Supplementary Information

Extinction probability of an epidemic

To explore the extinction probability and extinction time of an epidemic, we calculate them based on three kinds of distribution: a) Poisson distribution, *i.e.*, $V(k) = E(k)$; b) power law distribution, *i.e.*, $V(k)$ $E(k)$; c) binomial distribution, *i.e.*, $V(k) < E(k)$. The calculation method is as follows:

The probability generating function of *k* (progeny number of an individual) is defined as

$$
G_k(s) = \sum_{k=0}^{\infty} p_k s^k = E(s^k)
$$

where p_k is the probability distributon of *k*. Note $G_k(1) = 1$, $G_k(0) = p_0$. Specifically, when *k* follows Poisson distribution $[k \sim Poisson(\lambda)]$, its probability generating function is

$$
G_k(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{\lambda(s-1)}
$$

When *k* follows binomial distribution $[K\text{-Bin}(n, p)]$, its probability generating function is

$$
G_k(s) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} s^k = (1-p+ps)^n
$$

The probability that the process is extinct by the *n*-th generation is

$$
u_n = P(N(n) = 0|N(0) = 1) (A1)
$$

where $N(n)$ is the population size at *n*-th generation. $N(0)$ is just the initial population size. Now $u_n \leq$ 1, and $u_n \le u_{n+1} - i.e., \{u_n\}$ is a bounded monotonic sequence [1]. So

$$
u=\lim_{n\to\infty}u_n
$$

exists and is called the probability of ultimate extinction. The average extinction time with $N(0) = 1$ can be calculated as follows:

$$
T = \sum_{t=1}^{\infty} t \times u_t \quad (A2)
$$

Because of the independence,

$$
P(N(n) = 0|N(0) = k) = u_n^k \quad (A3)
$$

Recall that p_k is the probability distributon of k , we can have the following theorem

$$
u_n = \sum_{k=0}^{\infty} p_k (u_{n-1})^k \quad (A4)
$$

Furthermore, when $n \to \infty$, we can know that u is the smallest non-negative root of following equation [1]

$$
G_K(u) = \sum_{k=0}^{\infty} p_k u^k = u
$$
 (A5)

To explore the extinction probability of an epidemic, we calculate the extinction probability based on three kinds of distribution: a) Poisson distribution, *i.e.*, $V(k) = E(k)$; b) power law distribution, *i.e.*, $V(k) > E(k)$; c) binomial distribution, *i.e.*, $V(k) < E(k)$.

a) Poisson distribution

If *k* follows Poisson distribution $[k\text{-Poisson}(\lambda)]$, its probability generating function is

$$
G_k(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{\lambda(s-1)}
$$

we can obtain its ultimate extinction probability by obtaining the smallest non-negative root of following equation:

$$
G_k(u) = e^{\lambda(u-1)} = u \to u = \frac{LambertW(-\lambda e^{-\lambda})}{\lambda} \tag{A6}
$$

where *Lambert W* is the *Lambert W* function [2]. Here we let $V(k) = E(k) = 0.5, 1.0, 1.05, 1.1, 1.2, 1.3, 1.4$, 1.5, 2, 3, 4, 5. The extinction probability can be obtained by Eq. (A6). The results are shown in Table S1.

b) Binomial distribution

For binomial distribution $[k \sim Bin(n, p)]$, its probability generating function is

$$
G_k(s) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} s^k = (1-p+ps)^n
$$

And its ultimate extinction probability is just the smallest non-negative root of following equation:

$$
G_k(u) = (1 - p + pu)^n = u \quad (A7)
$$

we let $p = q = 0.5$, $E(k) = 0.5, 1, 2, 3, 4, 5$. And then $V(k) = 0.5E(k)$. Use Eq. (A7), we can calculate the extinction probabilities of binomial distribution (Table S2)

c) Power law distribution

Just as Ruan *et al.* [3] suggest, we let the distribution of *k* follow the Zipf's law ([4]; a discrete format of power law distribution):

$$
P(k = i; c, M) = \frac{1/(i + 1)^{c}}{H_{M,c}}, i = 0, 1, ..., M - 1
$$

where $H_{M,c} = \sum_{m=1}^{M} 1/m^c$. The mean and variance of *k* are

$$
E(k) = \frac{H_{M,c-1}}{H_{M,c}} - 1
$$

$$
V(k) = \frac{H_{M,c-2}}{H_{M,c}} - \frac{H_{M,c-1}^2}{H_{M,c}^2}
$$

Based on the definition above, we can calculate the extinction probability according to Eq. (A4) and Eq. (A5). We let $V(k) = 5E(k)$ or $10E(k)$, and $E(k)$ ranges from 0.5 to 5. In addition, we do a simulation to test the accuracy of the analytical equations. The simulation results are consistent with the analytical results (Table S3 and S4).

Modeling the viral evolution in *H***⁰ with different parameter sets**

In main text, we simulate the viral evolution in H_0 at PL_0 with following parameter set: power law distribution with $V(k) = 5E(k)$, initial $E(k) = 1.1$ (Fig. 4). Here we expand the parameter set: (a) power law distribution with $V(k) = 10E(k)$, initial $E(k) = 1.1$, see Fig. S1; (b) poisson distribution with $V(k) = E(k)$, initial $E(k) = 1.1$, see Fig. S2. The patterns of Fig. 4, Fig. S1 and Fig. S2 are very similar. All of them show a biomodal distribution when $z = 3$, but not when $z = 1$ or 0.3. The reason for this bimodal distribution is that most of the invasions with $E(k) = 1.1$ would fail, which corresponds to the rapidly failed cases. The remaining would become extinct when the host population develops herd immunity, which takes more generations (denoted as *G*) in this simulation. Only in the latter cases would N_{inf} be large enough to yield adaptive mutations for the virus to overcome the immune suppression. The main difference amont them is *G* will turn to be larger as *V*(*k*) increases. This is because as *V*(*k*) increases, the time of extinction of fixation is shorten [5].

References

[1] Grimmett G, Stirzaker DR. Probability and random processes. Oxford: Oxford Univ. Press, 2009 [2] Corless RM, Gonnet GH, Hare DEG, et al. On the lambertw function. Advances in Computational

Mathematics, 1996, 5: 329-359

[3] Ruan Y, Luo Z, Tang X, et al. On the founder effect in covid-19 outbreaks – how many infected travelers may have started them all? National Science Review, 2020, nwaa246

[4] Zipf GK. Human behavior and the principle of least effort. Oxford, England: Addison-Wesley Press, 1949

[5] Crow JF, Kimura M. An introduction to population genetics theory. New York, Evanston and London: Harper & Row, Publishers, 1970

Supplementary tables and figures

	$E(k)=0.5$ 1 1.05 1.1 1.2 1.3 1.4 1.5 2											
$N(0)=1$ 1											1 0.91 0.82 0.69 0.58 0.49 4.2E-01 2.0E-01 6.0E-02 2.0E-02 7.0E-03	
											1 0.82 0.68 0.47 0.33 0.24 1.7E-01 4.1E-02 3.5E-03 3.9E-04 4.9E-05	
											1 0.74 0.56 0.32 0.19 0.12 7.3E-02 8.4E-03 2.1E-04 7.8E-06 3.4E-07	
											1 0.67 0.46 0.22 0.11 0.06 3.0E-02 1.7E-03 1.3E-05 1.5E-07 2.4E-09	
											1 0.61 0.38 0.15 0.06 0.03 1.3E-02 3.5E-04 7.5E-07 3.1E-09 1.7E-11	

Table S1. Extinction probability of Poisson distribution with $V(k) = E(k)$

Table S2. Extinction probability of binomial distribution with $V(k) = 0.5E(k)$

	$E(k)=0.5$		$1.5\,$	2		4	
$N(0)=1$	0.00	1.00	$2.4E-01$	8.7E-02	1.7E-02	$4.0E-03$	9.9E-04
	0.00	1.00	5.6E-02	7.6E-03	3.0E-04	1.6E-05	9.8E-07
3	1.00	1.00	$1.3E-02$	6.7E-04	5.2E-06	$6.5E-08$	$9.7E-10$
4	00.1	1.00	$3.1E-03$	5.8E-05	9.0E-08	$2.6E-10$	$9.6E-13$
	00.1	1.00	7.3E-04	5.1E-06	1.6E-09	1.1E-12	$9.5E-16$

Table S3. Extinction probability of power law distribution with $V(k) = 10E(k)$

	$E(k)=0.5$		1.05	-1.1	1.2	1.3	1.4	1.5	-2			
$N(0)=1$ (simulation)	1.00	1.00	1.00	0.98	0.96	0.93	0.92	0.89	0.80	0.63	0.52	0.39
$N(0)=1$ (analytical)	1.00	1.00	0.99	0.98	0.96	0.93	0.91	0.90	0.78	0.63	0.51	0.41
	1.00	1.00	0.98	0.96	0.92	0.87	0.84	0.80	0.61	0.39	0.26	0.17
	1.00	-00	0.97	0.94	0.88	0.82	0.77	0.72	0.47	0.25	0.13	0.07
$\boldsymbol{4}$	1.00	1.00	0.96	0.92	0.84	0.76	0.70	0.65	0.37	0.15	0.07	0.03
	1.00	-00	0.95	(191	0.81	0.71	0.64	0.58	0.29	0.10	0.03	0.01

Table S4. Extinction probability of power law distribution with $V(k) = 5E(k)$

Fig. S1. The distribution of T_{inf} and N_{inf} after viral invasion. A virus (*i.e.*, $N(0) = 1$) with initial $E(k)$ = 1.1 invades human population (population size is 1000). The distribution of *k* follows a power law distribution with $V(k) = 10E(k)$. T_{inf} is the duration between the initial infection and ultimate extinction. N_{inf} is the total number of infected individuals summed over all generations. Due to the prior build-up of herd immunity, $E(k)$ will decrease at 3 different rates ($z = 3$, 1, or 0.3) as shown in Fig. 4a – 4c, respectively. For each parameter set, 3000 repeats are simulated. Each repeat is portrayed by a thin line in the last panel

Fig. S2. same as Fig. S1 except that the distribution of *k* follows a Poisson distribution with $V(k) = E(k)$.