THE LANCET Infectious Diseases

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Koehler P, Bassetti M, Chakrabarti A, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. *Lancet Infect Dis* 2020; published online Dec 14. https://doi.org/10.1016/S1473-3099(20)30847-1.

Supplemental Material to manuscript entitled

Defining and Managing COVID-19 Associated Pulmonary Aspergillosis: The 2020 ECMM/ISHAM Consensus Criteria for Research and Clinical Guidance

Table of Contents

Mandatory Supportive Measures	. 1
References	. 2
Supplemental figure	. 3
Figure S1 CT Imaging	. 3

Mandatory Supportive Measures

Observational studies suggest that CAPA develops through the disease course predominantly in patients in the ICU and with ARDS, in whom optimal respiratory management often determines patient outcome. ^{1,2} Guidance on the management of COVID-19 associated ARDS is in development or has been issued by several societies, organizations and experts. ³⁻⁵ Importantly, these guidelines are largely based on experiences in the management of ARDS caused by other pathogens, in particular influenza and only limited data and case series of patients with COVID-19 are available to date. ⁶⁻⁸ In brief, early prone positioning, including self-proning in non-intubated patients and the use of non-invasive techniques as high flow oxygen delivered via nasal cannulas (HFNC) or non-invasive ventilation (NIV) have proven useful in COVID-19 patients with mild ARDS and can safely be applied with appropriate barrier precautions and close monitoring. ⁹⁻¹¹

Upon respiratory deterioration, early intubation and lung protective ventilation is warranted. Prone positioning during mechanical ventilation in patients with severe ARDS (≥16 hours per day) is effective and might be beneficial even in some patients with only mild to moderate ARDS. ^{12,13} Veno-venous ECMO may be considered as rescue strategy in patients with refractory respiratory failure. However, whether ECMO is beneficial during COVID-19 triggered cytokine storm or hypercoagulability is yet unclear.

References

- 1. Koehler P, Cornely OA, Bottiger BW, et al. COVID-19 associated pulmonary aspergillosis. *Mycoses* 2020; **63**(6): 528-34.
- 2. Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. *Lancet Respir Med*. 2020 Jun; **8**(6): e48-e49.doi: 10.1016/S2213-2600(20)30237-X.
- 3. Fan E, Beitler JR, Brochard L, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? *Lancet Respir Med*. 2020; **8** (8): 816-21.
- 4. Kluge S, Janssens U, Welte T, Weber-Carstens S, Marx G, Karagiannidis C. German recommendations for critically ill patients with COVID-19. *Med Klin Intensivmed Notfmed*. 2020; **115**(3): 175-177.
- 5. WHO Clinical management of COVID-19 interim guidance. 2020; https://apps.who.int/iris/rest/bitstreams/1278777/retrieve; Last assessed 06. August 2020.
- 6. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. *N Engl J Med* 2020. doi: 10.1056/NEJMcp2009575
- 7. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. *Am J Respir Crit Care Med*; **195**(9): 1253-1263.
- 8. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. *JAMA*; **307**(23): 2526-33. 2012.
- 9. Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. *Lancet Respir Med.* 2020; **8**(8): 765-774.
- 10. Telias I, Katira BH, Brochard L. Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19? *JAMA*. 2020; **323**(22): 2265-7.
- 11. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bioaerosol dispersion. *Eur Respir J. 2020;55(5): 2000892.doi: 10.1183/13993003.00892-2020.*
- 12. Guerin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. *N Engl J Med* 2013; **368**(23): 2159-68.
- 13. Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. *JAMA*. 2016; **315**(8): 788-800.

Supplemental figure

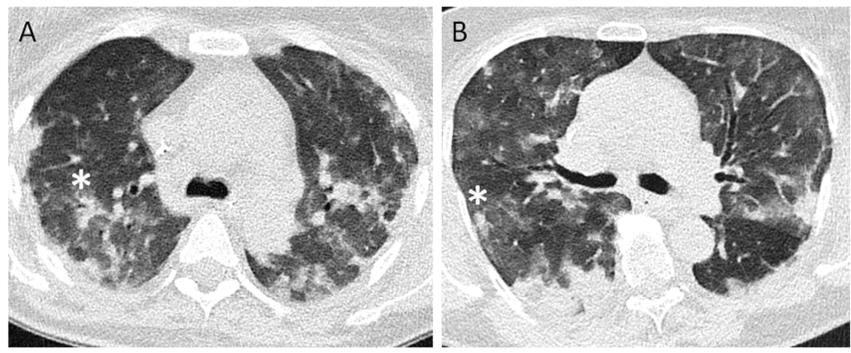


Figure S1 CT Imaging

Low-dose CT from COVID-19 patients with A) confirmed aspergillosis and B) without fungal infection. In both patients, focal nodular consolidations with adjacent ground glass opacities (*) as one frequent finding in pulmonary aspergillosis are present, underlining low specificity in peak and late COVID-19 stages.