Supplementary Information

Extinction probability of an epidemic

To explore the extinction probability and extinction time of an epidemic, we calculate them based on three kinds of distribution: a) Poisson distribution, *i.e.*, V(k) = E(k); b) power law distribution, *i.e.*, V(k) > E(k); c) binomial distribution, *i.e.*, V(k) < E(k). The calculation method is as follows:

The probability generating function of k (progeny number of an individual) is defined as

$$G_k(s) = \sum_{k=0}^{\infty} p_k s^k = E(s^K)$$

where p_k is the probability distributon of k. Note $G_k(1) = 1$, $G_k(0) = p_0$. Specifically, when k follows Poisson distribution $[k \sim Poisson(\lambda)]$, its probability generating function is

$$G_k(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{\lambda(s-1)}$$

When k follows binomial distribution $[K \sim Bin(n, p)]$, its probability generating function is

$$G_k(s) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} s^k = (1-p+ps)^n$$

The probability that the process is extinct by the *n*-th generation is

$$u_n = P(N(n) = 0|N(0) = 1)$$
 (A1)

where N(n) is the population size at *n*-th generation. N(0) is just the initial population size. Now $u_n \le 1$, and $u_n \le u_{n+1} - i.e.$, $\{u_n\}$ is a bounded monotonic sequence [1]. So

$$u = \lim_{n \to \infty} u_n$$

exists and is called the probability of ultimate extinction. The average extinction time with N(0) = 1 can be calculated as follows:

$$T = \sum_{t=1}^{\infty} t \times u_t \quad (A2)$$

Because of the independence,

$$P(N(n) = 0 | N(0) = k) = u_n^k$$
(A3)

Recall that p_k is the probability distributon of k, we can have the following theorem

$$u_n = \sum_{k=0}^{\infty} p_k (u_{n-1})^k \quad (A4)$$

Furthermore, when $n \to \infty$, we can know that u is the smallest non-negative root of following equation [1]

$$G_K(u) = \sum_{k=0}^{\infty} p_k u^k = u \quad (A5)$$

To explore the extinction probability of an epidemic, we calculate the extinction probability based on three kinds of distribution: a) Poisson distribution, *i.e.*, V(k) = E(k); b) power law distribution, *i.e.*, V(k) > E(k); c) binomial distribution, *i.e.*, V(k) < E(k).

a) Poisson distribution

If k follows Poisson distribution [k~Poisson(λ)], its probability generating function is

$$G_k(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = e^{\lambda(s-1)}$$

we can obtain its ultimate extinction probability by obtaining the smallest non-negative root of following equation:

$$G_k(u) = e^{\lambda(u-1)} = u \to u = \frac{LambertW(-\lambda e^{-\lambda})}{\lambda}$$
 (A6)

where *LambertW* is the *Lambert W* function [2]. Here we let V(k) = E(k) = 0.5, 1.0, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5. The extinction probability can be obtained by Eq. (A6). The results are shown in Table S1.

b) Binomial distribution

For binomial distribution $[k \sim Bin(n, p)]$, its probability generating function is

$$G_k(s) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} s^k = (1-p+ps)^n$$

And its ultimate extinction probability is just the smallest non-negative root of following equation:

$$G_k(u) = (1 - p + pu)^n = u$$
 (A7)

we let p = q = 0.5, E(k) = 0.5, 1, 2, 3, 4, 5. And then V(k) = 0.5E(k). Use Eq. (A7), we can calculate the extinction probabilities of binomial distribution (Table S2)

c) Power law distribution

Just as Ruan *et al.* [3] suggest, we let the distribution of *k* follow the Zipf's law ([4]; a discrete format of power law distribution):

$$P(k = i; c, M) = \frac{1/(i+1)^c}{H_{M,c}}, i = 0, 1, \dots, M-1$$

where $H_{M,c} = \sum_{m=1}^{M} 1/m^c$. The mean and variance of k are

$$E(k) = \frac{H_{M,c-1}}{H_{M,c}} - 1$$
$$V(k) = \frac{H_{M,c-2}}{H_{M,c}} - \frac{H_{M,c-1}^2}{H_{M,c}^2}$$

Based on the definition above, we can calculate the extinction probability according to Eq. (A4) and Eq. (A5). We let V(k) = 5E(k) or 10E(k), and E(k) ranges from 0.5 to 5. In addition, we do a simulation to test the accuracy of the analytical equations. The simulation results are consistent with the analytical results (Table S3 and S4).

Modeling the viral evolution in *H*⁰ with different parameter sets

In main text, we simulate the viral evolution in H_0 at PL₀ with following parameter set: power law distribution with V(k) = 5E(k), initial E(k) = 1.1 (Fig. 4). Here we expand the parameter set: (a) power law distribution with V(k) = 10E(k), initial E(k) = 1.1, see Fig. S1; (b) poisson distribution with V(k) = E(k), initial E(k) = 1.1, see Fig. S2 are very similar. All of them show a biomodal distribution when z = 3, but not when z = 1 or 0.3. The reason for this bimodal distribution is that most of the invasions with E(k) = 1.1 would fail, which corresponds to the rapidly failed cases. The remaining would become extinct when the host population develops herd immunity, which takes more generations (denoted as *G*) in this simulation. Only in the latter cases would N_{inf} be large enough to yield adaptive mutations for the virus to overcome the immune suppression. The main difference amont them is *G* will turn to be larger as V(k) increases. This is because as V(k) increases, the time of extinction of fixation is shorten [5].

References

[1] Grimmett G, Stirzaker DR. Probability and random processes. Oxford: Oxford Univ. Press, 2009

[2] Corless RM, Gonnet GH, Hare DEG, et al. On the lambertw function. Advances in Computational Mathematics, 1996, 5: 329-359

[3] Ruan Y, Luo Z, Tang X, et al. On the founder effect in covid-19 outbreaks – how many infected travelers may have started them all? National Science Review, 2020, nwaa246

[4] Zipf GK. Human behavior and the principle of least effort. Oxford, England: Addison-Wesley Press, 1949

[5] Crow JF, Kimura M. An introduction to population genetics theory. New York, Evanston and London: Harper & Row, Publishers, 1970

Supplementary tables and figures

	<i>E</i> (<i>k</i>)= 0.5	1	1.05	1.1	1.2	1.3	1.4	1.5	2	3	4	5	
<i>N</i> (0)=1	1	1	0.91	0.82	0.69	0.58	0.49	4.2E-01	2.0E-01	6.0E-02	2.0E-02	7.0E-03	
2	1	1	0.82	0.68	0.47	0.33	0.24	1.7E-01	4.1E-02	3.5E-03	3.9E-04	4.9E-05	
3	1	1	0.74	0.56	0.32	0.19	0.12	7.3E-02	8.4E-03	2.1E-04	7.8E-06	3.4E-07	
4	1	1	0.67	0.46	0.22	0.11	0.06	3.0E-02	1.7E-03	1.3E-05	1.5E-07	2.4E-09	
5	1	1	0.61	0.38	0.15	0.06	0.03	1.3E-02	3.5E-04	7.5E-07	3.1E-09	1.7E-11	

Table S1. Extinction probability of Poisson distribution with V(k) = E(k)

Table S2. Extinction probability of binomial distribution with V(k) = 0.5E(k)

	<i>E</i> (<i>k</i>)= 0.5	1	1.5	2	3	4	5
<i>N</i> (0)=1	1.00	1.00	2.4E-01	8.7E-02	1.7E-02	4.0E-03	9.9E-04
2	1.00	1.00	5.6E-02	7.6E-03	3.0E-04	1.6E-05	9.8E-07
3	1.00	1.00	1.3E-02	6.7E-04	5.2E-06	6.5E-08	9.7E-10
4	1.00	1.00	3.1E-03	5.8E-05	9.0E-08	2.6E-10	9.6E-13
5	1.00	1.00	7.3E-04	5.1E-06	1.6E-09	1.1E-12	9.5E-16

Table S3. Extinction probability of power law distribution with V(k) = 10E(k)

	<i>E</i> (<i>k</i>)=0.5	1	1.05	1.1	1.2	1.3	1.4	1.5	2	3	4	5
N(0)=1(simulation)	1.00	1.00	1.00	0.98	0.96	0.93	0.92	0.89	0.80	0.63	0.52	0.39
N(0)=1(analytical)	1.00	1.00	0.99	0.98	0.96	0.93	0.91	0.90	0.78	0.63	0.51	0.41
2	1.00	1.00	0.98	0.96	0.92	0.87	0.84	0.80	0.61	0.39	0.26	0.17
3	1.00	1.00	0.97	0.94	0.88	0.82	0.77	0.72	0.47	0.25	0.13	0.07
4	1.00	1.00	0.96	0.92	0.84	0.76	0.70	0.65	0.37	0.15	0.07	0.03
5	1.00	1.00	0.95	0.91	0.81	0.71	0.64	0.58	0.29	0.10	0.03	0.01

Table S4. Extinction probability of power law distribution with V(k) = 5E(k)

	<i>E</i> (<i>k</i>)=0.5	1	1.05	1.1	1.2	1.3	1.4	1.5	2	3	4	5
N(0)=1(simulation)	1.00	1.00	0.98	0.97	0.92	0.88	0.86	0.82	0.69	0.47	0.36	0.37
N(0)=1(analytical)	1.00	1.00	0.98	0.96	0.92	0.89	0.85	0.82	0.67	0.48	0.36	0.35
2	1.00	1.00	0.96	0.92	0.85	0.79	0.72	0.67	0.45	0.23	0.13	0.12
3	1.00	1.00	0.94	0.88	0.78	0.70	0.61	0.55	0.30	0.11	0.05	0.04
4	1.00	1.00	0.92	0.85	0.72	0.63	0.52	0.45	0.20	0.05	0.02	0.02
5	1.00	1.00	0.90	0.82	0.66	0.56	0.44	0.37	0.14	0.03	0.01	0.01

Fig. S1. The distribution of T_{inf} and N_{inf} after viral invasion. A virus (*i.e.*, N(0) = 1) with initial E(k) = 1.1 invades human population (population size is 1000). The distribution of *k* follows a power law distribution with V(k) = 10E(k). T_{inf} is the duration between the initial infection and ultimate extinction. N_{inf} is the total number of infected individuals summed over all generations. Due to the prior build-up of herd immunity, E(k) will decrease at 3 different rates (z = 3, 1, or 0.3) as shown in Fig. 4a – 4c, respectively. For each parameter set, 3000 repeats are simulated. Each repeat is portrayed by a thin line in the last panel

Fig. S2. same as Fig. S1 except that the distribution of *k* follows a Poisson distribution with V(k) = E(k).