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Appendix Figures

Appendix Figure 1: Schematic of the data harmonization problem. We are provided with two
datasets (orange and blue), each consisting of two cell types (red and green). Our evaluation for
the harmonization problem consists of two objectives: (1) mixing the two datasets well and (2)
retaining the original structure in each dataset. Scenario 1 (top) is the case of under correction
where objective (2) is achieved while objective (1) is not. Scenario 2 (middle) is the case of over
correction where objective (1) is improved while objective (2) becomes worse. The bottom panel
shows the desired scenario of mixing the datasets well while retaining the biological signal.

Appendix Figure 2: Robustness analysis for harmonization of the pair of datasets MarrowMT-
10x / MarrowMT-ss2 with scVI. (a− c) We augment the number of hidden layers in the neural
network fw and track across n = 5 random initializations for the batch entropy mixing (a), the
held-out log likelihood (b) and the weighted accuracy of a nearest neighbor classifier on the latent
space (c). (d−f) We increase the number of dimensions for the latent variable z and track across
n = 5 random initialization the batch entropy mixing (d), the held-out log likelihood (e) and the
weighted accuracy of a nearest neighbor classifier on the latent space (f).
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Appendix Figure 3: Visualization of the output of MAGAN on the DentateGyrus pair of
datasets. Using MAGAN, we projected the first dataset into the second one (a) and vice-versa
(b).
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Appendix Figure 4: Visualization of the benchmark PBMC-8K / PBMC-CITE. All positions
for the scatter plots are derived using UMAP on the latent space of interest.
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Appendix Figure 5: Visualization of the benchmark MarrowMT 10x / ss2. All positions for the
scatter plots are derived using UMAP on the latent space of interest.

Appendix Figure 6: Visualization of the benchmark Pancreas InDrop / CEL-Seq2. All positions
for the scatter plots are derived using UMAP on the latent space of interest.
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Appendix Figure 7: Visualization of the benchmark DentateGyrus10X - Fluidigm C1. All
positions for the scatter plots are derived using UMAP on the latent space of interest.
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Appendix Figure 8: Supplementary study of harmonizing datasets with different cellular com-
position. We show here the case where each of the two datasets has a unique cell types and share
all the others. For each box plot, we report over all the possible combinations of left-out cell
types. (a) Entropy of batch mixing for the unique population (lower is better). (b) k-nearest
neighbor purity (unique and non-unique; higher is better). (c) Entropy of batch mixing for the
non-unique populations (higher is better). The boxplots are standard Tukey boxplots where the
box is delineated by the first and third quartile and the whisker lines are the first and third
quartile plus minus 1.5 times the box height. The dots are outliers that fall above or below the
whisker lines.
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Appendix Figure 9: Follow-up analysis on continuous trajectory harmonization with scANVI.
(a − b) Continuous trajectory obtained by the Seurat Alignment procedure for the HEMATO-
Tusi and the HEMATO-Paul datasets. (c − d) Continuous trajectory obtained by the scANVI
using the Tusi cell type labels for semi-supervision. (e − f) Continuous trajectory obtained by
the scANVI using the Paul cluster labels for semi-supervision. All locations for scatter plots are
computed via UMAP in their respective latent space.

Appendix Figure 10: Average kNN purity by scVI, scANVI and Seurat Alignment when lower
quality data is simulated by downsampling to 10-90% of the original transcript counts. 10% of
the reads are removed from the dataset at each step, and the change in average kNN Purity score
is shown on the y-axis.

9



Appendix Figure 11: The harmonization performance of scVI and scANVI on datasets from
human and mouse Substantia Nigra. (a) shows the distribution of mouse cell clusters and species
origin on scVI and Seurat alignment latent space visualized by UMAP. The mouse cell cluster
ids are provided by the original publication. (b) shows kNN purity and Batch Entropy Mixing of
different methods on the cross species comparison as a function of the K-Nearest Neighborhood
size.

Appendix Figure 12: Large-scale data integration with scVI. (a− b) UMAP visualization of the
scVI latent space colored by datasets (a) and by cell types (b). (c) accuracy of a nearest neighbor
classifier based on scVI latent space
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Appendix Figure 13: Annotation results for all four dataset pairs. PBMC-8K / PBMC-cite
(a − b), MarrowMT-10X / MarrowMT-SS2 (c − d), Pancreas InDrop-CELSeq2 (e − f) and
Dentate Gyrus 10X / Fluidigm C1 (g − h). Accuracies for transferring annotations from one
dataset to another from a k-nearest neighbors classifier on Seurat Alignment, and scVI latent
space, scANVI, SCMAP and CORAL classifier are shown. The aggregated results across for cell
types that are shared between the two datasets is shown in box plots.
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Appendix Figure 14: Annotation results for all four dataset pairs. PBMC-8K / PBMC-cite
(a − b), MarrowMT-10X / MarrowMT-SS2 (c − d), Pancreas InDrop-CELSeq2 (e − f) and
Dentate Gyrus 10X / Fluidigm C1 (g − h). Accuracies for transferring annotations from one
dataset to another from a k-nearest neighbors classifier on Seurat Alignment, and scVI latent
space, scANVI, SCMAP and CORAL classifier are shown. The prediction accuracy for each cell
type that is shared between the two datasets is shown on the y-axis and the size of the dots are
proportional to the proportion of a cell type in the total population.
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Appendix Figure 15: Supplementary study of labels concordance. (a) k-nearest neighbors
purity of the merged latent space on the protein expression space as a function of the size of the
neighborhood. (b) Protein expression heatmap showing consistency of PBMC-Sorted labels and
protein expression in PBMC-CITE. The protein expression per cell type is based on k-nearest
neighbors imputation from the harmonized latent space obtained from scANVI trained with pure
population labels. (c) We select individual cells that were labeled as dendritic cells or Natural
Killer cells in the original publication of the respective datasets, and compare the raw transcript
count from cells inside the scANVI T cells cluster (DC*, NK*) against cells outside the T cells
cluster (DC, NK). The expression of marker genes suggest that DC* and NK* is more likely to
be T cells and thus the scANVI latent space is more accurate. (d) The batch entropy mixing of
the three datasets in scVI, scANVI and Seurat Alignment merged space.
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Appendix Figure 16: Other methods of classifying T-cell subsets of the PBMC-Pure dataset.
Coordinates for the scatter plots are derived from UMAP embedding based on the latent space
of scANVI. (a) Ground truth labels from the purified PBMC populations (b) k-nearest neighbors
classification labels when applied on scVI latent space from the seed set of cells (c) k-nearest
neighbors classification labels when applied on Seurat Alignment latent space (d) k-means clus-
tering based labels when applied to scVI latent space (e) DBSCAN clustering based labels when
applied to scVI latent space. DBSCAN returns only one cluster but return some cells as unclas-
sified. (f) PhenoGraph clusters on scVI latent space
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Appendix Figure 17: Continuous trajectory simulated using SymSim. (a) Tree structure from
which the cells are sampled. Each grey dot represent a cell sampled along the trajectory. Colored
dots with a black edge are treated as labeled, while the others are treated as unlabeled. Each
path simulates a continuous phenotypical variation. (b− g) The same tree with each cell colored
by the posterior probability of being assigned to a specific label. (h− i) Another visualization of
the gradual change of posterior probability by plotting the posterior probability of root (h) and
population 3 (i). The x-axis represents the pathwise distance (paths are defined in (a)), and the
y-axis represents the probability, or confidence of the assignment.
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Appendix Figure 18: Presentation of the simulated dataset used for differential expression
benchmarking. (a) The tree used to sample the cells in SymSim. We sample cells from the five
leaves nodes representing five different cell types derived from the same root node. (b) UMAP
of scVI latent space colored by cell types and batch identifier (c) UMAP of scVI latent space
without batch correction, proving that the data is indeed subject to batch effects. (d) Entropy of
batch mixing for all the algorithms (e) Weighted accuracy using a k-nearest neighbors classifier
on the latent space (f) Per cell type accuracy for the label transfer.

Appendix Figure 19: The effect of the choice of number of classes on the scANVI model likelihood
(a), classification accuracy (b) and entropy of batch mixing (c). We trained scANVI using
PBMC8K as the labelled dataset, and varied the number of classes in scANVI from 6(true
number of labelled cell types) to 14. The thicker line show the mean of 9 replicates, while
the colored shading show the 95% confidence interval. We used a subsampled PBMC8K-CITE
dataset, where NK cells are removed from the PBMC8K dataset and B cells are removed from
the PBMC-CITE dataset. As we expect, the two unique dataset have low mixing in (c) while the
other cell types have high mixing. Although there is no labelled B cells, scANVI does not cluster
B cells from the PBMC8K dataset with other cell types in PBMC-CITE. The three metrics we
use to evaluate scANVI performance are minimally affected by the increase in the number of
classes.
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Appendix Figure 20: Performance of scVI and scANVI with a negative binomial (NB) distribu-
tion. (a) UMAP plot of the MarrowTM pair using a NB distribution for scVI. (b) Harmonization
statistics and differences between regular scVI and NB version (scVI-NB). Dotted lines represent
results using scVI-NB.
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Appendix Figure 21: Differential Expression with a negative binomial version of scVI. We
report all metrics on all pairs of cell types using the simulated dataset previously analyzed as in
Appendix Figure Appendix Figure 18a.
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Appendix Tables

Dataset Name Tech. n cells Description Ref.
PBMC-8K 10x 8,381 peripheral blood mononuclear

cells (PBMCs) from a healthy
donors; labels extracted from
[Cole et al., 2019]

[10x, 2017]

PBMC-CITE 10x 7,667 PBMCs obtained from CITE-seq;
labels generated manually by in-
spection of protein marker level on
Seurat clusters

[Stoeckius et al., 2017]

PBMC-68K 10x 68,579 fresh PBMCs collected from
healthy donor

[Zheng et al., 2017]

PBMC-Sorted 10x 94,655 Bead-purified PBMCs collected
from the same donor as PBMC68K

[Zheng et al., 2017]

MarrowTM-
10x

10x 4,112 Mouse bone marrow cells collected
from two female mice

[Schaum et al., 2018]

MarrowTM-
ss2

Sma.-
Seq2

5,351 FACS sorted cells (B cells, T cells,
granulocytes and Kit (+), Sca-
1 (+) and Lin (-) hematopoietic
stem cells) from 3 male and 2 fe-
male mice,

[Schaum et al., 2018]

Pancreas-
InDrop

inDrop 8,569 Human Pancreas [Baron et al., 2016]

Pancreas-
CELSeq2

CEL-Seq2 2,449 Human Pancreas [Muraro et al., 2016]

DentateGyrus-
10x

10x 5,454 Mouse Dentate Gyrus [Hochgerner et al., 2018]

DentateGyrus-
C1

Fluid. C1 2,303 Mouse Dentate Gyrus [Hochgerner et al., 2018]

CORTEX 10x 160,796 Mouse Nervous System [Zeisel et al., 2018]
HEMATO-
Tusi

inDrop 4,016 Hematopoeitic Progenitor Mouse
Cells

[Tusi et al., 2018]

HEMATO-
Paul

MARS-
seq

2,730 Hematopoeitic Progenitor Mouse
Cells

[Paul et al., 2015]

SCANORAMA Mixture 105,476 human cells from 26 diverse
scRNA-seq experiments across 9
different technologies

[Hie et al., 2019]

SN-human 10x 10,000 (sub-
sampled)

Brain cells from human Substantia
Nigra

[Welch et al., 2019]

SN-mouse Drop-seq 10,000 (sub-
sampled)

Brain cells from mouse Substantia
Nigra [Saunders et al., 2018]

Appendix Table 1: List of dataset used in this paper. Note that for the PBMC-Sorted 11
cell types were collected according to the paper but only 10 are available from the 10x web-
site [10x, 2017].
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Method PBMC8KCITE MarrowTM Pancreas DentateGyrus

scVI 0.73395 0.74325 0.81425 0.5418

scANVI1 0.74465 0.7418 0.76625 0.55875

scANVI2 0.8184 0.77825 0.78815 0.54135

Seurat 0.7351 0.72095 0.6174 0.4149

MNN 0.7364 0.6783 0.76205 0.4296

PCA 0.59895 0.6089 0.5474 0.4179

Appendix Table 2: Additional metric for retainment of structure via k-means clusters preser-
vation. For scANVI we perform semi-supervision using the cell type label (not k-means cluster
labels) from only one of the two datasets. Thus we train two separate models SCANVI1 and
SCANVI2. To obtain a measure of clustering conservation, we first run k-means clustering in
the latent space of dataset 1, then in the harmonized latent space using only cells from dataset
1. We compute the adjusted Rand Index of the two clustering results. We then do the same for
dataset 2 and the final score is the average for both datasets.

cell-type
PBMC-8K
proportion

PBMC-CITE
proportion

NK cells 0.036 0.178

CD8 T cells 0.119 0.091

B cells 0.133 0.104

FCGR3A+
Monocytes

0.028 0.029

CD14+
Monocytes

0.186 0.159

CD4 T 0.421 0.436

Dendritic Cells 0.026 0

Megakaryocytes 0.008 0

Other 0.043 0.004

Appendix Table 3: Composition of cell-types in the PBMC-8K and the PBMC-CITE dataset
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Dentate Gyrus
ngenes 733 1,527 3,146 6,100 10,665

Seurat 13.7 20.7 26.5 46.0 78.7

PCA 1.6 1.6 1.7 1.8 1.7

scVI 223.8 241.9 250.4 268.4 281.2

scANVI1 126.9 137.4 158.9 169.1 275.4

scANVI2 59.6 66.2 76.2 81.3 130.6

SCMAP 52.1 51.6 53.1 66.7 69.6

MNN 154.7 273.9 591.4 1141.6 2060.3

Combat 11.4 7.8 26.2 33.2 52.7

scanorama 50.3 29.1 37.5 61.7 37.8

Harmony 13.0 6.2 11.1 10.5 6.5

PBMC8KCITE
ngenes 664 1309 2699 5623 10352

Seurat 36.8 63.0 67.2 111.6 186.0

PCA 3.3 3.1 3.0 3.0 3.2

scVI 409.0 441.0 421.3 458.6 498.7

scANVI1 208.6 298.5 230.2 254.9 293.5

scANVI2 182.0 172.8 245.0 214.5 235.3

SCMAP 48.8 50.9 49.1 56.3 64.5

MNN 866.4 1412.1 1547.8 4915.6 8644.6

Combat 12.6 11.9 17.1 36.9 61.4

scanorama 39.5 49.9 48.1 51.8 58.6

Harmony 11.4 11.5 10.6 12.9 13.3

MarrowTM
ngenes 876 1,731 3,407 6,546 11,224

Seurat 21.9 34.5 42.4 71.6 123.4

PCA 2.0 2.0 2.0 2.0 2.1

scVI 289.4 290.5 298.0 305.1 419.6

scANVI1 159.5 151.2 162.2 178.5 236.7

scANVI2 115.3 129.5 127.8 143.0 187.5

SCMAP 74.8 78.5 82.5 84.9 134.1

MNN 410.6 769.1 1424.9 2471.2 4082.2

Combat 6.3 11.0 21.4 44.9 100.6

scanorama 48.0 50.9 78.9 66.2 105.5

Harmony 20.6 20.3 21.0 20.9 27.8

Pancreas
ngenes 688 1,346 2,674 5,326 10,481

Seurat 23.3 33.5 38.8 61.9 109.1

PCA 2.2 2.2 2.3 2.3 2.2

scVI 324.6 332.7 340.6 350.4 346.9

scANVI1 211.4 210.0 243.9 239.1 260.6

scANVI2 182.0 172.8 245.0 214.5 235.5

SCMAP 75.9 73.0 75.5 78.3 87.0

MNN 211.2 436.5 721.2 1335.2 2790.0

Combat 14.3 15.0 27.2 37.0 66.8

scanorama 52.7 54.2 55.1 58.6 60.0

Harmony 24.9 25.4 25.3 25.7 25.7

Appendix Table 4: Runtime in seconds for all the algorithms considered in this study.

Cell Types # cells
B cells 10,085
CD14+ Monocytes 2,612
CD34+ cells 9,232
CD4 T cells 11,213
CD56 NK cells 8,385
CD8 T cells 10,209
Memory T cells 10,224
Naive CD8 T cells 11,953
Naive T cells 10,479
Regulatory T cells 10,263

Appendix Table 5: Cell types present in the PBMC-sorted dataset.

A Related work

A.1 Related machine learning litterature

Our approach relates to the machine learning literature in two major aspects. First, we will
relate the problems of harmonization and annotation to the litterature of domain adaptation or
covariate shift. Second, we will present all the different options for performing semi-supervised
learning with variational autoencoders (VAEs) and further explain how they relate to scANVI.

A.1.1 Domain adaptation

In the supervised learning framework, data is drawn from a distribution PX and one posits a con-
ditional distribution PY |X from which to draw the labels. There are multiple flavors of domain
adaptations [Kouw and Loog, 2019]. We focus here in the setting where one observes paired
data on a certain source domain PSXPY |X but no labels on a target domain PTX with PSX 6= PTX
(commonly referred to as distribution shift, or covariate shift in the statistical literature). Our
problem of single-cell annotation is much related to this variant of supervised domain adaptation
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where one observes the cell labels for one dataset and wishes to transfer it to another (anno-
tated) dataset. This is a well-established research area in computer vision, where algorithms
such as NBNN [Tommasi and Caputo, 2013] and JDA [Long et al., 2013] are used to transfer
labels over datasets of images (e.g., with different lightning conditions, collections of images).
As these algorithms might not scale to millions of samples, a notable contribution is the DANN
framework [Ganin et al., 2016] which learns a adversarial classifier to in order to generalize to
the new (unlabelled) dataset. This approach is justified from the statistical theory perspective
as the adversarial regularization is equivalent to controlling for the H-divergence between source
domain PSX and target domain PTX . Another notable contribution is the variational fair autoen-
coder, which focuses on semi-supervised domain adaptation with VAEs [Louizos et al., 2016] by
adding a maximum mean discrepency [Gretton et al., 2012] loss between source and target latent
distributions.

Moving away from the supervised domain adaptation scenario, recent work based on gen-
erative adversarial networks [Goodfellow et al., 2014] focuses on unsupervised domain adapta-
tion of unpaired datapoints. This problem is relevant to the scRNA-seq methodology since one
never gets to observe the same cell several times (the protocol is a destructive process). Cycle-
GAN [Zhu et al., 2017] is based on the idea of cycle consistency (a translator that would trans-
form a french sentence into english and then back to french again should be the identity map).
This idea was then improved by Cycada [Hoffman et al., 2018], which adds more consistency to
the objective function. StarGAN [Choi et al., 2018] extended CycleGAN to multiple domains
while reducing the overall complexity. Finally, MAGAN [Amodio and Krishnaswamy, 2018] pro-
posed to add a correspondence loss to further orient the manifold alignment and facilitate the
inference. Notably, MAGAN [Amodio and Krishnaswamy, 2018] was also applied to merging
scRNA-seq and CyTOF data.

A.1.2 Semi-supervised learning with variational autoencoders

Extending scVI to semi-supervised learning took some design that we describe here. Our first
attempt was based on the M2 model [Kingma et al., 2014], and is still implemented in our
codebase1. While this algorithm performed a posteriori as good or better than the final ver-
sion of scANVI (in terms of cross-validation estimate of the cell type prediction accuracy), it
restrained our latent space z to be conditioned on the cell type label (as in the conditional
VAE [Sohn et al., 2015]) and it was not possible anymore to visualize the latent space, which
is an crucial practice in scRNA-seq data analysis [Becht et al., 2018]. We therefore turned to
extending scVI based on the M1 + M2 model [Kingma et al., 2014], which enabled both a flex-
ible modeling of cell types and visualization of a joint latent space for all cells. We also tried
more complicated models based on the M1 + M2 model such as ADGM [Maaløe et al., 2016]
and LVAE [Rasmus et al., 2015] but did not find them to contribute significantly enough to the
accuracy, which might be either due to the labeling errors in the dataset, because dividing cells
into cell types is a relatively easy problem in most regimes (e.g., not considering rare cell types)
or because of the limited sample size in the datasets we consider.

A.2 Related scRNA-seq harmonization work

A.2.1 Why is harmonization a subtle problem?

Harmonization is a hard and ill-defined problem. Especially, it can be difficult to formulate
exactly its objective and at which level of granularity the “harmonization” is expected. Let
us take the example of two scRNA-seq datasets of peripheral blood mononuclear cells. If we
assume that these datasets that are exact biological replicates and with the same experimental
conditions, then the problem is well defined. We wish to identify latent variables that govern
these biological processes (for example, clear demarcation of cell types). Fundamentally, this is
possible because we made a non-confounder assumption, and therefore, removing in a principled
way all the variation in the data that corresponds to batches is reasonable.

However, if we consider a more complex although also more common case, the biology might
be slightly different from one dataset to another. For example, in the case of T cell activation
(one stimulated sample and one control sample), we expect that the overall clusters should stay
similar. At a broader level, CD4 T cells should cluster together, as for all the other cell types.

1VAEC: https://github.com/YosefLab/scVI/blob/master/scvi/models/vaec.py
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However, a non-negligible proportion of T cells will express markers of activation. In this case,
forcing the latent spaces to exactly overlay might be problematic in the sense that this subtle
signal of activation will be lost. One might think about the activation signal as a confounding
factor for harmonization, and this makes the overall problem much more difficult (ill-posed).

Therefore, it is extremely important to state how different models perform harmonization
and what are their underlying hypotheses and modeling capabilities.

A.2.2 State-of-the-art approaches

scmap [Kiselev et al., 2018] proposes a new gene filtering method to select gene that are claimed
to be invariant to batch-effects. However, it is clear that over filtering can lead to ignoring
biological information. MNN [Haghverdi et al., 2018] assumes that the topology of cell types
can be easily resolved by a k-nearest neighbors graph, where neighborhoods are defined with
respect to the cosine distance. This allows MNN [Haghverdi et al., 2018] and all the neighbor-
matching-based approaches [Stuart et al., 2019, Hie et al., 2019] to remarkably merge batches
with the risk of also merging cell types in the case where they are not detectable with this
normalization scheme. SAUCIE [Amodio et al., 2019] and MMD ResNet [Shaham et al., 2017]
both propose to perform batch-correction by adding on their objective function a non-parametric
measure of distance between distributions (maximum mean discrepancy). This approach specif-
ically assumes that each dataset has the same cell type composition and the same biological
signal. Therefore, SAUCIE and ResNet are susceptible to perform over-correction. Seurat Align-
ment [Butler et al., 2018] relies on a milder assumption that there is a common signal exactly
reproducible between the two datasets and that CCA capture most of the biological variation.
This is not obviously true considering limited suitability of linear Gaussian model for scRNA-seq.
Seurat anchors [Stuart et al., 2019] relies on CCA and suffers from the same problems as MNN
with its specific normalization scheme. Finally, the recent LIGER [Welch et al., 2019] method
at first sight seems like a non-probabilistic version of scVI since it also learns a degenerate
conditional distribution via its integrative non-negative matrix factorization [Welch et al., 2019]
(NMF is a noisy-less version of a Gamma-Poisson generative model). However, it has a further
quantile normalization of the latent spaces within clusters. First, the output of the clustering
algorithm is not necessarily correct and could perturb downstream analyses. Second, if a cell
type would be slightly different from one condition to another, this information would be lost
in the final latent space. Overall, all these correction methods can therefore potentially lead to
over-correction and statistical artifacts [Nygaard et al., 2016].

A.2.3 The approach taken by this manuscript

scVI and scANVI perform harmonization by learning a common generative model for a collection
of gene expression probability distributions [p(x | z, s)]s∈{1,··· ,K} indexed by the dataset-identifier
s. The statistical richness of the collection of conditional distributions dictates the flexibility of
our model towards integrating datasets.

Another notable factor that sensibly contributes to harmonization capabilities is the prior
for cell-specific scaling factor ln that is dataset-specific. This helps probabilistically removing
library-size caused discrepancies in the measurements and is more principled than normalization
of the raw data [Vallejos et al., 2017]. Another important parameter is the parametrization of
the neural network that maps variables (z, γ) to the expected frequencies E[w | z, s] = fw(z, s).
Since our function fw is now potentially non-linear, our model can benefit from more flexibility
and fit batch-specific effects locally for each cell types or phenotypical condition. Especially,
depending on how one designs the neural architecture of fw, it is possible to more flexibly
correct dataset-specific effects. More specifically, we treat fw as a feed-forward neural network
for which at each layer we concatenate the batch-identifier with the hidden activations. A
consequence of this design is that with more hidden layers in fw, less parameters are shared and
the family of distributions [p(x | z, s)]s∈{1,··· ,K} has more flexibility to fit batch-specific effects

(Supplementary Figure Appendix Figure 2a-c). Conversely, when the latent dimension
grows, the generative network has less incentive to use the dataset covariate and might mildly
duplicate the information in its latent space (Supplementary Figure Appendix Figure 2d-
f). Throughout the paper, we have fixed those parameters (Materials and Methods) and
show competitive performance for all our datasets.
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Another insight comes from how the variational distribution q(z | x, s) is parametrized.
Our neural networks play the role of an explicit stochastic mapping from the gene expres-
sion xn of a single-cell n to a location in a latent space zn (a standard theme in scRNA-
seq analysis). With this map, we match an empirical distribution in gene expression space
(i.e, a dataset) pdata(x, s) =

∑
n δ(xn,sn)(x, s), with a certain distribution on the latent space

pdata(z) =
∑
n δΦ(xn,sn)(z). In certain cases, even though we designed this latent space to

represent biological signal, the transformed dataset might still be confounded by technical ef-
fects [Lopez et al., 2018]. In particular, this effect is susceptible to be severe when the generative
model is not flexible enough to fit the dataset-specific effects or has a model misfit (as in, to some
extent, the case with the CCA of [Butler et al., 2018] that assumes the data is log-normal). In
this case, the go-to method is to empirically constrain the mapping (i.e the variational network
in our case or the latent space itself in the case of SEURAT) to match the collections of variables
pdata(z, s)s∈{1,··· ,K}. This is what is done via all the methods presented above. Therefore, our
method might be improved with respect to the entropy of batch mixing by adding some specific
penalties to the loss function, but at the price of risking to over-correct. We have preferred to not
add any penalties, which is enough for most applications (especially all those in this manuscript).

B Training Information

In order to train scANVI properly, several options are possible to train all the parameters (θ
from the generative model, φ from the variational distribution except the labels’ posterior and
φC from the labels’ posterior exclusively). In all cases, parameters θ and φ should minimize the
evidence lower bound

J = L+ U , (1)

decomposed over the labeled samples L and unlabeled samples U . Furthermore, [Kingma et al., 2014]
suggests to jointly optimize a modified objective that penalize the ELBO by a classification loss
C on the labeled data so that the parameters φC also benefits from the learned data. They
introduce the modified objective function

Jα = J + α · C, (2)

where α is a parameter set by cross-validation. This modified lower bound can be inter-
preted as placing a Dirac prior on c [Kingma et al., 2014] or as a correction term for noisy
labels [Langevin et al., 2018]. In their procedure, Jα is optimized with respect to all parameters
[θ, φ, φC ] and for a fixed number of epochs. This joint training procedure is appealing as it shapes
the latent space directly, through the modification of the encoder’s weights. However, we found
this approach to have two limitations. First, this joint training breaks down the mixing in the
latent space in the case of transferring labels from one dataset to another. We attribute this to
the loss C having only contributions from a unique dataset. Second, we did not find convenient
to choose the optimal value for the parameter α and concluded it may not be desirable for a
practitioner either.

We use in scANVI an alternate training procedure which deletes the need for α and has
better performance in the setting of transferring annotations. We aggressively train the classifier
separately, updating the parameters φC for c > 1 epochs for every single epoch of updating [θ, φ].
The total number of epochs is fixed and chosen high enough to guarantee convergence. In the
case of a single dataset (resp. transfer of labels), we use c = 1 (resp. c = 100) epochs of classifier
training in between each variational update. This helps the classifier correctly identify cell types
at the end of each epoch of updating φC . This is a clearly advantageous procedure, because it
then improve indirectly the latent space quality, through the next steps of optimization.

C Alternative model choices

C.1 Zero-inflation in the context of harmonization

In this manuscript, we mainly rely on a zero-inflated negative binomial (ZINB) distribution for
the counts — which is a widely used model for single cell transcriptomics data. Recent research
however suggests that for some technologies such as droplet-based UMI single-cell protocols,
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the abundance of zero mainly may be explained only by limited sensitivity and subsampling
effect [Svensson, 2019]. On the other hand, zero-inflated might be a realistic addition to count
distributions for describing full-length plate-based technologies data [Vieth et al., 2017]. In-
deed, it has been hypothesized that PCR duplication or uneven fragment sampling may be
responsible for zero-inflation in plate-based technologies [Svensson, 2019]. Still, no definite
conclusion can be drawn about which distribution better fits UMI technologies or full-length
method. Although full-length methods seem more affected by technical noise, they also pro-
vide extra information at the transcript resolution that is lost in droplet-based UMI methods.
Consequenly, many consortia have chosen to obtain data by both full-length and UMI meth-
ods [Schaum et al., 2018, Ecker et al., 2017]. A method that can flexibly use different distri-
bution and appropriately these two data types is therefore extremely valuable for analyzing
collections of single cell transcriptomics data.

scVI and scANVI are both flexible to use both ZINB and NB methods and we show in
Supplementary Figure Appendix Figure 20 that the benchmarking results are similar
using both methods in all four datasets used in our benchmarking procedure. However, we
observed that for MarrowTM dataset, using the ZINB version of scVI does perform better in
terms of harmonization. Since in this case, we are merging a 10x dataset with a Smart-Seq2
dataset, we compared the average zero-inflation parameter for each gene in each dataset and
found that the differences between Smart-Seq2 and 10x are significantly skewed to the right
(more zero-inflation in Smart-Seq2, p=6.3e-31, using a D’Agostino-Pearson K2 test). Finally, we
also performed differential expression with negative binomial versions of scVI and scANVI and
show that results are similar (Supplementary Figure Appendix Figure 21). These results
show that both NB and ZINB model can be used in scVI and scANVI and in most instances,
downstream analysis might not be impacted by this modeling choice. Interestingly, our model
successfully learns the difference in the degree of zero-inflation in different datasets while merging
them and exploits this information when necessary.

C.2 Library-size prior for scVI and scANVI

Besides zero-inflation, another major difference between sequencing technologies is the sequencing
depth. scVI and scANVI both make use of technical scalar factors that have a batch-specific
prior, and are therefore extremely suited for this setting. To evaluate the effectiveness of both
the model and the prior choice, we compute the negative log likelihood of the scVI model using
ZINB with batch-specific library size prior, ZINB with shared library size prior, NB with a batch-
specific library size prior, and NB with shared library size prior. All four models are fit on two
pairs of datasets, DentateGyrus (Fluidigm C1 and 10x) and MarrowTM (10x and SmartSeq2).
Since only the second pair is a comparison between UMI and full-length datasets, we expect the
differences between the four model choices to be larger in the MarrowTM comparison, and that
ZINB with batch-specific library size prior to have the highest likelihood (reported in the table
below).

Negative log-likelihood DentateGyrus MarrowTM

ZINB model / batch-specific prior 514.5 2339.8
ZINB model / shared prior 513.8 2349.2
NB model / batch-specific prior 523.4 2531.3
NB model / shared prior 524.0 2544.1

Table: Assessing the model’s fit with different configuration on two pairs of dataset

D Hierarchical classification

In this note, we explain how we extended scANVI to handle a two-level hierarchical structure for
the cell types annotation. This can in principle be adapted to any arbitrary tree representation
of cell types taxonomy, but is left for future work. In our setting, the taxonomy needs to be
hard-coded and known a priori.

We do not modify the generative model but only the structure of the variable cn in the
variational distribution. Notably, we formally pose:

cn = (yn, y
g
n) ∈ {0, · · · , C} × {0, · · · , Cg}, (3)

where C denotes the number of cell types and Cg the number of cell type groups. The parametriza-
tion of the full variational distribution q(c | z) = q(y, yg | z) must be further defined. For this, we
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notice that the prior taxonomy knowledge encapsulates whether the assignment (yg, y) = (i, j)
is biologically possible (i.e cell type i is a sub-population of group cell type j). We encode this
biological compatibility into a parent function π : {0, · · · ,K} → {0, · · · ,Kg} that maps a cell
type to its parent in the hierarchy. We note for simplicity:

q(yi, y
g
j | z) = q(y = i, yg = j | z). (4)

We then use two neural networks f and fg (with softmax non-linearities) to map the latent space
to the joint approximate posterior q(y, yg | z) with the following rules:

q(yi, y
g
j | z) =

{
fi(z) if π(i) = j,

0 otherwise.

q(ygj | z) = fgj (z).

(5)

Then, we can derive the marginal probability over finer cell types classes using the chain rule
and Bayes rule:

q(yi | z) = q(yi | yπi
, z)q(yπi

| z) (6)

=
q(yi, yπi

| x)

q(yπj | x)
q(yπi | z) (7)

=
q(yi, yπi

| x)∑
j∈c(πi)

q(yj , yπj
| x)

q(yπi | z) (8)

=
fi(z)∑

j∈c(πi)

fj(z)
fgπi

(z), (9)

where c(πi) denotes the set of children of node i children.

E Evidence Lower Bound decomposition

We drop the parameters Θ (resp. Φ) of the generative model (resp. the variational distribution)
for notational convenience, as well as the conditioning on the batch identifier s. We report the
evidence lower bound (ELBO) only for one sample (i.e one cell) and drop the index notations
by substituting {xn, zn, un, cn, ln} by {x, z, u, c, l}. This is without loss of generality since all the
cells are independent and identically distributed under our model.

We derive the ELBO in the case where c is not observed (almost same calculations resolve
the case where c is observed). Similar derivations can be found in the variational autoencoder
literature (e.g, [Kingma et al., 2014]). We assume our variational distribution factorizes as:

q(c, z, u, l | x) = q(z | x)q(c | z)q(u | z, c)q(l | x). (10)

In this case, we may simply apply Jensen’s inequality weighted by the variational distribution
q(z, u, l, c | x):

log p(x) ≥Eq(z,u,c,l | x)

[
log

p(x, z, u, c, l)

q(z, u, c, l | x)

]
= Eq(z,u,c,l | x)

[
log

p(x | z, l)p(z | u, c)p(c)p(u)p(l)

q(z, u, c, l | x)

]
≥Eq(z,u,c,l | x) [log p(x | z, l)]︸ ︷︷ ︸

(i)

+Eq(z,u,c,l | x)

[
log

p(z | u, c)
q(z | x)

]
︸ ︷︷ ︸

(ii)

+ Eq(z,u,c,l | x)

[
log

p(c)

q(c | z)

]
︸ ︷︷ ︸

(iii)

+Eq(z,u,c,l | x)

[
log

p(u)

q(u | z, c)

]
︸ ︷︷ ︸

(iv)

+ Eq(z,u,c,l | x)

[
log

p(l)

q(l | x)

]
︸ ︷︷ ︸

(v)

(11)
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Then we simplify each individual term of the ELBO in 11 by recognizing KL divergence terms.
In particular, we use subscript notation KLG (.||.), and KLM (.||.) to denote Gaussian and multi-
nomial KL divergences.

Eq(z,u,c,l | x) [log p(x | z, l)] = Eq(z | x)q(l | x) [log p(x | z, l)] (i)

Eq(z,u,c,l | x)

[
log

p(z | u, c)
q(z | x)

]
= Eq(z | x)

[
Eq(u | z,c)q(c | z)

[
log

p(z | u, c)
q(z | x)

]]
(ii)

= Eq(z | x)

[
K∑
c=1

q(c | z)Eq(u | z,c)
[
log

p(z | u, c)
q(z | x)

]]

Eq(z,u,c,l | x)

[
log

p(c)

q(c | z)

]
= Eq(z | x)


K∑
c=1

q(c | z) log
p(c)

q(c | z)︸ ︷︷ ︸
−KLM(q(c | z)||p(c))

 (iii)

Eq(z,u,c,l | x)

[
log

p(u)

q(u | z, c)

]
= Eq(z | x)


K∑
c=1

q(c | z)Eq(u | z,c)
[
log

p(u)

q(u | z, c)

]
︸ ︷︷ ︸
−KLG(q(u | z,c)||p(u))

 (iv)

Eq(z,u,c,l | x)

[
log

p(l)

q(l | x)

]
= −KLG (q(l | x)||p(l)) (v)
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