,n,W){
flynames <- tail(names(data),-2) # all 32 fly names "fly1", "fly2", ..., "fly32"
phase_sample <- map_dbl(flynames, phase, data=data, filter_order = n, filter_freq = W)
avg <- mean(phase_sample, na.rm = TRUE) # mean of phase sample, remove NAs (dead flies)
return(avg)

}

Using the optimal filter parameters, we can check that the computed mean of the phase sample matches the
observed average phase.

meanPhase(data, n=2, W=0.077)

## [1] -0.5

Let us recompute the phase sample using the optimal filter parameters.
# optimal filter parameters from matching the observed average phase
filter_order <- 2
filter_freq <- 0.077
flynames <- tail(names(data),-2) # all 32 fly names "fly1", "fly2", ..., "fly32"
phase_sample <- map_dbl(flynames, phase, data=data,

filter_order = filter_order, filter_freq = filter_freq)

Now, the summary statistics of the new phase_sample are as follows:

summary (phase_sample)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -1.25 -0.75 -0.50 -0.50 -0.50 0.25 5
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We can save the full phase sample into a csv file using the write_csv() function from the readr package
inside the tidyverse.

write_csv(phase_sample,file="phases.csv")

The distribution of the phase sample obtained with the optimal filter parameters is shown in Figure 9.

tibble(phase_sample) %>%
ggplot (aes(x=phase_sample)) +
geom_histogram(col="black",fill="gray") +
labs(title=paste("Histogram of phase sample (N=32) with n=",
filter_order,"and W=",filter_freq), x="phase")

Histogram of phase sample (N=32) with n=2 and W= 0.077
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Figure 9: The frequency histogram of the phase sample on LD5 with optimal filter parameters.

For the sake of completeness, let us recompute the evening phase for £1y18 on LD5 using the optimal filter
parameters and create the phase plot in Figure 10.

phase(data, 'flyi8', 2, 0.077)

## [1] -0.75
phasePlot(data, "fly18", 2, 0.077)

4 Phase Analysis on DD1

4.1 Loading and processing the DD1 data

First, we load the DD1 data file DD1APm15mCtM016.txt obtained from the DAMFileScan111X software.
Note that the DD1 data are centered at 10:00PM on DDI1.

# load the text data file
ddl <- read_delim("DD1APm15mCtM0O16.txt",delim="\t",col_names = FALSE)

The dataframe dd1 has 96 observations for the 96 bins covering the 24 hours that we have selected, divided
into 15 min bins. It has 42 variables, where the last 32 variables (columns) are representing the 32 flies. In
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Figure 10: Raw and filtered activity for fly1l8 and its evening phase on LD5 with optimal filter parameters.

Table 4: The head of the DD1 data.

X1 | X2 X3 X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12
402780 | 7 Jul 20 | 10:15:00 1] 14 0 0 0 0 0 27 15
402795 | 7 Jul 20 | 10:30:00 1] 14 0 0 0 0 0 25 7
402810 | 7 Jul 20 | 10:45:00 1] 14 0 0 0 0 0 10 0
402825 | 7 Jul 20 | 11:00:00 1] 14 0 0 0 0 0 23 25

Table 4, we show the first 12 columns and the first 4 rows of the data. Column 11 (X11) represents the first
fly on DDI1.

# from ddl select the first 12 columns then print the first 4 Tows
dd1l %>%

select (1:12) %>%

head(4) %>

knitr::kable(caption = "The head of the DD1 data.")

Next, we perform the same data processing that we did for the LD5 data. Eventually, we will embed this
data processing into the main functions for computing phases and creating the phase plots.

The fly activity for the 32 flies is given in the last 32 columns, so we need to remove the first 10 columns, but
it is useful to keep for now column 3, which is the column of times that specify the bins. We also rename the
resulting first column from its default name X3 (it was the 3rd column of times in the original data) to time.

# keep only columns 3 and then 11:42
ddl <- ddi1 %>% select(c(3,11:42)) %> rename(time = X3)

Now, dd1 has 33 columns for the time and the 32 flies. It is also useful to rename the fly columns 2:33 as
fly1, £1y2, etc. For this purpose, we define a function to rename the fly columns. The function flyname (x)
takes as an argument x the name of a fly column, say X11 (for the first fly), and it returns the name f1y1.
We use the str_sub() function from the stringr package in the tidyverse, which extracts a substring.

# to rename the fly columns

flyname <- function(x){
flyindex <- as.numeric(str_sub(x,2,3)) - 10
return(paste("fly",flyindex,sep=""))
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Table 5: The DD1 data around 10:00PM, showing rows 47:50.

time state | flyl | fly2 | fly3 | fiy4 | flys | fly6 | fly7 | fly8 | fly9 | flyl0
21:45:00 | light 20 14 22 18 12 34 13 31 20 17
22:00:00 | light 30 11 38 10 16 27 25 35 27 21
22:15:00 | dark 28 12 20 20 26 37 27 38 20 10
22:30:00 | dark 14 21 0 35 25 21 20 45 25 18

}

Using the flyname function, we can rename the fly columns 2:33 as f1y1, £1y2, etc.

# rename fly columns
ddl <- rename_with(ddl, flyname, .cols = 2:33)

For plotting, it is useful to add to the data a new variable state for the 96 bins with 48 1light and 48 dark
values, depending on which part of the light/dark cycle the bin belongs.

# add a “state’ wariable after time
dd1l <- dd1 %>’ mutate(state = c(rep("light",48), rep('"dark",48)), .after=time)

Table 5 shows the first 12 columns and a slice of rows 47:50 around 10:00 PM of the resulting data, created
with the code below:
# from ddl select the first 12 columns and then take a slice of rows 47:50
dd1 %>%
select(1:12) %>%
slice(47:50) %>%
knitr::kable(caption="The DD1 data around 10:00PM, showing rows 47:50.")

Note that the state changes from light to dark at bin 49 that corresponds to time 22:15, which captures
the fly activity between 10:00PM and 10:15PM. This is an important observation for computing the evening
phase.

4.2 A single evenning phase on DD1

Let us start by computing the evening phase again for £1y2 on DD1, using the optimal filter parameters
obtained by calibrating the filter to the LD5 data. We also create the phase plot in Figure 11.

phase(ddl, 'fly2', 2, 0.077) # evening phase of fly2 on DDI

## [1] O
phasePlot(ddl, "fly2", 2, 0.077)

Next, we compute the entire phase sample on DD1 using the optimal filter parameters.

# optimal filter parameters from matching the observed average phase
filter_order <- 2
filter_freq <- 0.077
flynames <- tail(names(ddl),-2) # all 32 fly names "fly1", "fily2", ..., "fly32"
phase_sample <- map_dbl(flynames, phase, data=ddi,

filter_order = filter_order, filter_freq = filter_freq)

Now, the summary statistics of the phase_sample on DD1 are as follows:
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Figure 11: Raw and filtered activity for fly2 and its evening phase on DD1 with optimal filter parameters.

summary (phase_sample)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.7500 -1.2500 -0.5000 -0.8981 -0.2500 0.5000 5

The distribution of the phase sample on DD1 obtained with the optimal filter parameters is shown in Figure
12.

tibble (phase_sample) 7>7
ggplot (aes(x=phase_sample)) +
geom_histogram(col="black",fill="gray") +
labs(title=paste("Histogram of phase sample (N=32) with n=",
filter_order,"and W=",filter_freq), x="phase")

Histogram of phase sample (N=32) with n=2 and W= 0.077
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Figure 12: The frequency histogram of the phase sample on DD1.
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Table 6: The head of the phases dataframe.

PdfGal4 | uasUNC5 | PAfUNCS5 | uasDBTL | uasDBTLuasUNC5 | PAfDBTL | PAfDBTLUNCS5
-0.5 -1.5 -1.5 0 -1.5 3.5 2
-0.5 -1.0 0.5 -1 -1.0 2.0 2

0.5 0.0 NA 0 -1.0 1.5 2
1.0 -1.5 0.0 0 -0.5 1.0 3

5 Circular Phase Analysis and Visualizations

In this section, we illustrate the circular data analysis and visualization functionality of the R package
circular, which can be installed in RStudio from CRAN, using the Install button in the Packages tab in
the lower pane on the right-hand side of the RStudio Editor. You can make the circular package available
in your current R session by loading it with the command library(circular).

For illustration purposes, we use the actual phase data from Fernandez et al. [3]. A good introduction to
the analytical aspects of circular statistics can be found in Batschelet [1], and the R package circular is
illustrated in Pewsey, Neuhduser, and Ruxton [4].

Data were obtained from a system entrained to a 24h environmental cycle (lights-on = ZT00). Negative
phases represent anticipation relative to lights-on or lights-off transitions, thus if a transition was anticipated
there would be a negative phase value. On the other hand, the positive phases represent a delay in response
relative to the ZTOO time set at “midnight” on our clock. For example, if a phase that happened very late in
the night would occur at, say Zeitgeber time 23.2h, anticipating lights-on at ZT00, it would therefore be given
a phase value of -0.8h.

Before we analyze and visualize the phase data, we transform the negative and positive phases into proper
hours on the 00-24h time scale by taking all phases modulo 24, and then converting the proper hours into
radians. The zero hour ZT00 is set at 24h, or 27 radians. For example, the negative phase of -0.8h, when
taken modulo 24, would be converted to 23.2h and then into 6.0737 radians.

We also illustrate the application of the Watson-Wheeler Test for Homogeneity of Angles and the Watson
Two-Sample Test of Homogeneity to determine whether the phases for control and experimental lines are
significantly different. Watson’s non-parametric two sample Us statistic provides a criterion to test whether
two samples differ significantly from each other. For both tests, the null hypothesis is that the two samples of
angles come from the same underlying population.

5.1 Importing the Phase Data

The raw phase data are contained in the file phases.csv, which we import in RStudio as phases.

phases <- read_csv("phases.csv") # import into RStudio

The phases dataframe has 7 variables and 64 observations, including NAs. The variables represent the phases
for different genotypes. Here is the head of the data:

phases %>% head(4) %>%

knitr::kable(label="phases",caption = "The head of the phases dataframe.")

5.2 Transforming the Phase Data

We transform the phases into proper hours by taking the original phases modulo 24, and then converting the
hours into radians. The zero hour ZT0O is set at 24h, or 27 radians. The conversion formula is given by:
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(¢p mod 24)2x

¢1: 24 s

(2)
where ¢q is the raw phase (positive or negative), ¢p mod 24 is taking the raw phase modulo 24, which turns
it into a proper hour on the 24h clock, and ¢; is the converted angular phase, given in radians. The R code
below transforms all raw phases at once into angular measurements in radians, following (2), contained in the
vector radphases:

# phases modulo 24 are transformed into hours and converted to radians
radphases <- (phases /% 24)*pi/12 # phases in radians

An alternative approach to transforming the phases is based on using the R package circular. First, we take
the raw phases (positive and negative) modulo 24, which transforms them into proper hours, and we name the
resulting dataframe by mod24phases. Note that x modulo y in R is implemented by x %% y. Then, we use
the circular () function from the circular package to create a circular data object. Now, we can transform
mod24phases into another circular data object with units of radians, modulo 27, named test, using the
conversion.circular() function. Finally, we save the previously computed radphases as a circular data
object with units of radians, so that we can compare the phases we computed in radians from scratch with
the phases computed by the conversion.circular() function.

# library(circular) # circular must be installed first
mod24phases <- (phases %)% 24) # take raw phases mod 24 to transform into hours

mod24phases <- circular(mod24phases, units ="hours", modulo = "asis",
template = "clock24",zero=24)
test <- conversion.circular(mod24phases, units="radians", template = "clock24",
modulo="2pi",zero=pi/2)
cirradphases <- circular(radphases, units = "radians", template = "clock24",

modulo="2pi", zero=pi/2)

The result of this alternative approach is that the transformed phases are indeed the same. This is confirmed
by applying the function all.equal(x,y), which compares R objects x and y by testing for near equality,
within the default numerical tolerance.

all.equal(cirradphases, test) # test if the two objects are equal

## [1] TRUE

5.3 Circular Data Plots

From now on, we are going to use the circular data object cirradphases, which contains phases transformed
into angles measured in radians on a 24h clock. Applying the generic plot () function to a circular data
object, creates a circular data plot.

In Figure 13, we plot the first variable PdfGal4 in cirradphases. Inside plot(), the argument stack =
TRUE allows for different observations corresponding to the same (or close enough) angle to be stacked on the
top of each other. The argument cex=1 sets the size of the plotting symbol used to represent each data point
in the plot. The argument pch = 16 sets the type of the plotting symbol used to represent each data point
in the plot, in this case a solid dot. The argument sep = 0.05 sets the separation between the stacked dots
on the plot. The argument shrink = 1.7 reduces the radius of the circle to ensure that all data points are
visible within the plotting window. We also use a helper function alpha() from the scales package, which
controls the color transparency.

# library(scales) # scales must be installed first
plot(cirradphases[,1], stack = TRUE, col=alpha("blue",0.8), pch = 16, cex=0.8,
sep = 0.08, shrink = 1.9)
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Figure 13: PdfGal4 phases in radians.

The points () function is helpful for displaying more than one circular data set within the same circular data
plot. For example, the code chunk below generated Figure 14, where we plot the first variable PdfGal4 in
cirradphases, as before, but then we also add to this plot the observations contained in the second variable
uasUNC5.

plot(cirradphases[,1], stack = TRUE, col=alpha("blue",0.8), pch = 16, cex=0.8,
sep = 0.08, shrink = 1.9)
points(cirradphases[,2], stack = TRUE, col=alpha("red",0.8), pch = 16, cex=0.8,
sep = 0.08)

Figure 14: PdfGal4 and uasUNC5 phases on the same plot.
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5.4 The Circular Mean

The circular mean computes the mean direction of a circular variable. Each observation in the circular
variable is treated as a unit vector, or a point on the unit circle. The resultant vector of all observations is
computed and the direction of the resultant vector is returned as the circular mean, which is implemented in
the circular package as a method for the generic function mean(), applied to a circular data object. Since
the phase data have NA values, we have to use the na.rm = TRUE argument to remove the NAs.

In the code chunk below, we compute the circular mean of the PdfGal4 variable in the data.

# calculate the circular mean

data <- cirradphases([,1] # first variable PdfGal/
circmean <- mean(data,na.rm = TRUE)
show(circmean)

## Circular Data:

## Type = angles

## Units = radians

## Template = clock24
## Modulo = 2pi

## Zero = 1.570796

## Rotation = clock
## [1] 0.009657737

We can visualize the circular mean as the mean direction of the circular variable by plotting an arrow that rep-
resents the resultant mean direction vector by using arrows.circular (). The call arrows.circular(data)
displays the vectors on the unit circle corresponding to the angles (in radians) in the circular data, relative to
the zero on the 24h clock. Note that data has 11 NA values, and arrows are displayed only for the remaining
53 numerical values, but with overlaps captured by the color density of the arrows. For displaying the mean
resultant vector, we use the mean resultant length of the circular data computed with rho.circular().
This is shown in Figure 15.

R <- rho.circular(data, na.rm = TRUE)

plot(data, stack=TRUE, cex=0.8, shrink = 1.9, sep=0.08, col=alpha("blue",0.8), pch = 16)
arrows.circular(data, col=alpha("black",0.3))

arrows.circular(circmean, y=R, 1lwd=3, col=alpha("blue",0.5))

5.5 The Rose Diagram

The rose diagram represents frequencies in the circular data by areas of sectors on the unit circle. The rose
diagram can be added to an existing circular plot using the rose.diag() function. For more details on the
many arguments this function has, please refer to the circular package documentation.

There are two conventions in the literature regarding rose diagrams. Here we use the default convention
of the rose.diag() function, where the radius of a segment is taken to be the square root of the relative
frequency. With this convention, when we compare segments in a rose diagram, the ratio of the areas
of two segments is the same as the ratio of the relative frequencies, since the segment areas are
proportional to the radius squared.

We can choose how many segments to divide the circular data into in order to create the rose diagram. Keep
in mind that how people read the rose diagram is sensitive to this choice and it is advisable to try a range of
values for the number of segments and make a choice informed by the resulting plots. A good first guess is to
take the square root of the sample size, but multiples of 4 are popular choices for circular data.

In Figure 16, we add a rose diagram to a circular plot as well as an arrow pointing in the mean circular
direction of the circular data. In the rose.diag() function, the argument bins=16 controls the number of
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Figure 15: Mean direction, shown by the blue arrow.

segments, and the argument prop=1.1 scales the size of all segments relative to the outer circle, with larger
values increasing the size of the segments, having a default value of one.

plot(data, stack=TRUE, cex=0.8, shrink = 1.9, sep=0.08, col=alpha("blue",0.8), pch = 16)
arrows.circular(circmean, y=R, lwd=3, col=alpha("blue",0.7))

rose.diag(data, bins=16, col=alpha("blue",0.3), prop=1.1, axes=FALSE, add=TRUE)

Figure 16: Mean direction vector (in blue), and a rose diagram of PdfGal4.

5.6 The Watson Two-Sample Test

We apply the Watson two-sample test to determine whether the phases for control and experimental lines are
significantly different. Watson’s non-parametric two sample U? statistic provides a criteria to test whether
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two samples differ significantly from each other. The difference is not specified, it may be in the mean, the
angular variance, or something else.

The circular data should consist of two independent random samples of circular observations drawn from
populations with a continuous distribution. The null hypothesis Hy states that the two samples belong
to the same parent population.

The decision rule states that:

1. If U? < critical value: the null hypothesis cannot be dismissed.
2. If U? > critical value: reject the null hypothesis, and conclude that the two samples differ signifi-
cantly.

The larger the value of U2, the more likely the two samples belong to different populations. The smaller the
value of U2, the more likely the two samples belong to the same population.

In the code chunk below, we run the Watson Two-Sample Test using the function watson.two.test() from
the circular package. The two circular variables correspond to uasDBTL and PAfDBTL genotypes, in
our phase data.

datal <- cirradphases[,4] # wasDBTL phases
data2 <- cirradphases[,6] # PdfDBTL phases
watson.two.test(datal,data2, alpha=0.05)

##

## Watson's Two-Sample Test of Homogeneity
##

## Test Statistic: 1.6978

## Level 0.05 Critical Value: 0.187

## Reject Null Hypothesis

The alpha=0.05 argument specifies the significance level of the test. Valid levels are 0.001, 0.01, 0.05, 0.1.
This argument can be omitted, in which case, a range for the p-value will be returned. The p-value is
estimated by assuming that the test statistic follows a chi-squared distribution. For this approximation to be
valid, each dataset must have at least 10 elements.

One can also apply the Watson-Wheeler test for homogeneity on two or more samples of circular data,
using the function watson.wheeler.test(list(datal,data2)) from the circular package. The difference
between the samples can be in either the mean or the variance.

5.7 A Circular Plot and Rose Diagrams for PAfDBTL vs. uasDBTL

In Figure 17, we show the circular plot of PAfDBTL and uasDBTL, along with arrows pointing to the circular
means of the two datasets, and their rose diagrams. The code chunk below contains the complete code that
generates Figure 17.

# circular data plot

plot(cirradphases[,4], stack = TRUE, col=alpha("gray45",0.8), pch = 16, cex=0.8,
sep = 0.08, shrink = 2.2, main="") # for uasDBTL

# adding points for PdfDBTL

points(cirradphases[,6],stack=TRUE, col=alpha("gold3",0.8),pch=16,cex=0.8,sep=0.08)

# circular means

circ.mean4<-mean(cirradphases[,4] ,na.rm = TRUE) # for uasDBTL

circ.mean6<-mean(cirradphases[,6] ,na.rm = TRUE) # for PdfDBTL

# adding arrows to circular means

arrows.circular(circ.mean4, col = alpha('gray45",0.6),1lwd=3)

arrows.circular(circ.mean6, col = alpha("gold3",0.6),lwd=3)

# adding a legend
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legend(-0.3,-0.2,legend=c("uasDBTL","Pdf>DBTL"),

col=c(alpha("gray45",0.8) ,alpha("gold3",0.8)),pch=16,

cex=0.8,box.1ty=0)
# adding rose diagrams
rose.diag(cirradphases[,4],bins=12,col=alpha("gray45",0.4),cex=0.8,prop=0.85,add=TRUE)
rose.diag(cirradphases([,6] ,bins=12,col=alpha("gold3",0.4),cex=0.8,prop=0.85,add=TRUE)

® uasDBTL
Pdf>DBTL 9

10

Y13 011

Figure 17: The circular plot and rose diagrams of PAfDBTL and uasDBTL.
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