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SUMMARY
Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as
headache and neuroinflammatory or cerebrovascular disease. These conditions—termed here as
Neuro-COVID—are more frequent in patients with severe COVID-19. To understand the etiology of these
neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the
cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and auto-
immune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an
expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes
featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis.
Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe
compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compart-
ment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.
INTRODUCTION

Patients suffering from coronavirus disease 2019 (COVID-19),

the global pandemic caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), can develop acute or

long-term neurological sequelae, henceforth collectively termed

‘‘Neuro-COVID’’ (Ellul et al., 2020). Diverse neurological signs

and symptoms have been associated with COVID-19, ranging

from mild symptoms (e.g., anosmia, ageusia, headache, dizzi-

ness) to severe complications, such as seizures, encephalitis,

ischemic stroke, and intracerebral hemorrhage (Mao et al.,

2020; Romero-Sánchez et al., 2020; Varatharaj et al., 2020).

Consensus criteria for the diagnosis and classification of the

severity of Neuro-COVID have been proposed (Fotuhi et al.,

2020; Paterson et al., 2020). The prevalence of Neuro-COVID

varies considerably between individual studies ranging from
164 Immunity 54, 164–175, January 12, 2021 ª 2020 Elsevier Inc.
4.1% (Xiong et al., 2020) to 57.4% (Romero-Sánchez et al.,

2020) and even 84% in COVID-19 with acute respiratory distress

syndrome (ARDS) (Helms et al., 2020). The heterogeneity might

be due to variable definitions of Neuro-COVID (Pezzini and Pa-

dovani, 2020) or selection bias, as most evidence stems from

retrospective studies of hospitalized patients (Helms et al.,

2020; Mao et al., 2020; Romero-Sánchez et al., 2020; Xiong

et al., 2020). Most of the specific neurological signs and symp-

toms, with the exception of anosmia and ageusia, aremore prev-

alent in severe COVID-19 infection and severely affected

patients will be hospitalized more frequently. During infection

with the new SARS-CoV-2, the prevalence of neurological man-

ifestations ranges orders of magnitude higher than previous

reports of infections with the related SARS-CoV (0.09%) and

Middle East respiratory syndrome coronavirus (MERS-CoV)

(0.36%) (Ellul et al., 2020). Neurological sequelae associated
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Figure 1. Subtypes of Monocytic Cells Increased in Neuro-COVID in the CSF

(A) Scheme illustrating the study design; 33 out of 102 patients (32%) with COVID-19 infection had neurological manifestations (N-COVID). Cerebrospinal fluid

(CSF) was collected from 12 of these patients for clinical reasons and CSF leukocytes from 8 patients were successfully analyzed by single-cell RNA sequencing

(legend continued on next page)
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with SARS-CoV-2 infection thus constitute an unexpectedly

frequent health burden and the underlying mechanisms remain

poorly defined.

Three potential mechanisms of Neuro-COVID have been pro-

posed: (1) non-specific complications of systemic disease for

example because of oxygen deprivation, sepsis, or hyperpyrexia;

(2) direct viral damage to cells of the nervous system because of

neurotropism of SARS-CoV-2; and (3) indirect damage to the ner-

vous system because of an infection-triggered excessive and

detrimental immune activation (Ellul et al., 2020). These suspected

mechanisms are not mutually exclusive and might coexist in

individual patients. In support of direct neuro-tropism, previous

studies have shown that SARS-CoV-2 can enter the nervous sys-

tem by crossing the neural-mucosal interface in olfactory mucosa

by binding to ACE2 (Hoffmann et al., 2020; Zhou et al., 2020). The

virus subsequently spreads along neuroanatomical structures and

penetrates respiratory and cardiovascular control centers in the

medulla oblongata (Meinhardt et al., 2020). SARS-CoV-2 was

accordingly detected in the brains of 53% of brain autopsy spec-

imens with enrichment in cranial nerves originating from the lower

brainstem (Matschke et al., 2020). In support of detrimental immu-

nity, the same study provided neuropathological evidence of mi-

croglia activation and in 79% of the analyzed patients infiltration

of CD8+ T cells in the brain and meninges (Matschke et al.,

2020). However, autopsy and brain biopsy materials are rarely

available from patients and will naturally be restricted to very

severely affected patients. Analyzing a more readily available

biomaterial in Neuro-COVID is thus preferable.

Cerebrospinal fluid (CSF) forms a unique immune compart-

ment that surrounds the central nervous system (CNS) and can

be sampled from patients to facilitate the diagnosis and under-

standing of neurological diseases (Ransohoff and Engelhardt,

2012). The noncellular fraction of CSF represents mainly an ultra-

filtrate of serum, while the composition of leukocytes in the CSF

is tightly controlled and differs substantially from blood (Ransoh-

off and Engelhardt, 2012). For example, while CD4+ T cells are

the most abundant cell type in CSF, myeloid and B cells are

reduced compared with blood (Han et al., 2014; Kowarik et al.,

2014). Applying modern technologies, such as single-cell tran-

scriptomics to the CSF, multiplies the potential of the CSF to

decipher the pathogenesis of neurological diseases (Meyer Zu

Hörste et al., 2020) as previously exemplified inmultiple sclerosis

and Alzheimer’s disease (Gate et al., 2020; Ramesh et al., 2020;

Schafflick et al., 2020).

Previous studies have analyzed CSF in Neuro-COVID using es-

tablished techniques, such as cell counting and protein character-

ization. Most studies identified a normal cell count, except when

the presentation was encephalitis, and normal or mildly elevated
(scRNA-seq) and single-cell T cell receptor (TCR) sequencing. CSF leukocytes fro

and relapsing-remitting multiple sclerosis (MS) were used as controls.

(B) UMAP plot showing 16 color-coded cell clusters of 80,919 raw single-cell tran

(n = 5) patients.

(C) Marker genes of cell clusters are shown. Color encodes average gene expres

(D and E) Proportions of cells split by diagnosis (D) or individual patient (E).

(F–H) Changes of cluster abundances in N-COVID (n = 8) versus IIH (n = 9) (F), VE (n

fold change of cluster abundance is plotted against negative logarithmic p value (t

significance threshold (p = 0.05).

Abbreviations: CD4, CD4+ T cells; Treg, regulatory T cells; CD8, CD8+ T cells; NK,

cells; pDC, plasmacytoid dendritic cells; matDC, mature dendritic cells; granulo,
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protein (Espı́ndola et al., 2020), yet a detailed leukocyte character-

ization in CSF is lacking. Notably, SARS-CoV-2 RNA was unde-

tectable in the CSF in nearly all studies, and its detection was

equally rare in pulmonary COVID-19 (2 out of 578 patients, see

Destras et al., 2020) and in Neuro-COVID (0 out of 30 patients,

see Neumann et al., 2020; 0 out of 31, see Bellon et al., 2020; 1

out of 37, see Kremer et al., 2020). This suggests indirect mecha-

nisms primarily causing neurological sequelae of COVID-19 pa-

tients. However, these studies provide a low dimensional charac-

terization of CSF in Neuro-COVID and lack unbiased techniques.

In contrast, high-resolution data are available from the blood

and bronchoalveolar fluid (BALF) in pulmonary COVID-19.

Recent single-cell RNA sequencing (scRNA-seq) studies have

revealed complex immune dysregulation in the blood with a

severity-specific pattern of myeloid cells and clonally expanded

CD8+ T cells in pulmonary COVID-19 (Schulte-Schrepping et al.,

2020; Zhu et al., 2020). Whether similar or distinct changes occur

in the CSF in Neuro-COVID, remains unknown.

Here, we therefore constructed an unbiased single-cell tran-

scriptional atlas of CSF leukocytes in patients with Neuro-COVID

and infectious, autoimmune, and non-inflammatory controls. We

identified an increase of dedifferentiated monocytes and ex-

hausted T cells in the CSF, which was specific to Neuro-COVID.

An interferon (IFN) response in Neuro-COVID was present but

attenuated compared with viral encephalitis. Severe Neuro-

COVID exhibited a broad clonal T cell expansion and a

decreased IFN response. Thus, leukocytes exhibit disease-spe-

cific signs of local immune overactivation, despite the absence

of SARS-CoV-2 in the CSF. We thereby provide further evidence

for immune-mediated mechanisms in Neuro-COVID.

RESULTS

Single-Cell Atlas of Cerebrospinal Fluid Leukocytes in
Neuro-COVID Compared with Controls Including Viral
Encephalitis
We successfully collected CSF leukocytes from eight Neuro-

COVID patients for scRNA-seq analysis (see STAR Methods)

(Figure 1A; Table S1). Two of these patients had severe acute res-

piratory distress syndrome (ARDS), necessitating mechanical

ventilation, while six had mild-to-moderate pulmonary COVID-19

manifestation (Table S1). Three patients (two of them with ARDS)

had severe neurological signs/symptoms, including seizures,

flaccid paresis, or stroke. Five patients showed mild neurological

manifestations, including headache, dizziness, anosmia/ageusia,

and cognitive impairment. In line with previous reports (Bellon

et al., 2020; Destras et al., 2020; Espı́ndola et al., 2020;

Neumann et al., 2020), we did not detect SARS-CoV-2 in the
m patients with viral encephalitis (VE), idiopathic intracranial hypertension (IIH),

scriptomes from CSF cells from N-COVID (n = 8), IIH (n = 9), MS (n = 9), and VE

sion; dot size represents percentage of cells expressing the gene.

= 5) versus IIH (n = 9) (G), and N-COVID (n = 8) versus VE (n = 5) (H). Logarithmic

wo-sidedWilcoxon’s rank-sum test). The horizontal dashed line represents the

NK cells; plasma, plasma cells; naiveBc, naive B cells; mDC, myeloid dendritic

granulocytes; mono, monocytes.
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CSF of any patient using PCR. Additionally, we did not identify any

cells expressing SARS-CoV-2 RNA with single-cell transcriptom-

ics (see below and STAR Methods). We then collected previously

published scRNA-seq data from controls with idiopathic intracra-

nial hypertension (IIH) (n = 4), a non-inflammatory condition char-

acterized by excess CSF, and with the brain autoimmune disease

multiple sclerosis (MS) in relapse (n = 4) (Schafflick et al., 2020). To

improve statistical power, we recruited additional patients with IIH

(n = 5), activeMS (n = 5), and viral encephalitis (VE) (n = 5) and per-

formed scRNA-seq of CSF cells (Figure 1A; Table S1).

Basic CSF analysis (e.g., cell numbers, protein) yielded an in-

crease of CSF leukocyte counts and protein concentration in VE

comparedwith all other patients (Figure S1A). Blood-CSF-barrier

disruption (BCBD) was more prevalent in Neuro-COVID and VE

patients than in MS and IIH. CSF of MS patients exhibited intra-

thecal immunoglobulin synthesis, as expected (Filippi et al.,

2018) (Figure S1A). Even though basic CSF parameters thus

showed disease-consistent changes, they failed to sufficiently

explain neurological involvement in COVID-19 infection.

We therefore merged all available scRNA-seq data of

Neuro-COVID and control patients (IIH, MS, VE), which then en-

compassed 80,919 total single-cell transcriptomes with 2,610 ±

504 SEM average cells per sample and 1,027 ± 85 SEM median

genes detected per cell (Table S1). This dataset considerably ex-

ceeds existing scRNA-seq studies from the CSF (Esaulova et al.,

2020; Schafflick et al., 2020). We performed unbiased cell clus-

tering (Figure 1B) and annotated the resulting 16 clusters based

on the expression of marker genes (Figure 1C; Table S2).

Three T cell clusters (CD3E, TRAC, TRBC2) were classified into

CD4+ T cells (CD4: IL7R), regulatory T cells (Treg: FOXP3, CTLA4,

IL2RA) andCD8+ Tcells clusters (CD8:CD8A) (Figure1C). NKcells

(NK: NKG7, GNLY) clustered together with gd T cells (TRDC)

(Figure1C).B lineageclustersseparated intoplasmacells (plasma:

SDC1/CD138, CD38) and naive B cells (naiveBc: CD19, MS4A1/

CD20, CD24) (Figure 1C). One cluster with inconclusive lineage

assignment showed expression of canonical proliferation-associ-

ated cell cycle genes (cycling:CDC45, TPX2, TOP2A) (Figure 1C).

We identified four dendritic cell (DC) clusters that represented

myeloid DC type I (mDC1: CLEC9A, XCR1, BATF3), type II

(mDC2: CLEC10A, CD1C, FCER1A), plasmacytoid DC (pDC:

CLEC4C, IRF8, TCF4/E2-2), and mature DC (matDC: IDO1,

FSC1, LAMP3) (Figure 1C). Further myeloid-lineage clusters

included granulocytes (granulo1/2: S100A8, S100A9) and

three monocyte-like clusters (mono1–3) (Figure 1C). The mono1

cluster preferentially expressed CNS-border-associated macro-

phage genes (mono1:MRC1, LYVE1), and the mono3 cluster ex-

pressed known microglia-associated genes (mono3: SPP1,

OLFML3, P2RY12, TMEM119) (Figure 1C), which were previously

observed in CSF-derived leukocytes (Esaulova et al., 2020).

Non-manual cluster annotation supported our cluster labeling

(Figure S1B). We thus replicated the known composition and

phenotype of hematopoietic lineages in the CSF (Esaulova et al.,

2020; Farhadian et al., 2018; Ramesh et al., 2020; Schafflick

et al., 2020).

Neuro-COVID Cerebrospinal Fluid Features an
Expansion of Dedifferentiated Monocytes
Next, we systematically compared the CSF cluster composition

between disease conditions (Figures 1D–1H). To validate our
approach, we first compared MS with IIH. In accordance with

previous studies in the CSF (Han et al., 2014; Schafflick et al.,

2020), MS patients featured a significant increase of naiveBc,

plasma, and Treg clusters (Figure S1C). Next, we compared

Neuro-COVID with controls. We found a significant expansion

of the mono2 cluster in Neuro-COVID compared with IIH (Fig-

ure 1F). In contrast, in patients with VE, Treg, cycling, NK, and

granulo2 clusters expanded, but the mono2 cluster did not

change considerably (Figure 1G). When directly compared with

VE, Neuro-COVID accordingly featured a specific increase of

the mono2 cluster while Treg, granulo2, and plasma clusters

were more abundant in VE (Figure 1H). Neuro-COVID thus

induced a specific pattern of leukocyte changes in the CSF -

preferentially affecting a subset of monocytes.

We aimed to better characterize themono2 cluster. In contrast

to the mono1 and mono3 clusters, mono2 exhibited reduction of

pan-monocytic markers (CD14, LYZ, CD68) and markers of mi-

croglia and border-associated macrophages (e.g., CX3CR1,

LYVE1, APOE, TREM2) (Figure 2A; Table S2). Mono2 also

showed an overall lower expression of a previously identified

microglia gene set (Sankowski et al., 2019) than the mono1

and mono3 clusters (Figure S1D; Table S2). We compared our

monocytic clusters in CSF with previously published COVID-

19-associated monocytes in blood (Schulte-Schrepping et al.,

2020) but did not identify overlap with a specific subset (Fig-

ure 2B). Compared with all other clusters, mono2 featured

enhanced antigen-presenting characteristics in pathway enrich-

ment analysis (Figure 2C; Table S2). In addition, mono2 partially

resembled developmental macrophages in comparison with

data from the Mouse Cell Atlas (Han et al., 2018) (Figure 2D),

potentially indicating dedifferentiation. Pseudotime analysis re-

vealed trajectories within monocytic clusters likely originating

from themono2 cluster (Figure S1E). Neuro-COVID thus features

monocytes in the CSF with a partially developmental and anti-

gen-presenting phenotype.

Neuro-COVID Results in a Less Pronounced IFN-
Signature than in Viral Encephalitis
Next, we sought to identify Neuro-COVID-specific transcrip-

tional changes. In scRNA-seq, differential expression (DE) anal-

ysis tends to perform poorly in clusters with low cell numbers

(Wang et al., 2019). We therefore merged clusters into three

gross ‘‘meta-clusters’’ of T/NK (TcMeta), DC (DCMeta), and

monocytes/granulocyte (monoMeta) cell types (Figure S2A).

The B lineage and the cycling clusters were removed because

of low total cell numbers. The monoMeta cluster increased

expression of some IFN-driven transcripts (IFITM3, IFI27,

IFNGR2, IL18), including CCAAT/enhancer-binding proteins

(CEBPA, CEBPB) in Neuro-COVID compared with IIH controls

(Table S3). The TcMeta cluster also increased expression of

IFN-regulated transcripts (PRF1, XCL1, ETS1) when Neuro-

COVID samples were compared with IIH controls (Table S3). In

a direct DE analysis against VE, however, we found that multiple

canonical IFN-signaling transcripts (e.g., STAT1, IRF7, MX1,

ISG15) were expressed considerably higher in VE than in

Neuro-COVID across all meta-clusters (Figures 2E–2G; Table

S3). In Neuro-COVID, CSF leukocytes might thus not elicit a

comparably strong antiviral response as in direct VE. The

DCMeta and monoMeta clusters instead showed higher
Immunity 54, 164–175, January 12, 2021 167
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Figure 2. Neuro-COVID Displays a Reduced Interferon Response Compared with Viral Encephalitis

(A) Average gene expression of monocytes, microglia, and border-associated macrophages markers in mono1, mono2, and mono3 clusters.

(B) Correlation coefficients between gene expression of monocytic clusters of this study and of Schulte-Schrepping et al. (Schulte-Schrepping et al., 2020).

(C) Top: enriched GO terms of molecular functions in the mono2 cluster compared with all other clusters. Size encodes the significance and color indicates

whether the term was enriched in genes with increased or decreased expression.

(D) Correlation coefficients between gene expression ofmonocytic clusters of this study and clusters of theMouse Cell Atlas (Han et al., 2018) containing ‘‘fetal’’ in

their cluster annotation.

(E–G) Differentially expressed (DE) genes in cell type meta clusters in N-COVID versus viral encephalitis (VE) patients in the monoMeta (E), DCMeta (F), and

TcMeta (G) clusters. See Figure S2 for meta cluster definition. Logarithmic fold change is plotted against negative logarithmic adjusted p value. The horizontal

dashed line represents an adjusted p value of 0.0001 and the vertical dashed lines display a common logarithmic fold change of 0.3. Selected transcripts are

labeled.
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expression of homeostatic microglia/border-associated macro-

phage transcripts (e.g., LYVE1, APOE, CD1C) in Neuro-COVID

than in VE (Figures 2E and 2F). In the same comparison, the

TcMeta cluster expressed some trafficking (CCL4) and immuno-

suppressive transcripts (LGALS1) (Figure 2G). We thus identified

a Neuro-COVID-specific transcriptional response in CSF leuko-

cytes clearly distinct from conditions with direct viral damage

to the CNS.

Exhausted CD4+ T cells Are Increased in the
Cerebrospinal Fluid in Neuro-COVID
T cell subsets are transcriptionally similar and tend to require

targeted analytical approaches (Schafflick et al., 2020). We

therefore subclustered all T cells (Figure 3A). This returned

the following subclusters: two CD8+ T cell clusters (CD8_1,

CD8_2: CD8A, CCL5), regulatory CD4+ T cells (Treg: CTLA4,

FOXP3, IL2RA), naive CD4+ T cells (naive_CD4: CCR7, SELL),

proliferating CD4+ T cells (proli_CD4: CCR7, ribosomal genes),

and memory-like CD4+ T cells (memory_CD4: IL7R,CD69) (Fig-

ure 3B; Table S4). In addition, we identified one CD4+ T cell

cluster with strong induction of IFN-stimulated genes (antivir-

al_CD4: e.g., IFITM3, IFI44L, MX1; Figure 3C; Table S4). A

further cluster, which we named exhausted CD4+ T cells
168 Immunity 54, 164–175, January 12, 2021
(exh_CD4), expressed a partial cytotoxicity signature (e.g.,

GZMA, GZMK, CCL5, XCL1; Figure 3D) (Patil et al., 2018) and

canonical T cell exhaustion transcripts (exh_CD4: PDCD1,

ICOS, CTLA4, HAVCR2/TIM3, CD226; Figure 3E). Additional

previously published exhaustion signatures (Chihara et al.,

2018; Singer et al., 2016; Tirosh et al., 2016) were also

expressed by the exh_CD4 cluster (Figure 3F), including previ-

ously identified co-inhibitory genes modules (Chihara et al.,

2018) transcriptionally controlled by c-MAF (IL10, IL12RB1,

PLEKHF1, ALCAM) and Blimp1/PRDM1 (PLEKHO2, MAP3K5,

RUNX2) (Figure S2B).

Human CD4+ T cells are poorly classified by clustering (Schaf-

flick et al., 2020). We therefore applied cell set enrichment anal-

ysis (CSEA) to identify cluster-independent compositional

changes (Schafflick et al., 2020). T cells resembling IL-

10�CD8+ and IL-10+CD8+ cells in murine coronavirus encepha-

litis (Trandem et al., 2011), and resembling PD-1 expressing

T cells, associated with T cell dysfunction (GSE26495), were en-

riched in Neuro-COVID compared to VE (Table S4).

When abundances between disease conditions were

compared, Neuro-COVID patients featured a significant expan-

sion of the exh_CD4 and reduction of the proli_CD4 cluster

compared to IIH (Figures 3G and 3H). This indicates that
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Figure 3. Exhausted CD4+ T Cells Expand in the CSF in Neuro-COVID

(A) UMAP plot depicting 8 color-coded T cell subclusters fromNeuro-COVID (N-COVID; n = 8), 9 idiopathic intracranial hypertension (IIH) (n = 9), multiple sclerosis

(MS) (n = 9), and viral encephalitis (VE) (n = 5) patients; in total 61,642 single-cell transcriptomes.

(B) Average gene expression of canonical T cell markers in T cell subclusters.

(C) Average gene expression of interferon-stimulated genes obtained fromWilk et al. (Wilk et al., 2020) in T cell subclusters. The complete list of genes is provided

in Table S4.

(D) Average gene expression of cytotoxicity markers in CD4+ clusters obtained from Patil et al. (Patil et al., 2018).

(E) Average gene expression of canonical T cell exhaustion markers in CD4+ clusters.

(F) Average gene expression of T cell exhaustion gene sets from Singer et al. (Singer et al., 2016), Tirosh et al. (Tirosh et al., 2016), Chihara et al. (Chihara et al.,

2018), and canonical exhaustion markers in CD4+ T cell clusters. The complete gene sets are provided in Table S4.

(G) Proportions of T cells split by diagnosis.

(H and I) Changes of T cell subcluster abundances in Neuro-COVID (n = 8) versus IIH (n = 9) (H) and Neuro-COVID (n = 8) versus VE (n = 5) (I). Logarithmic fold

change of cluster abundance is plotted against negative logarithmic p value (two-sided Wilcoxon’s rank-sum test). The horizontal dashed line represents the

significance threshold (p = 0.05).

Abbreviations: proli_CD4, proliferating CD4+ T cells; memory_CD4, memory-like CD4+ T cells; exh_CD4, exhausted CD4+ T cells; CD8, CD8+ T cells; CD4_Treg,

regulatory CD4+ T cells.
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T cell-driven antiviral immunity in the CSF might be inefficient or

‘‘exhausted’’ in Neuro-COVID, although this could be confounded

by the time of sampling (Table S1). When Neuro-COVID and VE

were directly compared, the antiviral_CD4 and, to a lesser extent,

Treg clusters characterized VE (Figure 3I). The relative lack of anti-

viral IFN-producing CD4+ T cells might suggest an ineffective im-

mune response in the CSF of Neuro-COVID patients but could

also reflect differences in study recruitment kinetics. Because

VE features a strong antiviral immune response in the CSF, the

antiviral response in Neuro-COVID might also be simply weaker,

without necessarily being ineffective.

Severely Affected Neuro-COVID Patients Show
Curtailed IFN Responses
Previous studies reported severity-dependent changes in the

blood during pulmonary COVID-19 infection (Lee et al., 2020;

Schulte-Schrepping et al., 2020; Silvin et al., 2020; Wilk et al.,

2020). We tested for similar changes in Neuro-COVID by catego-

rizing the Neuro-COVID patients based on their neurological

signs and symptoms into mild/moderate (n = 5; mean age 69

years) and severe (n = 3; mean age 64 years) cases (Table S1).
We then performed principal component analysis (PCA) of the

Neuro-COVID cluster abundances, thus plotting their relative

scRNA-seq cluster abundance into a two-dimensional space.

In contrast to the general clusters (Figure S2C), the T cell sub-

clusters clearly distinguished between mild and severe Neuro-

COVID (Figure 4A). Abundance of the proli_CD4 cluster charac-

terized severely affected Neuro-COVID, while memory_CD4was

a hallmark of mildly affected Neuro-COVID (Figure 4B). In a direct

mild versus severe comparison, no cluster proportions passed

our significance threshold (Figures S2D–S2G). Severe Neuro-

COVID showed a non-significant trend toward increased

naiveBc and proli_CD4 (Figures S2E and S2G). Most likely, our

study was not sufficiently powered to achieve significance in

this direct subgroup comparison. In accordance with an under-

powered study size, the increase of BCBD in severe Neuro-

COVID reported previously (Alexopoulos et al., 2020) also did

not reach significance in our severe versus mild comparison

(Figure S2H).

We next investigated severity-dependent transcriptional

differences in the meta clusters. Expression of several IFN-asso-

ciated transcripts (MX1, IFNGR1, IRF1) was reduced in the
Immunity 54, 164–175, January 12, 2021 169
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Figure 4. Broad Clonal T Cell Expansion in Severe Neuro-COVID

(A) Principal component analysis (PCA) of T cell subcluster abundances in Neuro-COVID patients categorized by neurological severity (mild, n = 5; severe, n = 3).

Each circle represents one patient, the polygons represent the group means. The ellipses around the group mean represent the confidence regions.

(B) Individual variables of the PCA. The contribution of each variable is color-coded.

(C) UMAP plot of Neuro-COVID (n = 8) T cell subclusters show clone frequency split by neurological disease severity.

(D) Proportions of Neuro-COVID T cells split by clone frequency and neurological disease severity (mild, n = 5; severe, n = 3).

(E) Overlap of complementarity-defining region (CDR) 3 amino acid (aa) sequences of healthy clones from a public repository (Corrie et al., 2018), non-expanded

(non_exp), and expanded clones from Neuro-COVID with published CDR3 aa sequences from seven COVID-19 studies retrieved from the same repository (see

STAR Methods).

Abbreviations: Dim, dimension; proli_CD4, proliferating CD4+ T cells; memory_CD4, memory-like CD4+ T cells; exh_CD4, exhausted CD4+ T cells; CD8, CD8+

T cells; CD4_Treg, regulatory CD4+ T cells; exp, expanded; non_exp, non-expanded.
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TcMeta and monoMeta clusters in severe compared to mild

Neuro-COVID (Table S4). Concurrently, the expression of several

class I (HLA-B, HLA-C) and class II (HLA-DRB1, HLA-DQB1,

HLA-DQA1) genes was reduced in TcMeta andmonoMeta in se-

vere disease (Table S4). In addition, expression of trafficking

molecules (CXCR4, ITGB1, ITGA4) was decreased in TcMeta

in severe versus mild Neuro-COVID (Table S4). Transcriptionally,

we thus found signs of potentially impaired antiviral responses in

the CSF of severely affected Neuro-COVID patients.

Severe Neuro-COVID Patients Exhibit a Broad Clonal T
Cell Expansion
Finally, we reconstructed single-cell T cell receptor (TCR)

sequence information from Neuro-COVID samples (see STAR

Methods; Table S2). We successfully identified any a- or b-chain

clonotype in 25% of all T cells. In mild Neuro-COVID, expanded

clonotypes (defined as R2 identified clones) aggregated in the

CD8_1 cluster, while severe Neuro-COVID showed expanded

clones across multiple T cell clusters (Figures 4C and 4D). In

accordance, bronchoalveolar CD8+ T cells had shownmore pro-
170 Immunity 54, 164–175, January 12, 2021
nounced transcriptional heterogeneity in severe infection than in

moderate pulmonary COVID-19 (Liao et al., 2020). We then

compared the complementarity-defining region (CDR) 3 amino

acid (aa) sequences with published CDR3 aa information from

seven COVID-19 studies in a public repository (>180 million clo-

notypes) (Corrie et al., 2018). We found larger overlap in the

expanded (69%) than in the non-expanded (54%) clonotypes

with CDR3 aa sequences of COVID-19 patients from the repos-

itory. In contrast, healthy controls from COVID-19 studies of the

same repository showed only 23% overlap with COVID-19 pa-

tients based on their CDR3 aa sequences (Figure 4E). This pro-

vides evidence that virus-associated adaptive immunity might

be shared between CSF and periphery and across individuals

in COVID-19 infection.

Neuro-COVID-Associated Changes Are Partially
Maintained when Controlling for Confounders
We systematically compared our observations in CSF with pub-

lished scRNA-seq studies from leukocytes in the blood and

BALF to facilitate putting our findings into context (Table S5).
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Next, we aimed to control for potential biases in our study.

After tentative removal of one Neuro-COVID patient with comor-

bid MS, core results, including the expansion of the mono2 and

exh_CD4 clusters in Neuro-COVID, remained unchanged (Fig-

ures S3A–S3H)—arguing against a relevant distortion of our ob-

servations caused by this patient.

Cohorts in our study are imbalanced with regard to age and

sex, becauseMS and IIH primarily manifest in young females (Fil-

ippi et al., 2018; Mollan et al., 2019), while severe COVID-19

infection and Neuro-COVID predominate in aged males (Kara-

giannidis et al., 2020; Mao et al., 2020). To account for this, we

performed regression analysis using age, sex, and diagnosis

as predictors of cluster proportions. In the Neuro-COVID versus

IIH comparison, the increase of the mono2 cluster did not reach

significance (p = 0.12) (Table S5). In the same comparison, the

increase of the exh_CD4 cluster remained significant (p =

0.029) when controlling for age and sex as covariates (Table

S5). Neuro-COVID-associated changes in the CSF are thus

partially maintained if controlled for confounders.
DISCUSSION

In this single-cell transcriptomics study, we identified specific

immune alterations in the CSF of Neuro-COVID patients

featuring an increase of dedifferentiated monocytes and ex-

hausted T cells. We observed an IFN response in Neuro-COVID

that was attenuated compared with viral encephalitis. Severe

Neuro-COVID exhibited a broad clonal T cell expansion and cur-

tailed IFN response compared with mild Neuro-COVD. Thus, our

study potentially indicates a compromised antiviral response

and points toward immune-mediated mechanisms contributing

to Neuro-COVID. Our observations could in fact represent only

the ‘‘tip-of-the-iceberg’’ of Neuro-COVID associated alterations

because this study had limited statistical power.

In line with our findings in the CSF, several studies reported an

increase of specific monocyte lineage cells in the blood of pul-

monary COVID-19 patients which were classified as proinflam-

matory macrophages (Chua et al., 2020; Liao et al., 2020),

HLA-DRlo classical monocytes (Silvin et al., 2020), or CD14+

classical monocytes (Fan et al., 2020; Lee et al., 2020). Similarly,

T cell exhaustion has been described in the blood of COVID-19

patients, especially in severe cases (De Biasi et al., 2020; Zheng

et al., 2020a, 2020b). Another hallmark of COVID-19 in bloodwas

an IFN-dominated transcriptional response (Huang et al., 2020;

Wilk et al., 2020; Zhang et al., 2020), which was reduced in se-

vere COVID-19 (Blanco-Melo et al., 2020; Hadjadj et al., 2020)

and compared with influenza virus (Lee et al., 2020). In line

with those results, we observed attenuated IFN response in the

CSF of severe Neuro-COVID and compared with viral encepha-

litis. Inversely, many studies reported an expansion of plasma

cells and plasmablasts (Bernardes et al., 2020; Zhang et al.,

2020; Zhu et al., 2020) that we did not observe in the CSF. Im-

mune alterations may thus be partially shared between compart-

ments and partially compartment specific. Considering the

tightly controlled leukocyte composition in CSF differing from

blood (Ransohoff and Engelhardt, 2012), synonymous alter-

ations between compartments are notable. We speculate that

Neuro-COVID does not simply represent a ‘‘side-effect’’ of pul-
monary COVID-19 but displays CSF-specific mechanisms in

support of immune-mediated mechanisms in Neuro-COVID.

Exhausted or dysfunctional T cells arise because of repetitive

over-stimulation during chronic infection and in the tumor micro-

milieu. They are characterized by loss of effector functions, high

expression of co-inhibitory receptors, and a specific transcrip-

tional program (Chihara et al., 2018; McLane et al., 2019; Singer

et al., 2016; Tirosh et al., 2016). Checkpoint inhibitor treatment

can ‘‘reinvigorate’’ exhausted T cells. This treatment has revolu-

tionized the therapy of multiple malignancies (Robert, 2020) but

has also been investigated in chronic viral infections (Wykes and

Lewin, 2018), including infections with HIV (Kaufmann et al.,

2007), influenza A virus (Rutigliano et al., 2014), and notably

also in a mouse model of coronavirus (Karnam et al., 2012).

Whether this could represent a therapeutic avenue in some in-

stances of Neuro-COVID remains to be investigated, especially

by confirming exhaustion in functional assays and understand-

ing immune mechanisms in early versus late stages of

Neuro-COVID.

Our study also articulates hypotheses to be investigated in

future clinical studies. Because detection of SARS-CoV-2 RNA

in the CSF is extremely rare (Neumann et al., 2020; Bellon

et al., 2020; Kremer et al., 2020) and the diagnosis of Neuro-

COVID often relies on subjective symptoms, one could envision

flow cytometric detection of a specific immune profile, e.g., de-

differentiated monocytes and exhausted T cells, in the CSF to

substantiate and standardize the definition of Neuro-COVID. Us-

ing CSF analysis for the diagnosis of Neuro-COVID would first

require testing CSF from patients with COVID-19 infectious

without neurological involvement in the future to define the spec-

ificity of our observations. Our findings could also gain predictive

potential. It could be tested whether CSF analysis at the onset of

Neuro-COVID can predict outcome or the severity of incipient

Neuro-COVID. Studies with longitudinal clinical follow-up will

be required to address this question. Additionally, the effects

of immune responses may be stage-specific in Neuro-COVID

as observed in the multi-stage kinetics in pulmonary COVID-19

(Mann et al., 2020; Tian et al., 2020).

A previous unpublished study used scRNA-seq to investigate

CSF leukocytes in Neuro-COVID, yet with a different design

(Song et al., 2020). The authors analyzed CSF compared with

blood but did not provide autoimmune or encephalitis controls.

Non-inflammatory controls in that study were mostly (8 out of

11 patients, 72%) derived from another preceding study, which

could cause systematic bias (Song et al., 2020). In accordance

with our results, the authors observed a compartmentalized im-

mune response within the CSF, featuring activation of T cells,

interleukin (IL)-12-associated immune cell activation and induc-

tion of IFN-stimulated genes (Song et al., 2020). The authors re-

ported an expansion of B cells in the CSF in Neuro-COVID, which

did not reach significance in our IIH (0.27%) versus Neuro-

COVID (0.56%) comparison (p = 0.59). Patients in the Song

et al. study were sampled on average 12.5 days after hospital

admission versus 17.25 days in our study. Observations may

thus also reflect different stages of COVID-19 infection. More-

over, the authors identified anti-SARS-CoV-2 antibodies in the

CSF with widespread cross-reactivity against anti-neural and

anti-glia epitopes, while SARS-CoV-2 RNA was consistently un-

detectable in the CSF (Song et al., 2020). Autoantibodies of
Immunity 54, 164–175, January 12, 2021 171
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unknown relevance had been detected in the CSF in Neuro-

COVID in another study (Franke et al., 2020).

In summary, our study delineated local immune mechanisms

and, in synergy with other studies, lends support to immune-

mediated mechanisms contributing to neurological sequelae of

COVID-19 patients. Our findings set the basis for better under-

standing and potentially diagnosing Neuro-COVID in the future.

Limitations of the Study
There are limitations to our study. CSF cell numbers were

considerably lower in Neuro-COVID than in other conditions,

and we did not include COVID-19 patients without neurological

manifestations as controls because of ethical concerns in per-

forming an invasive lumbar puncture for only scientific reasons

in these patients. Moreover, our study lacks patient-matched

blood data so that we cannot draw conclusions about CSF-

specificity of immune alterations solely based on our data. The

time between sample collection and clinical presentation varied

among patients and among groups. Our findings may thus be

biased, especially because of the known stage-dependent im-

mune alterations of COVID-19 (Mann et al., 2020; Tian et al.,

2020). Finally, neurological signs and symptoms in Neuro-COVID

might not only depend on the observed CSF changes, but also

on systemic factors, such as oxygen or serum cytokine levels.
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Kremer, S., Lersy, F., de Sèze, J., Ferré, J.-C., Maamar, A., Carsin-Nicol, B.,

Collange, O., Bonneville, F., Adam, G., Martin-Blondel, G., et al.; SFNR-

COVID Group (2020). Brain MRI Findings in Severe COVID-19: A

Retrospective Observational Study. Radiology 297, E242–E251.

Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q.,

Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al.

(2016). Enrichr: a comprehensive gene set enrichment analysis web server

2016 update. Nucleic Acids Res. 44 (W1), W90-7.

Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: an

expanded disability status scale (EDSS). Neurology 33, 1444–1452.

Lee, J.S., Park, S., Jeong, H.W., Ahn, J.Y., Choi, S.J., Lee, H., Choi, B., Nam,

S.K., Sa, M., Kwon, J.-S., et al. (2020). Immunophenotyping of COVID-19 and

influenza highlights the role of type I interferons in development of severe

COVID-19. Sci. Immunol. 5, eabd1554.

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X.,

Wang, F., et al. (2020). Single-cell landscape of bronchoalveolar immune cells

in patients with COVID-19. Nat. Med. 26, 842–844.

Mann, E.R., Menon, M., Knight, S.B., Konkel, J.E., Jagger, C., Shaw, T.N.,

Krishnan, S., Rattray, M., Ustianowski, A., Bakerly, N.D., et al.; NIHR

Respiratory TRC; CIRCO (2020). Longitudinal immune profiling reveals key

myeloid signatures associated with COVID-19. Sci. Immunol. 5, eabd6197.

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou,

Y., Wang, D., et al. (2020). Neurologic manifestations of hospitalized patients

with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690.
Immunity 54, 164–175, January 12, 2021 173

http://refhub.elsevier.com/S1074-7613(20)30539-2/sref9
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref9
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref9
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref9
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref9
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref10
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref10
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref10
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref10
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref10
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref11
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref11
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref11
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref11
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref12
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref12
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref12
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref13
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref13
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref13
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref14
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref14
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref14
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref14
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref15
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref15
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref15
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref15
https://doi.org/10.1101/2020.05.24.20101238
https://doi.org/10.1101/2020.05.24.20101238
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref17
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref17
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref17
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref17
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref18
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref18
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref19
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref19
https://doi.org/10.1101/2020.07.01.20143214
https://doi.org/10.1101/2020.07.01.20143214
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref21
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref21
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref22
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref22
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref22
https://doi.org/10.1101/2020.05.20.106294
https://doi.org/10.1101/2020.05.20.106294
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref24
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref24
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref24
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref24
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref25
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref25
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref25
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref25
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref26
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref26
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref26
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref26
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref27
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref27
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref27
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref28
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref28
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref28
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref29
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref29
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref30
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref30
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref30
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref30
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref30
https://doi.org/10.1101/2020.03.15.20033472
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref32
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref33
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref33
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref33
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref33
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref34
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref34
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref34
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref34
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref34
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref35
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref35
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref35
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref35
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref36
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref36
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref36
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref37
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref37
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref37
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref37
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref38
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref38
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref38
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref38
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref39
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref39
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref40
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref40
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref40
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref40
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref41
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref41
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref41
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref42
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref42
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref42
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref42
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref43
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref43
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref43


ll
Article
Matschke, J., L€utgehetmann, M., Hagel, C., Sperhake, J.P., Schröder, A.S.,

Edler, C., Mushumba, H., Fitzek, A., Allweiss, L., Dandri, M., et al. (2020).

Neuropathology of patients with COVID-19 in Germany: a post-mortem case

series. Lancet Neurol. 19, 919–929.

McLane, L.M., Abdel-Hakeem, M.S., and Wherry, E.J. (2019). CD8 T cell

exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol.

37, 457–495.

Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R.,

Laue, M., Schneider, J., Br€unink, S., Greuel, S., et al. (2020). Olfactory trans-

mucosal SARS-CoV-2 invasion as a port of central nervous system entry in in-

dividuals with COVID-19. Nat. Neurosci.

Meyer Zu Hörste, G., Gross, C.C., Klotz, L., Schwab, N., andWiendl, H. (2020).

Next-Generation Neuroimmunology: New Technologies to Understand

Central Nervous System Autoimmunity. Trends Immunol. 41, 341–354.

Minervina, A.A., Komech, E.A., Titov, A., Bensouda Koraichi, M., Rosati, E.,

Mamedov, I.Z., Franke, A., Efimov, G.A., Chudakov, D.M., Mora, T., et al.

(2020). Longitudinal high-throughput TCR repertoire profiling reveals the dy-

namics of T cell memory formation after mild COVID-19 infection. bioRxiv.

https://doi.org/10.1101/2020.05.18.100545.

Mollan, S.P., Aguiar, M., Evison, F., Frew, E., and Sinclair, A.J. (2019). The ex-

panding burden of idiopathic intracranial hypertension. Eye (Lond.) 33,

478–485.

Monaco, G., Lee, B., Xu, W., Mustafah, S., Hwang, Y.Y., Carré, C., Burdin, N.,
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L., Almire, C., Hénon, C., Kosmider, O., Droin, N., et al. (2020). Elevated

Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from

Mild COVID-19. Cell 182, 1401–1418.e18.

Singer, M., Wang, C., Cong, L., Marjanovic, N.D., Kowalczyk, M.S., Zhang, H.,

Nyman, J., Sakuishi, K., Kurtulus, S., Gennert, D., et al. (2016). A Distinct Gene

Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T

Cells. Cell 166, 1500–1511.e9.

Song, E., Bartley, C.M., Chow, R.D., Ngo, T.T., Jiang, R., Zamecnik, C.R.,

Dandekar, R., Loudermilk, R.P., Dai, Y., Feimei, L., et al. (2020). Exploratory

neuroimmune profiling identifies CNS-specific alterations in COVID-19 pa-

tients with neurological involvement. bioRxiv, 2020.09.11.293464.

Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E.,

and Dudoit, S. (2018). Slingshot: cell lineage and pseudotime inference for sin-

gle-cell transcriptomics. BMC Genomics 19, 477.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M.,

3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive

Integration of Single-Cell Data. Cell 177, 1888–1902.e21.

Thompson, A.J., Banwell, B.L., Barkhof, F., Carroll, W.M., Coetzee, T., Comi,

G., Correale, J., Fazekas, F., Filippi, M., Freedman, M.S., et al. (2018).

Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.

Lancet Neurol. 17, 162–173.

Tian, W., Zhang, N., Jin, R., Feng, Y., Wang, S., Gao, S., Gao, R., Wu, G., Tian,

D., Tan, W., et al. (2020). Immune suppression in the early stage of COVID-19

disease. Nat. Commun. 11, 5859.

Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D.,

Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016).

Dissecting the multicellular ecosystem of metastatic melanoma by single-

cell RNA-seq. Science 352, 189–196.

Trandem, K., Zhao, J., Fleming, E., and Perlman, S. (2011). Highly activated

cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-

induced encephalitis. J. Immunol. 186, 3642–3652.

Varatharaj, A., Thomas, N., Ellul, M.A., Davies, N.W.S., Pollak, T.A., Tenorio,

E.L., Sultan, M., Easton, A., Breen, G., Zandi, M., et al.; CoroNerve Study

Group (2020). Neurological and neuropsychiatric complications of COVID-19

in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882.

Wang, T., Li, B., Nelson, C.E., and Nabavi, S. (2019). Comparative analysis of

differential gene expression analysis tools for single-cell RNA sequencing

data. BMC Bioinformatics 20, 40.

Wilk, A.J., Rustagi, A., Zhao, N.Q., Roque, J., Martı́nez-Colón, G.J.,

McKechnie, J.L., Ivison, G.T., Ranganath, T., Vergara, R., Hollis, T., et al.

http://refhub.elsevier.com/S1074-7613(20)30539-2/sref44
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref44
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref44
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref44
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref44
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref45
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref45
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref45
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref46
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref46
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref46
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref46
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref46
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref47
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref47
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref47
https://doi.org/10.1101/2020.05.18.100545
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref49
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref49
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref49
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref50
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref50
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref50
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref50
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref51
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref51
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref51
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref51
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref51
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref52
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref52
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref52
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref52
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref53
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref53
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref53
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref53
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref54
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref54
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref54
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref54
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref54
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref55
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref55
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref56
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref56
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref56
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref56
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref56
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref57
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref57
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref57
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref58
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref58
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref59
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref59
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref59
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref59
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref59
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref60
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref60
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref60
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref60
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref61
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref61
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref61
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref61
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref62
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref62
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref62
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref62
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref63
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref64
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref64
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref64
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref64
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref64
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref65
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref65
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref65
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref65
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref66
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref66
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref66
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref66
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref67
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref67
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref67
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref67
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref68
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref68
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref68
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref68
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref69
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref69
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref69
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref70
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref70
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref70
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref71
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref71
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref71
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref71
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref72
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref72
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref72
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref73
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref73
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref73
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref73
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref74
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref74
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref74
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref75
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref75
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref75
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref75
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref76
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref76
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref76
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref77
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref77


ll
Article
(2020). A single-cell atlas of the peripheral immune response in patients with

severe COVID-19. Nat. Med. 26, 1070–1076.

Wolbert, J., Li, X., Heming, M., Mausberg, A.K., Akkermann, D.,

Frydrychowicz, C., Fledrich, R., Groeneweg, L., Schulz, C., Stettner, M.,

et al. (2020). Redefining the heterogeneity of peripheral nerve cells in health

and autoimmunity. Proc. Natl. Acad. Sci. USA 117, 9466–9476.

Wykes, M.N., and Lewin, S.R. (2018). Immune checkpoint blockade in infec-

tious diseases. Nat. Rev. Immunol. 18, 91–104.

Xiong, W., Mu, J., Guo, J., Lu, L., Liu, D., Luo, J., Li, N., Liu, J., Yang, D., Gao,

H., et al. (2020). New onset neurologic events in people with COVID-19 in 3 re-

gions in China. Neurology 95, e1479–e1487.

Zhang, J.-Y., Wang, X.-M., Xing, X., Xu, Z., Zhang, C., Song, J.-W., Fan, X., Xia,

P., Fu, J.-L., Wang, S.-Y., et al. (2020). Single-cell landscape of immunological

responses in patients with COVID-19. Nat. Immunol. 21, 1107–1118.
Zheng, H.-Y., Zhang, M., Yang, C.-X., Zhang, N., Wang, X.-C., Yang, X.-P.,

Dong, X.-Q., and Zheng, Y.-T. (2020a). Elevated exhaustion levels and

reduced functional diversity of T cells in peripheral blood may predict severe

progression in COVID-19 patients. Cell. Mol. Immunol. 17, 541–543.

Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., Xu, Y., and Tian, Z.

(2020b). Functional exhaustion of antiviral lymphocytes in COVID-19 patients.

Cell. Mol. Immunol. 17, 533–535.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang,W., Si, H.-R., Zhu,

Y., Li, B., Huang, C.-L., et al. (2020). A pneumonia outbreak associated with a

new coronavirus of probable bat origin. Nature 579, 270–273.

Zhu, L., Yang, P., Zhao, Y., Zhuang, Z., Wang, Z., Song, R., Zhang, J., Liu, C.,

Gao, Q., Xu, Q., et al. (2020). Single-Cell Sequencing of Peripheral

Mononuclear Cells Reveals Distinct Immune Response Landscapes of

COVID-19 and Influenza Patients. Immunity 53, 685–696.e3.
Immunity 54, 164–175, January 12, 2021 175

http://refhub.elsevier.com/S1074-7613(20)30539-2/sref77
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref77
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref78
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref78
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref78
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref78
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref79
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref79
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref80
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref80
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref80
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref81
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref81
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref81
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref82
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref82
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref82
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref82
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref83
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref83
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref83
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref84
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref84
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref84
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref85
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref85
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref85
http://refhub.elsevier.com/S1074-7613(20)30539-2/sref85


ll
Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples
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M€unster, M€unster, Germany

N/A

MS patients as controls Department of Neurology with Institute of

Translational Neurology, University Hospital

M€unster, M€unster, Germany

N/A

VE patients as controls Department of Neurology with Institute of

Translational Neurology, University Hospital

M€unster, M€unster, Germany

N/A

Chemicals, Peptides, and Recombinant Proteins

X-Vivo15 media Lonza cat#BE02-060F

T4 Polynucleotide Kinase New England Biolabs cat#M0201S

T4 DNA Ligase New England Biolabs cat#M0202S
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R harmony package v1.0 Ilya Korsunsky, Nghia Millard, Jean Fan,
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Raychaudhuri

https://github.com/immunogenomics/

harmony

R clustifyr package v1.1 Rui Fu, Austin Gillen, Ryan M. Sheridan,
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Jay R. Hesselberth and Kent A. Riemondy

https://rnabioco.github.io/clustifyr/
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Yosef, Elizabeth Purdom and Sandrine

Dudoit
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cell-gene-expression/software/pipelines/

latest/installation

AIRR Data Commons API AIRR Community https://docs.airr-community.org/en/stable/

api/adc_api.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gerd

Meyer zu Hörste (gerd.meyerzuhoerste@ukmuenster.de).

Materials Availability
All unique reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
Raw sequencing data are available in the Gene Expression Omnibus (GEO) repository (GSE163005). An interactive version of the

entire dataset using cerebroApp (Hillje et al., 2020) is available at: http://covid.mheming.de. We followed the official tutorial of the

packages listed, no custom code was generated. Additional Supplemental Items are available from Mendeley Data at https://doi.

org/10.17632/5mt97xcyyw.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Neuro-COVID Subjects
Cerebrospinal fluid (CSF) was collected from eight patients classified as Neuro-COVID admitted to the University Hospital Essen,

Germany between May and June 2020. All patients were tested positive for SARS-CoV-2 by reverse transcription polymerase chain

reaction (PCR) of nasopharyngeal swabs and developed neurological signs/symptoms between 10 days prior to and 20 days after the

diagnostic PCRwas performed (Table S1). PCR for SARS-CoV-2 in CSFwas performed in all patients andwas negative in all patients.

Seven patients were male and the age ranged from 53 to 82 years (Table S1). Based on pulmonary and systemic signs/symptoms,

disease severity was classified into 3 categories as described (Buonsenso et al., 2020).

1. Mild disease: asymptomatic infection or mild respiratory signs/symptoms (e.g., fever, sore throat, pharyngeal congestion)

without any radiographic abnormalities and no septic presentation

2. Moderate disease: clinical signs of mild pneumonia (e.g., fever, dry or productive cough, abnormal breath sounds on auscul-

tation) without signs of hypoxemia (e.g., shortness of breath)

3. Severe disease:mild ormoderate disease and signs of disease progression (e.g., respiratory failure requiringmechanical venti-

lation, septic shock or organ dysfunction requiring intensive care unit-monitoring)

The severity of neurological signs/symptoms in COVID-19 infected patients was classified as follows: Neuro-COVID severity 1 was

defined by mild signs/symptoms (e.g., headache, dizziness, anosmia, ageusia), severity 2 by moderate signs/symptoms (e.g., fa-

tigue, mono/para/quadriparesis), and severity 3 by severe neurological manifestations (e.g., seizures, stroke, cognitive impairment

or muscle weakness) (Fotuhi et al., 2020). To account for the relatively small sample size, wemerged Neuro-COVID patients in stage 1

and 2 and refer to these patients as ‘mild’ Neuro-COVID throughout the manuscript. Patients in stage 3 are termed ‘severe’ Neuro-

COVID. None of these patients had received any immunomodulatory treatment previously (Table S1).

Control Subjects
In total, we included data from 20 control patients in our study (Table S1). All control patients were treated in inpatient or outpatient

clinics of the Department of Neurology with Institute of Translational Neurology at the University Clinic M€unster, Germany between

2017 and 2020. Out of these 20 control patient data, 8 had been published previously (Schafflick et al., 2020). Previously published

scRNA-seq data from controls with idiopathic intracranial hypertension (IIH) (n = 4) and relapsing-remittingmultiple sclerosis (MS) (n =

4) in active relapse were used (Schafflick et al., 2020). Additionally, we recruited five new treatment-naive patients with relapsing

remitting (RR)MS in active relapse leading to the first diagnosis and IIH, respectively, and 5 patients with VE (Table S1). The detailed

inclusion and exclusion criteria have been described previously (Schafflick et al., 2020). Briefly, all MS patients were included at first

relapse leading to the diagnosis of disease, met the revised McDonald criteria (Thompson et al., 2018) and were treatment-naive. An

extensive diagnostic workup was performed in order to exclude differential diagnoses (Schafflick et al., 2020). Patients with a ques-

tionable diagnosis, secondary progressive (SP)MS and any immunomodulatory therapy were excluded (Schafflick et al., 2020). The

Expanded Disability Status Scale (EDSS) was used to assess disease severity (Kurtzke, 1983).

Patients with IIH were diagnosed based on the diagnostic criteria of IIH (Friedman and Jacobson, 2002). These included signs/

symptoms of an increased intracranial pressure, elevated opening pressure (above 200mmH2O) on lumbar puncture, normal routine

CSF studies and no structural cause of intracranial hypertension. Patients with VE were included, if they showed clinical signs of en-

cephalitis (e.g., headache, seizure, psychiatric symptoms, altered mental status and focal neurologic abnormalities) and alterations

of the CSF that were compatible with the diagnosis (Table S1). Specific viruses (Herpes simplex virus-1/2 (HSV-1/HSV-2), Cytomeg-

alovirus (CMV), Ebstein-Barr virus (EBV), Varicella zoster virus (VZV), Human herpesvirus-6 (HHV-6) and Enterovirus were tested by

PCR in all VE patients. HSV-1 and VZV could be detected in the CSF of one patient, respectively. Screening for serum antibodies to

the Tick-borne encephalitis (TBE) virus was performed by ELISA and was positive in one patient. CSF and serum were tested by
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Treponema pallidum hemagglutination assay to exclude Treponema pallidum infection. ELISA and immunoblotting were performed

to detect Borrelia burgdorferi. Screening for the following antibodies was performed using immunofluorescence assays (IFA) and

immunoblotting to exclude autoimmune encephalitis: Anti-Hu, Ri, ANNA-3, Yo, TR/DNER, Ma/Ta, GAD65, Amphiphysin, NMDA re-

ceptor, GABA-b receptor, GABA-a receptor, LGI1, CASPR2, ZIC4, DPPX, glycine receptor, mGluR1,mGluR5, RhoGTPase activating

protein, Recoverin, GluDR2, Flotilin, Homer3, Neurochondrin, AMPA receptor.

Exclusion Criteria
Exclusion criteria for all control patients were: pregnancy and breastfeeding, patients under 18 years, severe concomitant infectious

or autoimmune disease and a red blood cell count over 200/ml in CSF.

METHODS DETAILS

Ethics Statements
All patients gave written informed consent to sample collection and data analysis. The study was approved by the local ethics com-

mittee in Essen (Ethics Committee of theUniversity Duesburg-Essen; reference number 20-284-BO) and inM€unster, Germany (Ethics

Committee of the Board of Physicians of the RegionWestfalen-Lippe and of theWestf€alischeWilhelms-UniversityM€unster; reference

number 2015-522-f-S).

Diagnostic Procedures and CSF Analysis
Lumbar puncture was performed between day 0 and day 40 (Neuro-COVID patients), on day 0 or 1 (MS patients), between day 0 and

7 (IIH patients) and between day 0 and 7 (patients with VE) after admission to the hospital. CSF was processed within an h to ensure

optimal sample quality. CSF cells were counted manually in a Fuchs-Rosenthal chamber, total protein and intrathecal immunoglob-

ulin concentrations were assessed by nephelometry. Concentration of protein and immunoglobulins in serum and CSF were

compared and a Reiber scheme was created to evaluate the integrity of the blood-CSF-barrier (BCBD), quantified by the ratio be-

tween CSF albumin and serum albumin. Oligoclonal bands (OCB) were detected by isoelectric focusing and silver nitrate staining.

Electroencephalography, using a standard 10-20-EEG system, was recorded in seven Neuro-COVID cases and abnormalities

(generalized or focal slowing and epileptiform activity) were classified by a board certified neurologist (Table S1). Imaging studies

(either CT or MRI head) were performed in 24 out of 27 included patients to identify structural abnormalities (Table S1).

Single-Cell RNA Sequencing
CSF was processed for scRNA-seq as described previously (Schafflick et al., 2020). Briefly, CSF samples were collected into round

bottom polypropylene tubes and then centrifuged for 10 min at 300 x g. The CSF supernatant was removed, and CSF cells were re-

suspended in 5 mL of X-Vivo15 media (Lonza) and stored at 4�C. The samples were then transported to the laboratory of the Depart-

ment of Neurology with Institute of Translational Neurology at the University Clinic M€unster, Germany for scRNA-seq. Transport time

of samples collected in M€unster was 10-30 min. Transport time of samples collected in Essen was < 60 min. Cell suspensions were

then centrifuged again for 5 min at 400 x g and then resuspended in 40 mL of X-Vivo15 media (Lonza). Out of this volume, 6 mL were

used for cell counting and the remaining volume was entirely used for scRNA-seq.

Single-cell suspensions were then loaded onto the Chromium Single Cell Controller using the Chromium Single Cell 30 or 50 Library
& Gel Bead Kit (both from 10X Genomics) with different versions of chemistry (details see Table S1). Sample processing and library

preparation was performed according to manufacturer’s instructions using AMPure beads (Beckman Coulter). Single-cell immune

receptor repertoires were reconstructed from Neuro-COVID samples (Table S1). Sequencing was carried out commercially on an

Illumina Nextseq500 with either 26-8-0-57 or 26-8-0-132 read setup, or an Illumina Novaseq 6000 with 150-8-8-150 read setup

(for details see Table S1). Processing of sequencing data was performed with the cellranger pipeline v3.1.0 (10X Genomics) accord-

ing to the manufacturer’s instructions. Briefly, subsequent read alignments and transcript counting was done individually for each

sample using the cellranger count pipeline with standard parameters. To detect SARS-CoV-2 positive CFS cells, the cellranger count

pipeline was additionally performed with a customized reference genome constructed by cellranger mkref that included the SARS-

CoV-2 genome (NCBI Reference Sequence: NC_045512.2) added to the pre-built human GRCh38 reference. The cellranger aggr

pipeline was employed to aggregate samples with mapping normalization to leave each sample with similar sequencing depth

per cell. The total and per sample cell numbers are listed in Table S1.

Single-Cell TCR-Sequencing
Four Neuro-COVID samples (Table S1) were processed with the Chromium Single Cell 50 Library & Gel Bead Kit and barcoded, full-

length VDJ segments from T cells were enriched from first-strand cDNA via PCR amplification with the Chromium Single Cell VDJ

Enrichment Kit, Human T Cell (from 10X Genomics) following the manufacturer’s instructions. Further library preparation was

performed using the Chromium Single Cell 50 Library Construction Kit (10X Genomics). Sequencing was carried out on an Illumina

Nextseq550 with 26-8-0-132 read setup (for details see Table S1). Raw data was processed by the cellranger pipeline v3.1 (10X

Genomics) according to the manufacturer’s instructions.

Three Neuro-COVID samples (Table S1) were processed with the Chromium Single Cell 30 Library & Gel Bead Kit (10x Genomics)

and we developed a novel method to sequence antigen receptor information from 30 scRNA-seq libraries. The method allows
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shortening the constant region of antigen receptors during enrichment, while maintaining their cell barcode and unique molecular

identifier (UMI) information attached to the 30 of the cDNA molecules. In summary, the method involves self-circulating the cDNA li-

brary, enriching the VDJ region and re-linearizing. Each step maintains the VDJ region together with the cell barcode and UMI in the

same molecule. Primer Poly A is used as a 50 race primer and two T cell receptor (TCR) reverse primer pools were synthesized from

Eurofins according to sequences of reverse primers of 10x Genomics Chromium Single Cell V(D)J Enrichment Kit, Human T Cell, PN-

1000005 (Sequences and concentration see Table S2). All primers were synthesized by Eurofins Genomics; the primers are listed in

Table S2. For circularization, cDNA generated from 10x Genomics Chromium Single Cell V(D)J Enrichment Kit, Human T Cell, PN-

1000005v3 were end-phosphated with the T4 Polynucleotide Kinase (New England Biolabs), and purified by 0.6x Ampure XP beads

(Beckman Coulter). Then 1,000 units of T4 DNA Ligase (New England Biolabs) were added to self-circularize the phosphated cDNA at

16�C for 16 h. Subsequently, 0.7x Ampure XP beads were used to purify. Remaining linear DNA was digested by 0.9 units/ml RecJf

and 0.1 units/ml Lambda Exonuclease (both fromNew England Biolabs). Circularized cDNA libraries were purified by 0.7x Ampure XP

beads. A 50 race nested PCR enrichment was performed to enrich the TCR variable region. A size selection was done by 0.5x - 0.8 x

Ampure XP beads. Then, the nested PCR products were phosphated, circulated and linear digested again as above. A PCR with

primers read1 and TSO was used to re-linearize the circulated library. PCR products were purified by 0.5x - 0.8 x Ampure XP beads

(Beckman Coulter) and libraries were prepared from them using the Chromium Single Cell 30 Library Kit v3 (10x Genomics).

Sequencing was carried out on an Illumina Nextseq550 with 26-8-0-132 read setup (for details see Table S1). In order to analyze

them with cellranger pipelines from 10x Genomics, we converted read 2 into reverse-complement and replaced the cell barcode

white list of the Chromium Next GEM Single Cell 50 Library & Gel Bead Kit v1.1 with the one of Chromium Next GEM Single Cell 30

Library &Gel Bead Kit v3 in the folder /cellranger-3.1.0/cellranger-cs/3.1.0/lib/python/cellranger/barcodes/ of the cellranger pipeline.

Processing of modified sequencing data was performed with the modified cellranger VDJ pipeline v3.1.0 (10X Genomics) according

to the manufacturer’s instructions.

Data Analysis of Single-Cell RNA Sequencing
Downstream analysis of scRNA-seq datasets was performed using Seurat v3.2 (Stuart et al., 2019) and R v4.0 as described previ-

ously (Wolbert et al., 2020). Each sample was filtered individually to remove cell doublets and low-quality cells with few genes (< 200)

high genes (> 1200-6000) or high mitochondrial percentages (5%–20%). To account for technical noise, data were normalized using

logarithmic transformation normalization, highly variable genes were identified, and data were scaled taking into account mitochon-

drial percentages. Principal component analysis (PCA) was performed using highly variable genes. Based on the elbow plot, we used

the first 40 principal components for further analysis. To cluster the cells, we used the ‘FindNeighbors’ (based on KNN graphs) and

the ‘FindCluster’ (based on Louvainmethod; resolution 0.3) functions inSeurat. Batch effects were taken into account usingHarmony

(Korsunsky et al., 2019), which project cells into a shared embedding. To visualize cells in a two-dimensional dataset we performed

UMAP. We annotated clusters based on known marker genes or automated with the clustifyr (Fu et al., 2020) package based on

Monaco et al. (Monaco et al., 2019). One cluster with 921 cells that showed high percentage of mitochondrial transcripts (4.9%;

mean mitochondrial percentage of all clusters 2.5%) and low UMI counts (864; mean UMI count of all clusters 5403) was removed

because it most likely represents dying cells. We subsetted the T cell clusters and re-clustered these subclusters with a higher res-

olution (0.5). DotPlots and FeaturePlots were created using the internal visualization functions of Seurat. Volcano plots of cell cluster

abundance were created using ggplot2 v3.3 using unpaired two-sided t test in R. Heatmaps were created with pheatmap v1.0 and

data were clustered using complete linkage with Euclidean distance measure. Significant cluster abundance changes were adjusted

for age and sex employing a linear regression analysis in R and including age and size as predictors. Comparisons of our scRNA-seq

data with the Mouse Cell Atlas (MCA) (Han et al., 2018) and Schrepping et al. (Schulte-Schrepping et al., 2020) were carried out using

clustifyr and were based on the official cluster annotations. PCA of cluster abundances was performed and visualized with the R

package factoextra.

Differentially expressed (DE) genes were determined with the FindMarker function in Seuratwith theWilcoxon rank sum test with a

threshold of adjusted p value (based on Bonferroni correction) of 0.05 and a minimum of 10 cells per cluster. Volcano plots of DE

genes were created with the R package EnhancedVolcano. To perform gene set enrichment analysis, we used the Enrichr tool (Ku-

leshov et al., 2016). and the GO Molecular Function 2018 reference dataset.

We performed pseudotime of themono1, mono2 andmono3 clusters using Slingshot (Street et al., 2018).Slingshotwas performed

with the UMAP embeddings and cluster annotations of the Seurat analysis (see above).

Single-Cell Immune Repertoire Analysis
Single-cell T cell receptor sequencing (scTCR) data were analyzed using the R package scRepertoire v1.2 (Borcherding et al., 2020)

following the official vignette. Clonotypes were removed if any cell barcode had more than 2 immune receptor chains. scTCR data

were merged with scRNA-seq data of the T cell clusters only based on the cell barcodes. TCR clones that matched barcodes of cells

that were not located in T cell clusters (based on our previous annotations using Seurat) were removed. TCR were categorized into

expanded (defined as R2 identified clones) and non-expanded clones (clone frequency 1). Published immune repertoire data of

COVID-19 were retrieved from iReceptor (Corrie et al., 2018) using the AIRR Data Commons API. Repertoires with diagnosis ID

DOID:0080600 (COVID-19) were queried from http://covid19-1.ireceptor.org/airr/v1/ and http://covid19-2.ireceptor.org/airr/v1/

comprising 7 studies at the time of access: Nielsen et al. (Nielsen et al., 2020), Minervina et al. (Minervina et al., 2020), Galson

et al. (Galson et al., 2020), Liao et al. (Liao et al., 2020), Schultheiß et al. (Schultheiß et al., 2020), Shomuradova et al. (Shomuradova
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et al., 2020) and Alsoussi et al. (Alsoussi et al., 2020). In a next step, CDR3 amino acid (aa) sequences were retrieved from these pa-

tients resulting in 181,969,096 sequences. We determined the overlap of CDR3 aa sequences from our Neuro-COVID clones with

these sequences. As a negative control we retrieved repertoires by filtering for ‘‘Control (Healthy)’’ study group description from

http://covid19-1.ireceptor.org/airr/v1/ and http://covid19-2.ireceptor.org/airr/v1/. We then downloaded all CDR3 aa sequences

from these patients resulting in 2,156,752 sequences. Finally, we calculated the overlap of CDR3 aa sequences from these healthy

controls with those of COVID-19 patients.

Cell Set Enrichment Analysis (CSEA)
CSEAwas performed as previously described (Schafflick et al., 2020). Briefly, we used the gene-cell expression matrix, labels for the

input cells, and the gene set of interest as input for CSEA. Using the genes in the specified signature, CSEA computed the score for

each cell by dividing the log gene expression values by the mean expression across all cells, taking the sum across all genes, and

normalizing the resulting values between 0 and 1. Then, the cells were rank-ordered based on the computed score, and the Enrich-

ment Score (ES) was computed using the ranked cell scores as previously described (Schafflick et al., 2020). To determine the p value

of the CSEA ES, we selected a new set of genes and re-compute the cell scores 100 times and then computed the probability that the

maximumES computedwith the original gene signaturewas greater than the ES computedwith the permuted gene sets. The random

gene set was selected by finding the same number of genes as in the original gene set and finding the top 100 genes that had the

closest mean expression to each gene in the original signature set and then randomly sampling one of those 100 genes. We also

computed the p values for the enrichment in IIH as the negative enrichment p values in order to select for gene signatures that

were only enriched in Neuro-COVID cells not IIH cells. We corrected for multiple testing using the Benjamini-Hochberg procedure

to generate the corrected p values for both positive and negative enrichment. We filtered the result based on the following criteria:

the corrected p value of the true signature set is smaller than 0.05 and the corrected p value of the control signature set is > 0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R v4.0. Boxplots were created with the ggpubr package. When comparing one categorical

variable with two groups (severe versus mild Neuro-COVID) with one continuous parameter (e.g., cells, protein, IL-6, IL-8) we used

Wilcoxon’s rank-sum test (two-sided). When comparing one categorical parameter with multiple groups (Neuro-COVID, MS, IIH, VE)

with a continuous parameter, we performed Kruskal-Wallis with Dunn test as a post hoc test (rstatix package in R). To compare a

categorical parameter with two groups (severe versus mild Neuro-COVID) with another categorical parameter with two groups

(OCB, BBBD) we used Fisher’s exact test (two-sided). In the case of one categorical parameter with multiple groups (Neuro-COVID,

MS, IIH, VE) with another categorial, we used the Freeman-Halton extension of Fisher’s exact test. For pairwise comparisons we per-

formed Fisher’s exact test (two-sided) with multiple testing adjustments using Benjamini-Hochberg’s method (rstatix package). The

significance level alpha was set at 0.05.

Systematic Meta-Analysis
For the meta-analysis-like literature review, we systematically searched the databases PubMed, MedRxiv, and BioRxiv until

December 2020 using the MeSH terms ‘‘Coronavirus,’’ ‘‘Coronavirus Infections/virology,’’ ‘‘Coronavirus Infections/immunology,’’

‘‘Coronavirus Infections/pathology,’’ ‘‘RNA-Seq/methods,’’ ‘‘Sequence Analysis,’’ ‘‘RNA/ methods,’’ ‘‘Single-Cell Analysis,’’ and

‘‘Sequencing.’’ We included original research articles assessing the impact of COVID-19 on immune cell populations by analyzing

samples obtained from SARS-CoV-2 positive patients with genome-wide single-cell transcriptomics techniques, such as 10x Geno-

mics or drop-seq.

ADDITIONAL RESOURCES

In addition to the deposition of the raw sequencing data on GEO, we provide an interactive platform of the entire dataset using cer-

ebroApp (Hillje et al., 2020) at http://covid.mheming.de/. The platform includes analysis information, shows key analytic results, such

as UMAP visualization, marker genes and cluster abundances and allows interactive exploration of the results based on custom

genes and gene sets.
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Figure S1: Known Disease-Associated CSF Alterations Are Replicated, Related to Figure 1.                          
(A) Basic CSF parameters of 8 Neuro-COVID (N-COVID), 9 idiopathic intracranial hypertension (IIH), and 9 
relapsing-remitting multiple sclerosis (MS), and 5 viral encephalitis (VE) patients. Oligoclonal band (OCB) 
information was unavailable in 2 Neuro-COVID and 3 IIH patients. Boxes show the median, the lower and 
upper quartile and whiskers include 1.5 times the interquartile range of the box, further outliers are marked as 
dots. Dot plots are overlaid. Significance was tested with Kruskal-Wallis with Dunn post-hoc test (cells, red 
blood cells (RBC), protein) or the Freeman-Halton extension of Fisher’s exact test (two-sided) with post-hoc 
pairwise comparisons adjusted with Benjamini-Hochberg’s method.                                                                     
(B) Correlation coefficients between clusters from this study and Monaco et al.                                                   
(C) Changes of cluster abundances in MS (n = 9) vs. IIH (n = 9) patients. Logarithmic fold change of cluster 
abundance is plotted against negative logarithmic p value (two-sided Wilcoxon’s rank-sum test). The horizontal 
dashed line represents the significance threshold (p = 0.05).                                                                                   
(D) Gene score feature plot of a microglia gene set from Sankowski et al. Markers that were used for this plot 
are provided in Table S2.                                                                                                                                             
(E) Pseudotime time analysis performed with Slingshot of mono1, mono2 and mono3 clusters.                             
Abbreviations: RBC - red blood cells; BCBD - blood-CSF-barrier disruption; OCB - oligoclonal bands; CD4 - 
CD4+ T cells; Treg - regulatory T cells; CD8 - CD8+ T cells; NK - NK cells; plasma - plasma cells; naiveBc - 
naive B cells; mDC - myeloid dendritic cells; pDC - plasmacytoid dendritic cells; matDC - mature dendritic 
cells; granulo - granulocytes; mono – monocytes.



Figure S2: Further Severity-Associated Observations in Neuro-COVID, Related To Figure 4.
(A) UMAP plot showing the merged meta clusters that were used for differentially expression (DE) analysis
across conditions.
(B) Average gene expression of T cell exhaustion markers from Singer et al., Tirosh et al., Chihara et al. and
canonical markers in CD4+ clusters. Selected transcripts are labeled. The complete gene sets are listed in Table
S4.
(C)  Principal  component  analysis  (PCA)  of  cluster  abundances in  Neuro-COVID  patients  categorized  by
neurological severity (mild n = 5; severe n = 3). Each circle represents one patient, the polygons represent the
group means. The ellipses around the group means show the confidence regions.
(D) Proportions of all cells in Neuro-COVID split by neurological disease severity (mild n = 5; severe n = 3).
(E)  Changes of cluster  abundances  in  severely (n = 3)  vs.  mildly (n = 5) affected Neuro-COVID patients.
Logarithmic  fold  change  of  cluster  abundance  is  plotted  against  negative  logarithmic  p  value  (two-sided
Wilcoxon’s rank-sum test). The horizontal dashed line represents the significance threshold (p = 0.05).
(F) Proportions of T cells in Neuro-COVID split by neurological disease severity (mild n = 5; severe n = 3).



(G) Changes of cluster  abundances in severely (n = 3) vs.  mildly (n = 5) affected Neuro-COVID patients.
Logarithmic  fold  change  of  cluster  abundance  is  plotted  against  negative  logarithmic  p  value  (two-sided
Wilcoxon’s rank-sum test). The horizontal dashed line represents the significance threshold (p = 0.05).
(H) Basic CSF parameters and interleukin (IL)-6 and IL-8 were quantified in neurologically mildly (n =3) and
severely (n = 5) affected COVID-19 patients. Boxes show the median, the lower and upper quartile and whiskers
include 1.5 times the interquartile range of the box, further outliers are marked as dots. Dot plots are overlaid.
Significance was tested using two-sided Wilcoxon’s rank sum-test or Fisher’s exact test. 
Abbreviations: proli_CD4 - proliferating CD4+  T cells; memory_CD4 - memory-like CD4+ T cells;  exh_CD4:
exhausted CD4+ T cells; CD8 - CD8+ T cells; CD4_Treg - regulatory CD4+ T cells; BCBD - blood-CSF-barrier
disruption.

Figure S3: Core Findings Are Replicated After Removal of One Neuro-COVID With Comorbid Multiple
Sclerosis, Related to Figure 1 and Figure 3.
(A) UMAP plot showing 16 color-coded cell clusters of 80,820 raw single cell transcriptomes from CSF cells
from Neuro-COVID (N-COVID; n = 7) after removal of patient with pseudonym C24 , IIH (n = 9), MS (n = 9)
and VE (n = 5) patients.
(B) Proportions of cells split by diagnosis.
(C-D) Changes of cluster abundances in Neuro-COVID (n = 7) vs. IIH (n = 9) (C) and Neuro-COVID (n = 7) vs.
VE (n = 5) (D). Logarithmic fold change of cluster size is plotted against negative logarithmic p value (two-
sided Wilcoxon’s rank-sum test). The horizontal dashed line represents the significance threshold (p = 0.05).
(E) UMAP plot displaying 8 color-coded cell clusters of 61,584 raw single cell transcriptomes from CSF cells
from Neuro-COVID (n = 7), IIH (n = 9), MS (n = 9) and VE (n = 5) patients.
(F) Proportions of T cells split by diagnosis.
(G-H) Changes of T cell subcluster abundance in Neuro-COVID (n = 7) vs. IIH (n = 9) (G) and Neuro-COVID
(n = 7) vs. VE (n = 5) (H).  Logarithmic fold change of cluster size is plotted against negative logarithmic p
value (two-sided Wilcoxon’s rank-sum test). The horizontal dashed line represents the significance threshold (p
= 0.05).



Abbreviations: CD4 - CD4+ T cells; Treg - regulatory T cells; CD8 - CD8+ T cells; NK - NK cells; plasma -
plasma cells; naiveBc - naive B cells; mDC - myeloid dendritic cells; pDC - plasmacytoid dendritic cells; matDC
- mature dendritic cells; granulo - granulocytes; mono - monocytes; proli_CD4 - proliferating CD4 +   T cells;
memory_CD4 - memory-like CD4+ T cells;  exh_CD4: exhausted CD4+ T cells; CD4_Treg - regulatory CD4+ T
cells.
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