

Supplementary Materials

3D-Printed Poly(ε-caprolactone)/Hydroxyapatite Scaffolds Modified with Alkaline Hydrolysis Enhance Osteogenesis In Vitro

Sangbae Park ^{1,+}, Jae Eun Kim ^{1,+}, Jinsub Han ^{2,3}, Seung Jeong ¹, Jae Woon Lim ¹, Myung Chul Lee ¹, Hyunmok Son ¹, Hong Bae Kim ¹, Yun-Hoon Choung ⁴, Hoon Seonwoo ^{5,*}, Jong Hoon Chung ^{2,3,6,*} and Kyoung-Je Jang ^{7,8,*}

- ¹ Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; sb92park@snu.ac.kr (S.P.); je6740@snu.ac.kr (J.E.K.); jsw3055@snu.ac.kr (S.J.); jwlim1130@snu.ac.kr (J.W.L.); josephmyungchul@gmail.com (M.C.L.); shmking@snu.ac.kr (H.S.); hbkim@snu.ac.kr (H.B.K.)
- ² Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; rhineop@snu.ac.kr
- ³ BK21 Global Smart Farm Educational Research Center, Seoul National University, Seoul 08826, Korea
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
 yhc@ajou.ac.kr
- ⁵ Department of Industrial Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea
- ⁶ Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- ⁷ Division of Agro-system Engineering, College of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- ⁸ Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- These two authors equally contributed to this study
- * Correspondence: uhun906@gmail.com (H.S.); jchung@snu.ac.kr (J.H.C.); kj_jang@gnu.ac.kr (K.-J.J.); Tel.: +82-61-750-3261 (H.S.); +82-2-880-4601 (J.H.C.); +82-55-772-1898 (K.-J.J.)

Figure S1. The EDS spectra of the PCL and PCL/HA scaffolds with different surface treatments.

		C (wt. %)	O (wt. %)	Ca (wt. %)	P (wt. %)	Total (%)
PCL	Untreated	83.56	15.13	0.02	1.28	100
	O ₂ Plasma-treated	80.76	14.62	0	4.61	100
	NaOH-treated	81.2	16.64	0	2.16	100
PCL/HA	Untreated	79.09	14.65	2.58	3.67	100
	O ₂ Plasma-treated	78.61	17.20	1.72	2.47	100
	NaOH-treated	77.98	19.19	0.90	1.92	100

Table S1. Elemental analysis of the scaffolds using EDS.

Figure S2. Strut and pore dimensions obtained for the different scaffolds.

Figure S3. TGA curves of PCL and PCL/HA scaffolds.

Figure S4. Stress-strain curves of PCL and PCL/HA scaffolds with different surface treatments. (×: Rupture Point, Black: untreated, Red: O₂ plasma-treated, and Blue: NaOH-treated).

		Elastic Modulus (Mpa)	Tensile Strength (Mpa)	Strain (%)
PCL	Untreated	18.25±3.14	5.87±0.52	106.51±9.51
	O ₂ Plasma-treated	19.14 ± 1.14	7.06±0.69	95.04±4.45
	NaOH-treated	18.38±2.28	6.97±0.63	144.51±7.01
PCL/HA	Untreated	19.69±2.13	4.97±1.39	32.38±4.01
	O ₂ Plasma-treated	18.09±1.36	5.62 ± 0.38	45.37±3.11
	NaOH-treated	19.01±0.98	6.12 ± 0.41	54.24±2.27

Table S2. Mechanical properties of the scaffolds with different surface treatments.