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1 Deriving the infection fatality risk

We derive the infection fatality risk (IFR) from available epidemiological data. Let D(t) be the
observed cumulative number of deaths up to time t, I(t) the cumulative number of infections, C(t)
that of reported cases and Isero(t) the number of seroconverted people in the population at time
t. We note that Isero(t) is estimated from serosurvey data and incorporates uncertainty in test
specificity and sensitivity [12]. We have that the cumulative number of deaths up to time t is:

D(t) = IFR

∫ ∞
0

I(t− τ)fD(τ)dτ,

where fD(t) is the probability density function (PDF) of the time from infection to death. Similarly
we have:

Isero(t) =

∫ ∞
0

I(t− τ)fsero(τ)dτ,

where Isero(t) = θt ·P is the seroconverted population given by the seroprevalence at time t, θt, and
the population P , and fsero(t) is the PDF of the time from infection to seroconversion.
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Taking the ratio between these two equations we have that:

IFR =
D(t)

Isero(t)

∫∞
0
I(t− τ)fsero(τ)dτ∫∞

0
I(t− τ)fD(τ)dτ

. (1)

I(t) is unobservable, however we can reconstruct it using C(t):

C(t) = α

∫ ∞
0

I(t− τ)fC(τ)dτ,

where α is the probability of infection reporting (proportion of infections that lead to symptomatic
and detected COVID-19 cases), and fC is the PDF of time from infection to reporting, which
accounts both for the incubation period and the delay between symptom onset to reporting. An
estimate of I(t) up to a constant of proportionality can be obtained by inverting the convolution:

F{C} = F{αI}F{fI}
F{αI} = F{C}/F{fI}

I =
1

α
F−1 {F{C}/F{fI}}

I =
1

α
I∗,

were F and F−1 are respectively the Fourier transform and its inverse. In the presence of noise
the deconvolution can be numerically unstable due to noise amplification caused by large values of
1/F{fI} at high frequencies. We therefore regularize F{fI} by applying a threshold under which
the values are set to the threshold while preserving their phase, also called water level regularization
[1, Chapter 8.3]. Here we use the threshold value of 0.05.

The infection fatality ratio can therefore be expressed as:

IFR =
D(t)

Isero(t)

∫∞
0
I∗(t− τ)fsero(τ)dτ∫∞

0
I∗(t− τ)fD(τ)dτ

, (2)

were α cancel out. In practice we do not have continuous values of epidemiological variables, but
counts by discrete time periods. In this study data were available at a daily time step (Fig. 1). We
therefore replace integrals in eq. 2 with sums over discrete time delays as:

IFR =
D(i)

Isero(i)

∑T
j=0 I

∗(i− j)psero(j)∑T
j=0 I

∗(i− j)pD(j)
, (3)

where i is the day on which deaths and seroprevalence are measured, T is the total number of
days since the start of the epidemic, and psero(j) and pD(j) are respectively the probabilities of
seroconversion and death during day j after infection computed using the distribution functions of
seroconversion and death Fsero and FD: psero(j) = Fsero(j+ 1)−Fsero(j) and pD(j) = FD(j+ 1)−
FD(j). The values of I∗ are also computed using discrete time steps.
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To infer the IFR we considered a binomial likelihood for the number of deaths D(i) occurring
among the fraction of the infected population at risk of dying on day i, Isero(i)φ(i), where φ(i) =∑T

j=0 I
∗(i−j)pD(j)∑T

j=0 I
∗(i−j)psero(j)

as:

L(IFR|θ1...T ) =

T∏
i=1

(
Isero(i)φ(i)

D(i)

)
IFRD(i)(1− IFR)I

sero(i)φ(i)−D(i), (4)

were L is the likelihood of IFR given the data and the seroprevalences at each sampling time i,
θ1...T , recalling that Isero(t) = θt · P with P the population. To incorporate uncertainty in the
seroprevalence estimates one can integrate over the seroprevalence posterior at time t, ft(θ):

L(IFR) =

T∏
t=1

∫
L(IFR|θt)ft(θ)dθ

We approximate the integral by Monte Carlo integration using M posterior draws θmt from our
seroprevalence analysis [12]:

L(IFR) ≈
T∏
t=1

1

M

J∑
m=1

L(IFR|θmt ).

Finally, the log-likelihood, ll is:

ll ≈
T∑
t=1

− log(M) + log

{
J∑

m=1

L(IFR|θmt )

}
.

2 Inference

2.1 Bayesian framework

We aim at inferring the IFR by age class. We use the age-classes in our previous analysis: 5-9, 10-19,
20-50, 50-65, and 65+ [12]. Inference is drawn using a Bayesian framework, where we assume that
the IFR for age class a, IFRa, has a Beta prior distribution with age-specific parameters αa and βa:

IFRa ∼ Beta(αa, βa).

We reparametrize the prior following [6, Chapter 5]:

γa =
αa

αa + βa

λa = αa + βa,

with hyper-priors:

γa ∼ Beta(1, 6.5)

λa ∼ Pareto(0.1, 1.5).

We use for the mean of the IFR prior, γ, a beta distribution which has a median of ≈ 0.1 to account
for the fact that current estimates situate around 1%, with more vulnerable age classes around 10%.
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Posterior draws were obtained using a Hamiltonian Monte Carlo sampler as implemented in the Stan
programming language [3], through the package rstan [11] in R. Chain convergence was assessed
using the Gelman-Rubin R̂ statistic [5]. The code used in the analysis is available at https:

//github.com/HopkinsIDD/sarscov2-ifr-gva.

2.2 Data

Epidemiological data for each age class was provided by the canton of Geneva’s public health au-
thority, the Direction Générale de la Santé (DGS) (Fig. 1). Population data [9], and the number
of people living in assisted care centers [8] were obtained from the statistics office of the canton of
Geneva. The parameter values for the delay distributions are given in Table 1.

2.3 Population-level post-stratification

The population-level IFR was estimated by post-stratification using the estimates by age class a,
IFRa:

IFRpop =
1

Isero

∑
a

Iseroa · IFRa, (5)

where Isero is the estimated number of seropositives in the canton of Geneva on the last available
serosurvey week (May 6th), and Iseroa is the estimated number of seropositives in age class a from
our previous analysis [12]. We note that this estimate accounts for differences in attack rates across
age classes.

Table 1: Paremetrization of delay distributions. The distribution of delays were parameterized using
log-normal distributions either as reported in the cited references, or computed to match reported
mean and standard deviation (denoted with †). Delay combinations (like infection to symptom onset
and symptom onset to reporting), were computed by convolution (denoted by ∗). All distributions
are shown in Fig. 2.

Parameters

Distribution logµ (mean) log σ (sd) Description Source

finc 1.57 (5.94) 0.65 (4.31) Incubation period [2]
freport 1.50 (5.60) 0.45 (4.20) Symptom onset to reporting [10]†

fsympsero 2.34 (11.2) 0.38 (4.40) Symptom onset to seroconversion [12]
freportdeath 2.1 (11.9) 0.87 (12.7) Reporting to death DGS‡

fC finc ∗ freport Infection to reporting -
fsero finc ∗ fsympsero Infection to seroconversion -
fD finc ∗ freport ∗ freportdeath Infection to death -
‡
Data from Geneva’s public health authority (Direction Générale de la Santé)
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Figure 1: Age-stratified COVID-19 daily epidemiological data in the canton of Geneva, Switzerland
in the general population (left column) and within assisted care facilities (EMS) (right column).

3 Results

Primary results. Results discussed in the main text are presented in Table 1 of the main text,
with IFR posterior draws given in Fig. 3.

Accounting for assisted care facilities/nursing homes. The true seroprevalence in assisted
care facilities remains unknown. If we consider only deaths and infections that occurred in the
general population older than 65, the age-specific IFR for this group decreases to 2.7% (95% CrI
1.6-4.6). Excluding this population (both infections and deaths) leads to an overall IFR estimate in
Geneva of 0.32% (95% CrI 0.17-0.56), half of what we estimate in our primary analyses (Table 2).

Sensitivity analyses. We fit the model using a uniform instead of a Beta-distributed IFR prior
and results were very similar, except for a wider 95% CrI for the 5-9 age class. Finally we fit the
model using only the last serosurvey week which yielded IFR posteriors with the same means but
wider 95% CrIs. Uncertainty in the delay distributions was accounted for in the main analysis by
sampling over estimates of the log-normal distribution parameters (Fig .2).
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Figure 2: Cumulative probability distributions of delays to key events. Left: Delay distributions for
which estimates were available from data. Right: Un-observable delays estimated using convolutions
(Table 1). Distributions are shown in terms of the MLE parameter estimates (lines) and the 95%
confidence intervals (shadings).

Reported COVID-19 deaths and excess mortality Analysis of excess mortality trends have
been suggested to provide a more accurate estimate of COVID-19 mortality due to confirmed death
under-reporting [7]. The cantonal department of public health (DGS) reported the number of excess
mortality during the weeks of the epidemic, estimating to 261 excess deaths during weeks 12-18
among the 65 and older age group, and no statistically significant excess mortality in the younger
population [4]. In the same period there were 255 reported COVID-19 deaths in the 65+ age class.
This suggests that COVID-19-related deaths were not significantly under-reported.

Table 2: Age-stratified estimates of the IFR without accounting for the deaths in assisted care
facilities. Results for age classes younger than 65 are the same as in Table 1 of the main text, and
estimates for the 65+ age class and the overall population were recomputed by not considering the
population living in assisted care facilities.

Age class Population Seroconverted population Deaths IFR [%]
as of May 6th (95% CrI) as of June 1st (95% CrI)

65+ 79’509 5’400 (3’000- 8’400) 135 2.7 (1.6-4.6)

all 502’700 54’800 (41’300-70’700) 152 0.32 (0.17-0.56)
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Figure 3: IFR posterior distributions by age class.
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http://www.ge.ch/statistique/tel/domaines/01/01_01/T_01_01_8_01.xls (visited on
2020-06-03).
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Emery8, Benoit Favre1, Antoine Flahault1,4,9, Natalie Francioli4, Laurent Gétaz1,4, Alice Gilson1,
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