
S1 Appendix

1 Information decomposition in large multivariate
systems

To formulate our theory of causal emergence for arbitrary order k, in Section Partial
information decomposition we introduced definitions of kth-order synergy and unique
information. In this appendix we complement these with a matching definition of
kth-order redundancy, and show that these provide a full-fledged information
decomposition for any k = {1, . . . , n− 1}. For completeness, we present all definitions
and examples here – including those that were necessary for the exposition of the main
text and were previously presented in Section Partial information decomposition.

We begin by (re-)introducing the notion of kth-order synergy between n variables,
defined as

Syn(k)(X;Y ) :=
∑

α∈S(k)

Iα∂ (X;Y ) ,

with S(k) = {{α1, . . . , αL} ∈ A : |αj | > k, ∀j = 1, . . . , L}. Intuitively, Syn(k)(X;Y )
corresponds to the information about the target that is provided by the whole X but is
not contained in any set of k or less parts when considered separately from the rest.
Accordingly, S(k) only contains collections of more than k sources. For example, for
n = 2 we obtain the standard synergy S(1) = {{12}}, and for n = 3 we have
S(1) = {{12}, {13}, {23}, {12}{13}, {12}{23}, {13}{23}, {12}{13}{23}, {123}}.

Similarly, the kth-order unique information of Xβ with β ⊂ [n] is calculated as

Un(k)(Xβ ;Y |X−β) :=
∑

α∈U(k)(β)

Iα∂ (X;Y ) ,

with U (k)(β) = {α ∈ A : β ∈ α,∀α ∈ α \ β, α ⊆ [n] \ β, |α| > k}, and X−β being all
the variables in X the indices of which are not in β. This corresponds to all the atoms
where β is the only source of size k or less – which, importantly, is in general not just
Iβ∂ . Intuitively, this is the information that Xβ has access to and no other subset of
parts has access to on its own (although bigger groups of other parts may). And again,
for n = 2 we recover U (1)({i}) = {{i}}, and for n = 3 we have e.g.
U (1)({1}) = {{1}, {1}{23}}.

Finally, the kth-order redundancy is given by

Red(k)(X;Y ) :=
∑

α∈R(k)

Iα∂ (X;Y ) ,

with R(k) = {α ∈ A : ∃i 6= j, |αi|, |αj | ≤ k}. Intuitively, Red(k)(X;Y ) is the
information that is held by at least two different groups of size k or less. Again, in the
n = 2 case we recover the standard redundancy R(1) = {{1}{2}}; and as an example for
n = 3 we have R(1) = {{1}{2}, {1}{3}, {2}{3}, {1}{2}{3}}.

With the definitions above, we can build a coarse-grained PID which generalises the
well-known construction for n = 2. This allows us to formulate decompositions with a
small number of atoms that scale gracefully with system size, and, more interestingly,
preserve the intuitive meaning that synergy, redundancy, and unique information have
for n = 2.
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Lemma 1. The kth-order synergy, redundancy, and unique information defined above
provide an exact decomposition of mutual information:

I(X;Y ) = Red(k)(X;Y ) + Syn(k)(X;Y )

+
∑
β⊂[n]:
|β|≤k

Un(k)(Xβ ;Y |X−β) . (1)

Proof. We will prove this by showing that the sets R(k), S(k) and U (k)(β) are a
partition of A. We will do this in two steps: first, we show that their intersection is
empty; and second, that their union is A.

Let us show that the intersections between every pair of sets is empty:

• R(k)
⋂
S(k) = ∅, since if α ∈ R(k) it must contain at least one α ∈ α : |α| ≤ k,

and therefore α /∈ S(k).

• U (k)(γ)
⋂
U (k)(β) = ∅ if and only if γ 6= β, since every α ∈ U (k)(γ) has either no

other elements apart from γ (in which case β /∈ α and thus α /∈ U (k)(β)), or other
elements of cardinality greater than k (in which case, again, β /∈ α and thus
α /∈ U (k)(β)).

• S(k)
⋂
U (k)(β) = ∅ for all |β| ≤ k, since every α ∈ U (k)(β) contains at least one

element with cardinality less than or equal to k (specifically, β), and therefore
α /∈ S(k).

• R(k)
⋂
U (k)(β) = ∅ for all |α| ≤ k, since every α ∈ R(k) contains at least two sets

with cardinality less than or equal to k, while by the definition of U (k)(β) every
element other than β must have cardinality greater than k, and thus α /∈ U (k)(β).

This concludes the first part of the proof. Next, we need to prove that the union of
those sets is indeed A. We will show this by proving that every α ∈ A is in one of those
sets:

• If @α ∈ α : |α| ≤ k, then α ∈ S(k).

• If there is exactly one α ∈ α : |α| ≤ k, then α ∈ U (k)(α).

• If there are more than one α ∈ α : |α| ≤ k, then α ∈ R(k).

The two possible decompositions for n = 3, together with the standard PID lattice,
are shown in Figure A.

2 Properties of high-order PI atoms

As discussed in Section A formal theory of causal emergence, our theory does not
depend on a specific functional form of PID. Instead, it applies to any PID that satisfies
the following properties:

• Deterministic equality : if there exists a function f(·) such that Xi = f(Xj) with
i 6= j, then the information decomposition of X is isomorphic to that of X−j (see
below).

• Non-negativity : Syn(k)(X;Y ) ≥ 0, and
min{I(Z;Y ), I(Z;Y |X)} ≥ Un(k)(Z;Y |X) ≥ 0.
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Standard PID k = 1 k = 2

{1}{2}{3}

{1}{3}{1}{2} {2}{3}

{1}{23} {2}{13} {3}{12}

{1} {2} {3} {12}{13}{23}

{12}{13} {12}{23} {13}{23}

{12} {13} {23}

{123}

{1}{2}{3}

{1}{3}{1}{2} {2}{3}

{1}{23} {2}{13} {3}{12}

{1} {2} {3}

{12}{13} {12}{23} {13}{23}

{12} {13} {23}

{123}

{1}{2}{3}

{1}{3}{1}{2} {2}{3}

{1}{23} {2}{13} {3}{12}

{1} {2} {3}

{12}{13} {12}{23} {13}{23}

{12} {13} {23}

{123}
S(k)

U (k)

R(k)

Fig A. Coarse-grained partial information decomposition of order k. (left)
Standard PID lattice for n = 3, shown for reference. Node labels are omitted from the
other lattices for clarity. (middle) Coarse-graining for k = 1, superimposed on the PID
lattice. (right) Coarse-graining for k = 2. For both values of k, Lemma 1 guarantees
that the kth-order atoms provide an exact decomposition of mutual information.

• Source data processing inequality : Un(k)(W ;Y |X) ≤ Un(k)(Z;Y |X) for all
W −Z − (X, Y ) Markov chains.

To formulate the causal decoupling and downward causation indices in Section A
taxonomy of emergence, we make use of ΦID, a recent extension of PID to multi-target
settings [1]. As with PID, our theory does not require a particular functional form of
ΦID, only the following property:

•
∑
|α|=k Syn

(k)(Xt;X
α
t′ ) ≥ D(k)(Xt;Xt′) ≥ Syn(k)(Xt;X

β
t′) for all |β| = k.

Finally, these properties are required to formulate the practical criteria for
emergence in Section A taxonomy of emergence:

• Whole-minus-sum: Syn(k)(X;Y ) ≥ I(X;Y )−
∑
|α|=k I(Xα;Y ).

• Target data processing inequality : for all X − Y − U Markov chains,
Syn(k)(X;U) ≤ Syn(k)(X;Y ).

For completeness, we present a precise definition of the deterministic equality
property, as previously introduced in the PID literature [2].

Definition 1. A PID satisfies deterministic equality if Iα∂ (X;Y ) = I
gj(α)
∂ (X−j ;Y )

for all α ∈ A whenever there exists a function f(·) such that f(Xj) = Xi with i 6= j,
with gj(α) removes j from all the sets of indices in α.

It is direct to check that a number of well-known information decompositions,
including the Minimum Mutual Information PID [3], and the corresponding ΦID [1],
satisfy these requirements.

With these properties at hand we can prove the following results, used in
Sections Defining causal emergence and A taxonomy of emergence:
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Lemma 2. If Xn+1 = X, then the following holds:

Syn(k)(X;Y ) = Un(k)(Xn+1;Y |X) . (2)

Above, the second term corresponds to a PID over a system of n+ 1 elements.

Proof. Begin by considering the PID of n sources X1, ..., Xn on the lattice An, and
define its set S(k) as above. Now we add an additional n+ 1st variable that is simply all
of them concatenated, Xn+1 = Xn, and build a PID on the lattice An+1. In the
following, we consider the set S(k) to belong to the lattice An, and the set U (k)(β) to
belong to the lattice An+1. To prove the lemma we need four ingredients, which we
provide in the four paragraphs below.

1. First, note that the nodes in An+1 that precede {n+ 1} are those in An, but with
the singleton {n+ 1} appended to them. More specifically, the mapping
f : An → An+1 of the form f(α) = α ∪ {{n+ 1}} is such that for any α ∈ An
then f(α) ≺ {{n+ 1}}. Additionally, due to the properties of the partial order,
α � α′ if and only if f(α) � f(α′). This shows that An is isomorphic to a
sublattice of An+1.

2. Next, by the deterministic equality property it is direct to check that I
f(α)
∩ = Iα∩ .

Since this equality holds for all α ∈ An, then applying a Möbius inversion we

directly obtain that I
f(α)
∂ = Iα∂ .

3. Additionally, by construction of U (k) and S(k), for all γ ∈ S(k) one has
f(γ) ∈ U (k)({n+ 1}). In other words, the set U (k)({n+ 1}) includes all atoms in
S(k), plus {n+ 1}.

4. Finally, note that the node {12...n}{n+ 1} is the only direct predecessor of
{n+ 1}, since there exists no node β ∈ An+1 such that β ≺ {n+ 1} and not
β � {12...n}{n+ 1}. By the deterministic equality property

I
{12...n}{n+1}
∩ = I

{12...n}
∩ and, therefore, I

{n+1}
∂ = 0.

With all of these, it is direct to see that

Un(k)(Xn;Y |X) =
∑

α∈U(k)({n+1})

Iα∂ (X;Y )

=
∑

α∈S(k)

Iα∂ (X;Y ) = Syn(k)(X;Y ) .

Corollary 1. If Xn+1 = X and Y n+1 = Y , then the following holds:

G(k)(X;Y ) = Un(k)(Xn+1;Y n+1|X,Y ) (3)

Above, the second term corresponds to a ΦID over a system of n+ 1 elements.

Proof. Follows from a direct ΦID extension to the proof of Lemma 2, by formulating a
decomposition

I(X;Y ) =
∑

α,β∈An

Iα→β
∂ (X;Y ) ,

and applying the proof above to both α and β. Strictly speaking, this also requires a
natural multi-target extension of the Deterministic Equality property, namely that
Iα→β
∩ (X;Y ) = Iα→β

∩ (X−j ;Y ) if Xi = f(Xj) with j 6= i, for any β ∈ An; as well as

the symmetric Iα→β
∩ (X;Y ) = Iα→β

∩ (X;Y −j) if Y i = f(Y j) with j 6= i, for any
α ∈ An.
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3 Mathematical properties of causal emergence

Proof of Lemma 1. The first property can be easily proven by noting that there can be
no synergy in a univariate system: i.e. if n = 1, then S(k) = ∅ and therefore
Syn(k)(Xt;Xt′) = 0.

To prove the second property, let us assume that there exists a function g(·) such
that g(Xj

t ) = Vt for some j. Then, one can show that

Un(1)(Vt;Xt′ |Xt) ≤ I(Vt;Xt′ |Xt) (4)

≤ I(Vt;Xt′ |Xj
t ) (5)

≤ H(Vt|Xj
t ) (6)

= 0 , (7)

where (4) is due to the non-negativity property of Un(k) introduced in Section Partial
information decomposition. This shows that Vt cannot exhibit emergent behaviour.

Proof of Theorem 1. If Syn(k)(Xt;Xt′) > 0, then by Lemma 2 it is clear that the
feature Vt = Xt exhibits causal emergence.

To prove the converse, note that all supervenient features follow the Markov chain
structure Vt −Xt −Xt′ . Therefore, for any supervenient feature Vt = f(Xt) the
following holds:

0 ≤ Un(k)(Vt;Xt′ |Xt) ≤ Un(k)(Xt;Xt′ |Xt) (8)

= Syn(Xt;Xt′) , (9)

where (8) is due to the data processing inequality of the unique information (c.f.
Section Partial information decomposition), and (9) is due to Lemma 2. Using this
result, is clear that if Syn(k)(Xt;Xt′) = 0 then Un(k)(Vt;Xt′ |Xt) = 0 for any
superventient feature Vt.

The above proof implies that the system has emergent behaviour if and only if the
system as a whole seen as a feature (i.e. Vt = Xt) is causally emergent. Note that the
fact that this trivial feature is helpful for detecting the presence of emergence doesn’t
imply that it is an appropriate way of representing it, as in most cases also carries
non-interesting information, and in practice one may be interested in features that
exhibit emergence but are shorter to describe than the microstate of the system, i.e.
H(Vt) < H(Xt).

Proof of Theorem 2. Let us first assume that there exists a supervenient feature Vt
such that Un(k)(Vt;X

α
t′ |X) > 0 for some α : |α| = k. Then, one can find that

0 < Un(k)(Vt;X
α
t′ |Xt)

≤ Un(k)(Xt;X
α
t′ |Xt) (10)

= Syn(k)(Xt;X
α
t′ ) (11)

≤ D(k)(Xt;Xt′) . (12)

Above, (10) is a consequence of the data processing inequality of the unique
information, (11) comes from Lemma 2, and (12) is from the properties of D(k) stated
in Section A taxonomy of emergence.
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To prove the converse, let us assume that all supervenient features Vt satisfy
Un(k)(Vt;X

α
t′ |Xt) = 0 for all k and |α| = k. In particular, this is true for the feature

Vt = Xt. Then, another application of Lemma 2 shows that

D(k)(Xt;Xt′) ≤
∑
|α|=k

Syn(k)(Xt;X
α
t′ ) (13)

=
∑
|α|=k

Un(k)(Xt;X
α
t′ |Xt)

= 0 .

Above, (13) is a consequence of the properties of D(k).

Proof of Theorem 3. We begin by proving that a system has a causally decoupled
feature iff G(k)(Xt;Xt′) > 0. This proof follows a similar structure to that of
Theorem 2 for downward causation.

Let us first assume that there exists a supervenient feature Vt with
Un(k)(Vt;Vt′ |Xt,Xt′) > 0. Then,

0 < Un(k)(Vt;Vt′ |Xt,Xt′)

≤ Un(k)(Xt;Xt′ |Xt,Xt′) (14)

= G(k)(Xt;Xt′) . (15)

Above, (14) can be obtained through a combination of the data processing inequalities
of the unique information and the synergy, as well as Lemma 2; and (15) is an
application of Corollary 1.

To prove the converse, assume that for all supervenient features
Un(k)(Vt;Vt′ |Xt,Xt′) = 0. As before, this also includes Vt = Xt. Therefore, applying
Corollary 1 we arrive at G(k)(Xt;Xt′) = Un(k)(Xt;Xt′ |Xt,Xt′) = 0, which concludes
the proof.

We now move on to prove the results on perfectly causally decoupled systems, where
G(k)(Xt;Xt′) > 0 and D(k)(Xt;Xt′) = 0. As
Syn(k)(Xt;Xt′) = G(k)(Xt;Xt′) +D(k)(Xt;Xt′) > 0, thanks to Theorem 1 this is
equivalent to the existence of at least one emergent feature Vt. Additionally, due to
Theorem 2, D(k)(Xt;Xt′) = 0 is equivalent to Un(k)(Vt;X

α
t′ |Xt) = 0 for all emergent

features and α : |α| = k

4 Mathematical properties of emergence criteria

In this appendix we provide the necessary proofs linking the practical criteria for
emergence in Eqs. (10a-10c) from the main text with the definitions in Section A formal
theory of causal emergence. For completeness, we provide formulae of Ψ, ∆, and Γ for
arbitrary emergence order k:

Ψ
(k)
t,t′(V ) := I(Vt;Vt′)−

∑
|α|=k

I(Xα
t ;Vt′) , (16a)

∆
(k)
t,t′(V ) := max

|α|=k

I(Vt;X
α
t′ )−

∑
|β|=k

I(Xβ
t ;Xα

t′ )

 , (16b)

Γ
(k)
t,t′(V ) := max

|α|=k
I(Vt;X

α
t′ ) . (16c)
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Proof of Proposition 1. To start, note that a direct calculation shows that

Ψ
(k)
t,t′(V ) ≤ I(Xt;Vt′)−

∑
|α|=k

I(Xα
t ;Vt′) (17)

≤ Syn(k)(Xt;Vt′) (18)

≤ Syn(k)(Xt;Xt′) . (19)

Above, (17) is due to the data processing inequality applied over the Markov chain
Vt −Xt −Xt′ − Vt′ ; (18) is due to the whole-minus-sum property of the synergy; and
(19) is due to the data processing inequality of the synergy. Therefore, it is clear that if

Ψ
(k)
t,t′(V ) > 0 for some feature Vt then Syn(k)(Xt;Xt′) > 0. This, combined with

Theorem 1, guarantees that the system exhibits causal emergence.
To check the condition for downward causation, a direct calculation shows that, for

some |α| = k,

∆
(k)
t,t′(V ) ≤ I(Xt;X

α
t′ )−

∑
|β|=k

I(Xβ
t ;Xα

t′ ) (20)

≤ Syn(k)(Xt;X
α
t′ ) (21)

≤ D(k)(Xt;Xt′) . (22)

Above, (20) is due to the data processing inequality applied over the Markov chain
Vt −Xt −Xα

t′ ; (21) to the whole-minus-sum property of the synergy; and (22) to the

properties of D(k). From here, is clear that if ∆
(k)
t,t′(V ) > 0 for some feature Vt then

D(k)(Xt;Xt′) > 0. This, combined with Theorem 1, guarantees that the system
exhibits downward causation.

Finally, for the condition for causal decoupling it is sufficient to note that

Γ
(k)
t,t′(V ) = max

|α|=k
I(Vt;X

α
t′ ) (23)

≥ Un(k)(Vt;X
α
t′ |Xt) ≥ 0 , (24)

where the inequality is due to the bounds of the unique information.

Proof of Proposition 2. Let us consider Vt a k-synergistic observable. Due to
stationarity, the fact that Vt ∈ Ck(Xt) implies that Vt′ ∈ Ck(Xt′). Using this fact, and
noting that Vt −Xt −Xt′ − Vt′ is a Markov chain, it is direct to check that

G(k)? (Xt;Xt′) ≥ I(Vt;Vt′) > 0 , (25)

Additionally, since D(k)
? (Xt;Xt′) ≥ 0, Eq. (25) implies that Syn

(k)
? (Xt;Xt′) > 0,

proving the desired result.

5 Simulation details

Let us focus first on the Game of Life (GoL) simulations illustrated by Figure 4 in the
main text. For the initial state, two particles of three fixed types (nothing, a glider, or a
lightweight spaceship) were selected at random, and placed at random positions in a
15x15 square cell array. The GoL evolution rule was run for 1000 steps, which, in most
cases (judged by visual inspection) was enough for the system to settle on a stable
configuration – which was typically either nothing, a small number of static structures,
or a small number of particles in non-colliding tracks. To compute the emergent feature

November 19, 2020 7/10



Vt′ , particles were detected by simply pattern-matching the resulting system state
against the known shapes of each particle. We considered five categories: still lifes,
oscillators, gliders, lightweight spacesphips, or nothing.

For static structures, we used a single symbol to represent all still lifes, and a single
symbol for all oscillators. This particle detector was found to be very effective, with
only 2% of runs resulting in unrecognised particles. A total of 5× 104 independent runs
were simulated and, due to the high number of possible states of Vt, to reduce bias we
used the quasi-Bayesian estimator by Archer et al. [4].

For the boids simulation, N = 10 boids were simulated on a torus of side length
L = 200. Boids are initialised with random positions, speeds, and head angles, and at
each timestep each boid i = 1, ..., N is updated according to the equations:

xit′ = xit + si cos(αit)

yit′ = yit + si sin(αit)

αit′ = αit + a1θ1 + a2(π + θ2) + a3θ3 ,

Where θ1 is the bearing to the flock’s center of mass, θ2 the bearing to the nearest boid,
and θ3 the mean alignment of all boids within a 20 unit radius. The scalars a1, a2, a3
are the aggregation, avoidance, and alignment parameters, respectively.

The results in Figure 5 in the main text were obtained averaging Ψ across 25
independent runs of 5000 timesteps each, keeping a1 = 0.15, a3 = 0.25 fixed across all
simulations. To compute Ψ, we pre-processed the trajectories using the same procedure
as Seth [5] (i.e. each boid was described by its distance to the center of the environment
and all time series were first-order differenced), and information-theoretic quantities
were computed using the non-parametric estimator implemented in the JIDT
toolbox [6, 7] using a dynamic correlation exclusion window of 10 samples [8].

To compute the uncertainties and error bars reported in the text and figures we used
standard surrogate data methodology: first, system trajectories are time-shuffled to

generate one set of surrogate time series, then the quantities of interest (e.g. Ψ
(1)
t,t′) are

estimated on the surrogate data, and standard deviations over multiple realisations of
the surrogates are reported.

6 ECoG preprocessing and decoding

ECoG signals were preprocessed following the steps presented in the original
publication: specifically, the data was notch-filtered to remove line noise and band-pass
filtered from 0.1 Hz to 600 Hz, and then downsampled to the same sampling frequency
as the MoCap data (120 Hz) [9]. Then, data were divided into a 60/40 train/test split.
To build the predictor, the training set was first standardised to zero mean and unit
variance, and then it was dimensionality-reduced with a 20-component Partial Least
Squares (PLS) regression using the three dimensions of the MoCap as dependent
variables. We then trained a non-linear Support Vector Machine (SVM) [10] using a
squared exponential kernel predicting the MoCap data from the 20-dimensional PLS
scores. SVM and kernel hyperparameters were optimised through 5-fold cross-validation,
and a model with the best hyperparameter configuration was trained on the full
training set. This cross-validation and optimisation procedure was repeated for each
dimension of the MoCap data, resulting in three separate SVMs.1

1Note that the accuracy of this model is lower than the model presented in Ref. [9], for a precise
reason: to predict position at time t, Chao et al. use a wavelet transform to obtain features that have
represent ECoG from t−1.1 s to t. Unlike Chao et al., we work under the constraint of using supervenient
features: for the axioms of the theory (in its current form) to hold, Vt needs to be a function of Xt only.
This limits the possibilities for feature extraction, and naturally may result in lower-accuracy decoders.
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Fig B. Surrogate data test for emergence in monkey ECoG. As a control, we
computed the emergence criterion Ψ on a surrogate feature Ṽ , and found that it yields
significantly lower Ψ than the original data (error bars are standard error of the mean
over 10 realisations of Ṽ ; see text for details).

The computation of Ψ was performed on the held-out test data set. ECoG signals
were standardised and projected onto the PLS latent space (using the means, standard
deviations, and projection matrix obtained from the training data), and mutual
information terms involved in the computation of Ψ were calculated using the Gaussian
estimator implemented in the open-source JIDT toolbox [7].

Additionally, we performed a control using surrogate data to confirm the results
were not driven by the autocorrelation or filtering properties of the ECoG, or the
regularisation of the SVM. For this, we time-shuffled the wrist position time series,
trained an SVM, and evaluated it on a separate (un-shuffled) ECoG test set, resulting
in a surrogate feature Ṽt that preserves the autocorrelation properties of the ECoG but

does not meaninfully extract motor information. Then we computed Ψ
(1)
t,t′(Ṽ ), repeated

over 10 realisations (i.e. shuffling and training a separate PLS-SVM 10 times), and

found that the observed Ψ
(1)
t,t′(V ) lies significantly above its surrogate, confirming the

observed emergence criterion scores over and above what would be expected by the
autocorrelation structure of the ECoG (Fig. B).
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