Supplementary Materials for:

Paper Biosensors for Detecting Elevated IL-6 Levels in Blood and Respiratory Samples from COVID-19 patients

Cristina Adrover-Jaume,^{‡a,b} Alejandra Alba-Patiño,^{‡a,b} Antonio Clemente,^{a,*} Giulia Santopolo,^{a,b} Andreu Vaquer,^a Steven M. Russell,^a Enrique

Barón,^a María del Mar González del Campo,^a Joana M. Ferrer,^{d,e} María Berman-Riu,^d Mercedes García-Gasalla,^f María Aranda,^{a,c} Marcio Borges,^{a,c} Roberto de la Rica.^{a,b,*}

^a Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120 Palma de Mallorca, Spain.

^b University of the Balearic Islands, Chemistry Department, Cra. de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.

^c Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain

^d Immune Response in Human Pathology Group, Health Research Institute of the Balearic Islands (IdISBa)

^e Immunology Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain Son Espases University Hospital, 07120 Palma de Mallorca, Spain.

^f Infectious Diseases-HIV Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120 Palma de Mallorca, Spain.

Table S1: Limit of detection (LOD) and dynamic range of previously proposed biosensors for IL-6 detection

				Instrumental			
Ref	Technique	Detection	Support	LOD	Matrix	Dynamic range	Analysis time
1	Aptamers	Conductance	Carbon nanotube	1 pg mL ⁻¹	PBS	1 pg mL ⁻¹ – 10 ng mL ⁻¹	Real-time
2	Immunosensor and aptamer	Electrochemical	Organic Field Effect Transistors	20 pg mL ⁻¹	PBS	20 pg mL ⁻¹ – 210 ng mL ⁻¹	-
3	Immunosensor	ELISA	Ultrafiltration regenerated cellulose membranes (RC)	31 pg mL ⁻¹	PBS	31 – 500 pg mL ⁻¹	2 h
4	Immunosensor	Naked eye Optical spectroscopy	Magnetic nanoparticles (MNPs) and polystyrene (PS) microparticles	11 pg mL ⁻¹ eye 1.2 pg mL ⁻¹ instr	PBS	3.7 – 900 pg mL ⁻¹	1 h
5	Immunosensor	Chemiluminescence	Polydimethylsiloxane (PDMS)	1.0 pg mL ⁻¹	PBS (30% fetal calf serum)	5 – 1280 pg mL ⁻¹	90 min
6	Immunosensor	Localized-surface plasmon resonance (LSPR)	Gold nanorod	10 pg mL ⁻¹	PBS	10 – 10 000 pg mL ⁻¹	30 min
7	Immunosensor	Electrochemical	Silicon nanowire field effect transistor	-	PBS	5 – 50000 pg mL ⁻¹	Real-time
8	Immunosensor	Fluorescence	Optical fiber	0.1 pg mL ⁻¹	PBS	0.4 – 400 pg mL ⁻¹	60 min
9	Immunosensor	Electrochemical	Graphene oxides	5 pg mL ⁻¹	PBS	5 – 150 pg mL ⁻¹	30 min
10	Immunosensor	Electrochemical	Gold electrode	220 pg mL ⁻¹	PBS	-	60 min 10 s signal
11	Immunosensor	Electrochemical	Gold electrode	4 pg mL ⁻¹	PBS	-	>110 min
12	Oligonucleotides and antibodies	Optical	Silica wafers coated with Ti/Au	88 µg mL ⁻¹	PBS and SSC	-	-
13	Immunosensor	Surface-enhanced Raman scattering (SERS)	Paper and DTNB on gold nano shell with a silica core	1 pg mL ⁻¹	PBS	1 pg mL ⁻¹ – 1 μg mL ⁻¹	-

14	Aptasensor	Electrochemical	Glassy carbon electrode modified with p- aminobenzoic acid, p-aminothiophenol and AuNPs	1.6 pg mL ⁻¹	PBS	5 pg mL ⁻¹ – 100 ng mL ⁻¹	>60 min
14	Immunosensor	Electrochemical	Magnetic microparticles and planar graphite-screen printed electrodes	0.3 pg mL ⁻¹	PBS	1 pg mL ⁻¹ – 1 μg mL ⁻¹	30 - 60 min
15	Immunosensor	Fluorescence	Nitrocellulose PVC Glass fiber	0.37 pg mL ⁻¹	PBST-BSA	2 – 500 pg mL ⁻¹	15 min
16	Immunosensor	Fluorescence spectroscopy	Nitrocellulose	0.9 pg mL ⁻¹	PBS	1 – 1000 pg mL ⁻¹	30 min
17	Aptameric GFET (field effect transistor)	Electrochemical	Graphene	210 pg mL ⁻¹	PBS	1 – 16 ng mL ⁻¹	6 min
18	Immunosensor	Differential pulse voltammetry	TI:Au on silicon subtrate	20 pg mL ⁻¹	PBS	0 – 60 pg mL ⁻¹	2.5 min
19	Immunosensor	Chemiluminescence	Optical fiber	1.05 pg mL ⁻¹	PBS	5 – 10 000 pg mL ⁻¹	>75 min
20	Immunosensor	Electrochemical	Indium tin oxide (ITO) electrode	6.0 fg mL ⁻¹	PBS	0.02 – 16 pg mL ⁻¹	>30 min
21	Immunosensor	Colorimetric	Plasmonic nanoprobes and paper	0.1 pg mL ⁻¹	PBS		17 min
22	Immunosensor	Localized-surface plasmon resonance (LSPR)	Poly(pyrrole N-hydroxy succinimide)	10 fg mL ⁻¹	PBS	0.03 – 22.5 pg mL ⁻¹	-
23	Multiplexed immunosensor	LSPR	glass	11.29 pg mL ⁻¹	PBS	10 – 10 ⁴ pg mL ⁻¹	40 min
24	Microfluidic immunoarray	electrochemical	gold	0.05 to 2 pg mL ⁻¹	serum	sub pg mL−1 to well above ng mL−1)	<60 min
This work	Immunosensor	Colorimetric	Paper/AuNPs	10 ⁻³ pg mL ⁻¹	PBS	10 ⁻³ – 10 ² pg mL ⁻¹	7-8 min

Figure S1. Calibration plot for IL-6 detection with an in-house ELISA in semi-logarithmic (A) or log-log (B) scale. The calibration plot was obtained as follows. A 96-well ELISA microplate (Thermo Scientific) was coated with 100 μ l of mouse anti-human interleukin-6 (IL-6) monoclonal capture antibody (Abcam) at 1 μ g·mL⁻¹ in bicarbonate buffer (0.1 M, pH 9.6). After overnight incubation at 4 °C, wells were washed 3 times with PBS containing 0.1% Tween 20 (PBST), blocked during 2 h at 37 °C with PBS containing 2% of bovine serum albumin (BSA) and washed again 3 times with PBST. The calibration curve was obtained by adding 100 μ l of IL-6 solutions to coated wells and incubated 2h at room temperature (RT) in a swinging shaker. IL-6 solutions were also applied to wells without capture antibodies in order to subtract non-specific signals. Each sample was assayed in triplicate. Next, plates were washed 3 times with PBST and then 100 μ L of biotinylated mouse anti-human IL-6 monoclonal detection antibody (Sigma-Aldrich) at 10 μ g·mL⁻¹ in PBST-BSA 1% was added. After 2h of incubation at RT in a swinging shaker, plates were washed 5 times with PBST and 100 μ L of streptavidin-HRP diluted 1:1000 in 1% PBST-BSA was added for 30 min at RT. Then, plates were washed again 5 times with PBST and 100 μ L of ready-to-use 1-Step Ultra TMB (Thermo Scientific) was added for

30 min at RT. Finally, the colorimetric reaction was stopped with 100 μ L of 2N H₂SO₄, and absorbance was measured at 450 nm. Absorbance was read with a Biotek power wave plate reader. The limit of detection expressed as the sample that yields a signal above three times the standard deviation of the blank is 3 pg·mL⁻¹.

Figure S2. Calibration plot with IL-6 diluted in PBS-BSA (40 μ g mL⁻¹) instead of in PBS. (A) Scanned images of the paper biosensors; (B) Calibration plot obtained via densitometric analysis of images in (A) with ImageJ; S_{blank} + 3 σ = 59; (C) Calibration plot obtained when measuring the colorimetric signal of the same assays with our app; S_{blank} + 3 σ = 23. Error bars are the standard deviation of the three independent experiments.

References:

- Khosravi, F.; Loeian, S. M.; Panchapakesan, B. Ultrasensitive Label-Free Sensing of IL-6 Based on PASE Functionalized Carbon Nanotube Micro-Arrays with RNA-Aptamers as Molecular Recognition Elements. *Biosensors* 2017, 7 (2). https://doi.org/10.3390/bios7020017.
- (2) Diacci, C.; Berto, M.; Di Lauro, M.; Bianchini, E.; Pinti, M.; Simon, D. T.; Biscarini, F.; Bortolotti, C. A. Label-Free Detection of

Interleukin-6 Using Electrolyte Gated Organic Field Effect Transistors. *Biointerphases* **2017**, *12* (5), 05F401. https://doi.org/10.1116/1.4997760.

- (3) Militano, F.; Poerio, T.; Mazzei, R.; Salerno, S.; Bartolo, L. De; Giorno, L. Development of Biohybrid Immuno-Selective Membranes for Target Antigen Recognition. *Biosens. Bioelectron.* 2017, 92 (November 2016), 54–60. https://doi.org/10.1016/j.bios.2017.02.003.
- Yin, B.; Zheng, W.; Dong, M.; Yu, W.; Chen, Y.; Joo, S. W.; Jiang, X. An Enzyme-Mediated Competitive Colorimetric Sensor Based on Au@Ag Bimetallic Nanoparticles for Highly Sensitive Detection of Disease Biomarkers. *Analyst* 2017, *142* (16), 2954–2960. https://doi.org/10.1039/c7an00779e.
- (5) Wu, J.; Chen, Y.; Yang, M.; Wang, Y.; Zhang, C.; Yang, M.; Sun, J.; Xie, M.; Jiang, X. Streptavidin-Biotin-Peroxidase Nanocomplex-Amplified Microfluidics Immunoassays for Simultaneous Detection of Inflammatory Biomarkers. *Anal. Chim. Acta* 2017, *982*, 138–147. https://doi.org/10.1016/j.aca.2017.05.031.
- (6) Zhu, J.; He, J.; Verano, M.; Brimmo, A. T.; Glia, A.; Qasaimeh, M. A.; Chen, P.; Aleman, J. O.; Chen, W. An Integrated Adipose-Tissueon-Chip Nanoplasmonic Biosensing Platform for Investigating Obesity-Associated Inflammation. *Lab Chip* 2018, *18* (23), 3550–3560. https://doi.org/10.1039/c8lc00605a.
- (7) Chen, H.; Li, J.; Zhang, X.; Li, X.; Yao, M.; Zheng, G. Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. *Nano Lett.* 2018, 18 (8), 4716–4726. https://doi.org/10.1021/acs.nanolett.8b01070.
- (8) Zhang, K.; Liu, G.; Goldys, E. M. Robust Immunosensing System Based on Biotin-Streptavidin Coupling for Spatially Localized
 Femtogram ML-1 Level Detection of Interleukin-6. *Biosens. Bioelectron.* 2018, *102*, 80–86. https://doi.org/10.1016/j.bios.2017.11.023.
- (9) Wei, H.; Ni, S.; Cao, C.; Yang, G.; Liu, G. Graphene Oxide Signal Reporter Based Multifunctional Immunosensing Platform for Amperometric Profiling of Multiple Cytokines in Serum. ACS Sensors 2018, 3 (8), 1553–1561. https://doi.org/10.1021/acssensors.8b00365.
- (10) Gentili, D.; D'Angelo, P.; Militano, F.; Mazzei, R.; Poerio, T.; Brucale, M.; Tarabella, G.; Bonetti, S.; Marasso, S. L.; Cocuzza, M.; et al. Integration of Organic Electrochemical Transistors and Immuno-Affinity Membranes for Label-Free Detection of Interleukin-6 in the

Physiological Concentration Range through Antibody-Antigen Recognition. *J. Mater. Chem. B* **2018**, *6* (33), 5400–5406. https://doi.org/10.1039/c8tb01697f.

- (11) Sabaté, J.; Henry, O. Y. F.; Jolly, P.; Ingber, D. E. An Antifouling Coating That Enables Affinity-Based Electrochemical Biosensing in Complex Biological Fluids. *Nat. Nanotechnol.* 2019, *14* (December), 1143–1149. https://doi.org/10.1038/s41565-019-0566-z.
- (12) Fabri-Faja, N.; Calvo-Lozano, O.; Dey, P.; Terborg, R. A.; Estevez, M. C.; Belushkin, A.; Yesilköy, F.; Duempelmann, L.; Altug, H.; Pruneri, V.; et al. Early Sepsis Diagnosis via Protein and MiRNA Biomarkers Using a Novel Point-of-Care Photonic Biosensor. *Anal. Chim. Acta* 2019, *1077*, 232–242. https://doi.org/10.1016/j.aca.2019.05.038.
- (13) Wang, Y.; Sun, J.; Hou, Y.; Zhang, C.; Li, D.; Li, H.; Yang, M.; Fan, C.; Sun, B. A SERS-Based Lateral Flow Assay Biosensor for Quantitative and Ultrasensitive Detection of Interleukin-6 in Unprocessed Whole Blood. *Biosens. Bioelectron.* 2019, *141* (June), 111432. https://doi.org/10.1016/j.bios.2019.111432.
- (14) Tertis, M.; Ionut, P.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Biosensors and Bioelectronics Impedimetric Aptasensor for the Label-Free and Selective Detection of Interleukin-6 for Colorectal Cancer Screening. *Biosens. Bioelectron.* 2019, *137* (April), 123–132. https://doi.org/10.1016/j.bios.2019.05.012.
- (15) Huang, D.; Ying, H.; Jiang, D.; Liu, F.; Tian, Y.; Du, C.; Zhang, L.; Pu, X. Rapid and Sensitive Detection of Interleukin-6 in Serum via Time-Resolved Lateral Flow Immunoassay. *Anal. Biochem.* 2020, 588 (October 2019), 113468. https://doi.org/10.1016/j.ab.2019.113468.
- (16) Borse, V.; Srivastava, R. Fluorescence Lateral Flow Immunoassay Based Point-of-Care Nanodiagnostics for Orthopedic Implant-Associated Infection. *Sensors Actuators, B Chem.* 2019, 280, 24–33. https://doi.org/10.1016/j.snb.2018.10.034.
- (17) Hao, Z.; Pan, Y.; Shao, W.; Lin, Q.; Zhao, X. Graphene-Based Fully Integrated Portable Nanosensing System for on-Line Detection of Cytokine Biomarkers in Saliva. *Biosens. Bioelectron.* 2019, *134*, 16–23. https://doi.org/10.1016/j.bios.2019.03.053.
- (18) Russell, C.; Ward, A. C.; Vezza, V.; Hoskisson, P.; Alcorn, D.; Steenson, D. P.; Corrigan, D. K. Development of a Needle Shaped Microelectrode for Electrochemical Detection of the Sepsis Biomarker Interleukin-6 (IL-6) in Real Time. *Biosens. Bioelectron.* 2019, *126*, 806–814. https://doi.org/10.1016/j.bios.2018.11.053.

- Nie, R.; Huang, J.; Xu, X.; Yang, L. A Portable Pencil-like Immunosensor for Point-of-Care Testing of Inflammatory Biomarkers. *Anal. Bioanal. Chem.* 2020, *412*, 3231–3239. https://doi.org/https://doi.org/10.1007/s00216-020-02582-z.
- (20) Aydın, E. B. Highly Sensitive Impedimetric Immunosensor for Determination of Interleukin 6 as a Cancer Biomarker by Using Conjugated Polymer Containing Epoxy Side Groups Modified Disposable ITO Electrode. *Talanta* 2020, *215*, 120909. https://doi.org/10.1016/j.talanta.2020.120909.
- (21) Alba-Patiño, A.; Russell, S. M.; Borges, M.; Pazos-Perez, N.; Alvarez-Puebla, R. A.; de la Rica, R. Nanoparticle-Based Mobile Biosensors for the Rapid Detection of Sepsis Biomarkers in Whole Blood. *Nanoscale Adv.* 2020, 2, 253–1260. https://doi.org/10.1039/d0na00026d.
- (22) Aydın, E. B.; Aydın, M.; Sezgintürk, M. K. The Development of an Ultra-Sensitive Electrochemical Immunosensor Using a PPyr-NHS Functionalized Disposable ITO Sheet for the Detection of Interleukin 6 in Real Human Serums. *New J. Chem.* 2020. https://doi.org/10.1039/d0nj03183f.
- (23) Chen, P.; Chung, M. T.; McHugh, W.; Nidetz, R.; Li, Y.; Fu, J.; Cornell, T. T.; Shanley, T. P.; Kurabayashi, K. Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano 2015, 9 (4), 4173–4181. https://doi.org/10.1021/acsnano.5b00396.
- (24) Tang, C. K.; Vaze, A.; Shen, M.; Rusling, J. F. High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins. ACS Sensors 2016, 1 (8), 1036–1043. https://doi.org/10.1021/acssensors.6b00256.