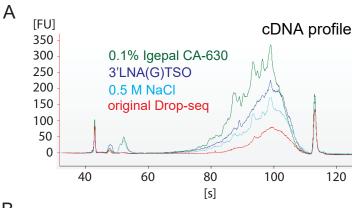
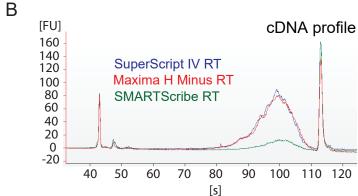
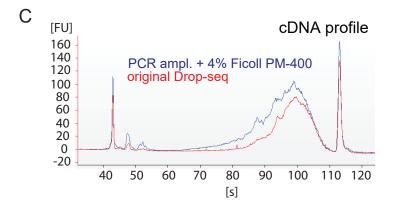

Supplementary Figure 1. Schematic protocol representation of SCRB-seq and Drop-seq.

(A) Schematic representation of the P14 experimental system. The green, blue and red colour denote naïve P14 T cells, P14 T cells recovered at day 8 post LCMV Armstrong infection and P14 T cells recovered at day 40 post LCMV clone-13 infection respectively. (B) Illustrates the difference in the single-cell capturing strategy of SCRB-seq versus Drop-seq. (C) Representation of the common chemistry downstream of single-cell capturing.

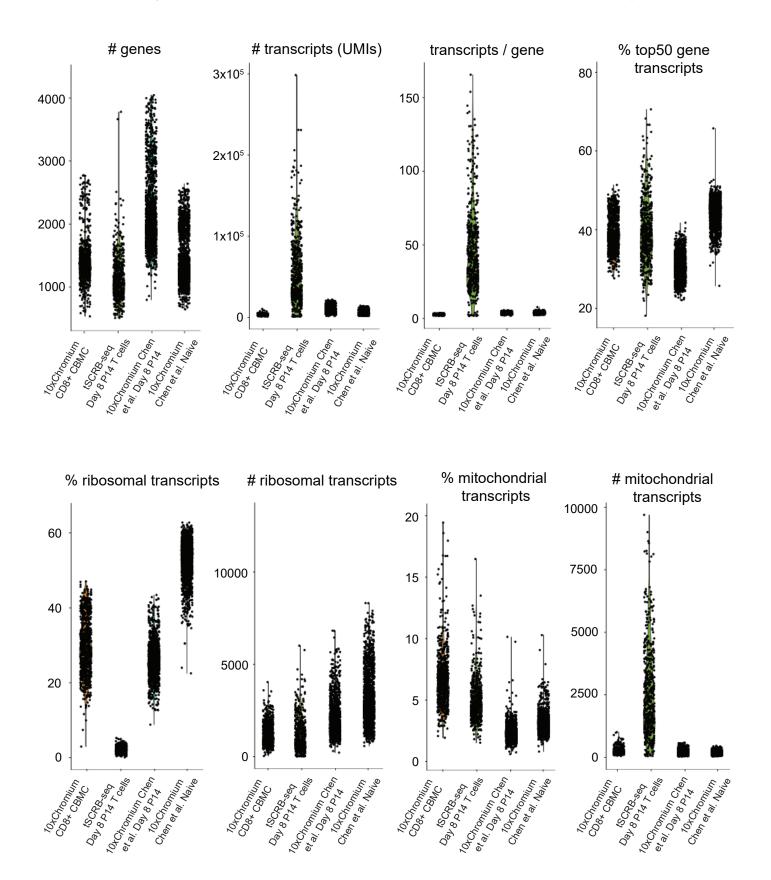


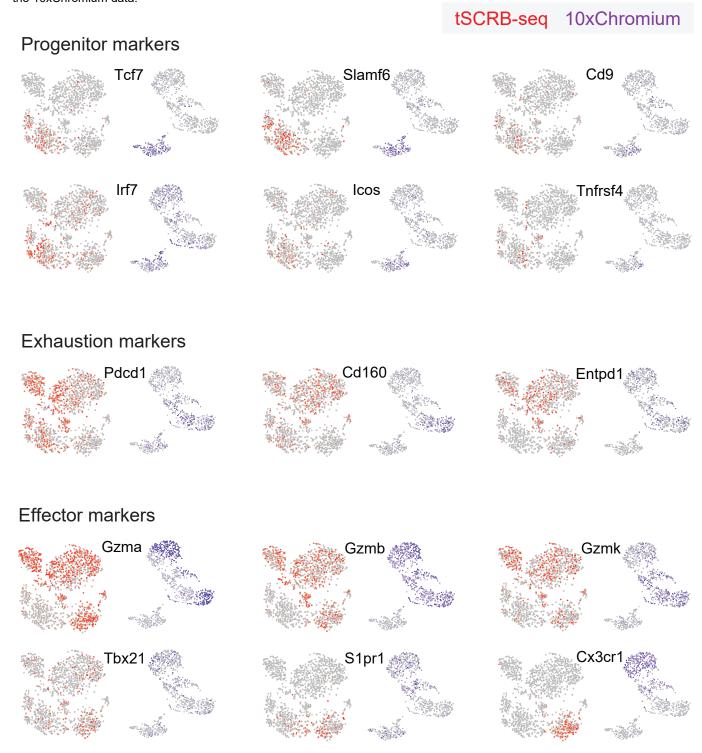

В Single-cell Capture and Lysis **SCRB-seq** Drop-seq cell mixture in flow cell oil in cell in manual bead/lysis in → deflection droplets outprocessing plates optional oil in cell in robotic automation captured single-cell transcriptome waste oil syringe pump cells barcoded beads controled flows in lysis buffer



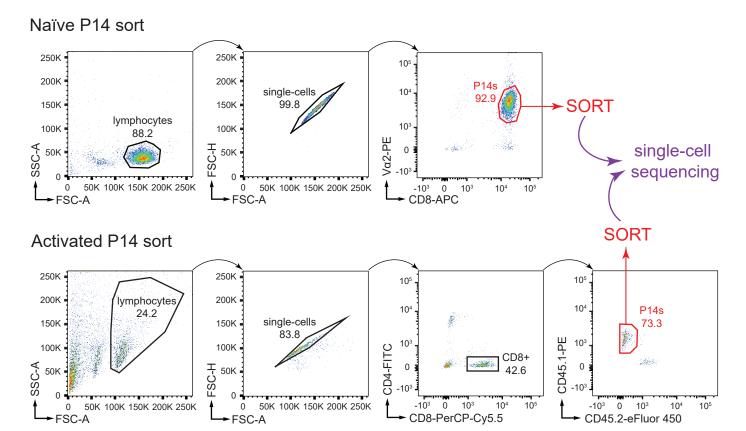
Supplementary Figure 2. Comparison of the cDNA yield among different Drop-seq optimizations.

(A-C) Bioanalyzer electropherograms comparing the amplified cDNA yield of Drop-seq between the original protocol and various optimizations.




Supplementary Figure 3. Technical characteristics of libraries generated with tSCRB-seq and 10xGenomics Chromium from different cell types and states.

Comparative analysis of major technical parameters among a library generated with tSCBR-seq (P14 T cells recovered at day 8 post LCMV Armstrong infection) and published libraries generated with 10xGenomics Chromium (naïve or recovered at day 8 post LCMV Armstrong P14 T cells²² and cord blood mononuclear cells available on the manufacturer's website).



Supplementary Figure 4. The higher dynamic range of gene expression detected with tSCBR-seq results in improved compartment-resolved expression of key immune genes in chronic infection.

Comparative analysis of single-cell P14 T-cell transcriptomes generated with tSCRB-seq¹² or 10xChromium¹³ and recovered from established LCMV clone-13 infections (on day 40 and day 30 respectively). Each circle represents a single-cell. The plots represent the expression of key for CD8 T cell differentiation and function immune genes and regulatory receptors depicted over tSNE. The expression level is illustrate using the red scale in plots based on the tSCBR-seq data and violet scale in plots using the 10xChromium data.

Supplementary Figure 5. Single-cell sort gating strategy.

Supplementary Table 1. Fraction of cell positive for selected key immune genes among methods.

Analysis of libraries generated with tDrop-seq and tSCRB-seq from P14 T-cells recovered at day 8 post-acute LCMV Armstrong infection, compared to a published 10xChromium dataset with matching experimental setup²². Comparison of the fraction of cell detected to express key immune genes among methods.

P14 cell	P14 cells recovered on day 8 from acute infection					
GENE	tDROP-seq	tSCRB-seq	10xChromium			
Gzma	87%	95%	42%			
Gzmb	81%	89%	90%			
Prf1	55%	64%	11%			
Fasl	12%	10%	21%			
Klrg1	67%	56%	55%			
ld2	80%	76%	95%			
Tbx21	38%	56%	47%			
Klf2	72%	85%	43%			
Klf3	46%	70%	54%			
S1pr1	38%	41%	58%			
S1pr4	40%	53%	92%			
S1pr5	37%	42%	21%			
Tcf7	10%	9%	24%			
Slamf6	14%	12%	45%			
II7r	9%	6%	10%			
Eomes	23%	6%	22%			
ld3	0%	1%	5%			
Bcl2	7%	9%	29%			
Mki67	61%	31%	13%			
Ezh2	35%	38%	29%			
Cumulative detection	41%	42%	40%			

Supplementary Table 2. Number of transcripts per cell of selected key immune genes detected by each method.

Comparative analysis of the number of transcripts per cell of key immune genes detected by tDrop-seq, tSCBR-seq and 10xGenomics Chromium²² in P14 T cells recovered on day 8 post LCMV Armstrong infection. All sequencing data are down-sampled to 40 000 mapped reads per cell. Source data are provided as a Source Data file. The abbreviations are as follows: md. transcripts, median number of transcripts captured per cell; SD, standard deviation

P14 CD8 T cells recovered onday 8 post LCMV Armstrong infection						
	tDrop-seq		tSCRB-seq		10xChrom	
	md. # transcripts	SD	md. # transcripts	SD	md. # transcripts	SD
Gzma	7.0	17.5	180.0	405.1	4.0	34.7
Gzmb	3.0	3.7	62.0	115.0	9.0	11.9
Prf1	1.0	1.3	35.0	70.7	2.0	1.4
Fasl	1.0	0.7	23.0	46.3	1.0	0.5
Klrg1	2.0	2.3	22.0	34.8	2.0	2.1
ld2	4.0	4.0	35.5	72.8	11.0	10.0
Tbx21	1.0	0.6	20.0	32.9	1.0	1.0
Klf2	1.0	1.1	27.0	74.3	1.0	1.0
Klf3	2.0	1.8	28.5	43.8	1.0	1.2
S1pr1	1.0	0.9	14.0	24.2	1.0	1.1
S1pr4	1.0	0.9	13.0	18.5	3.0	2.8
S1pr5	1.5	1.3	26.0	55.6	1.0	1.0
Tcf7	2.0	0.8	12.5	28.5	1.0	1.9
Slamf6	2.0	1.0	23.5	46.7	1.0	1.8
II7r	1.0	1.3	25.0	49.0	1.0	1.0
Eomes	1.0	1.5	6.5	42.6	1.0	8.0
ld3	1.0	0.0	9.0	37.5	1.0	1.8
Bcl2	2.0	0.6	12.0	20.3	1.0	1.6
Mki67	2.0	6.4	28.0	208.5	2.0	2.1
Ezh2	2.0	1.4	44.0	76.2	1.0	1.6
*All sequencing data were down-sampled to 40 000 mapped reads/cell.						

Supplementary Table 3. Primer sequences.

Primer	Primer full name	Primer sequence	Producer	Purity	Note
DS-BEADS	ChemGenes Barcoded Oligo dT primer ON Beads	5'-Bead-LinkerTTTTTTTAAGCAGTGGTATCAAC GCAGAGTACJJJJJJJJJJJNNNNNNN TTTTTTTTTTTTTTTTTTTT	ChemGenes Corporation	-	J denotes a nucleic acid part of the cellular barcode, which is identical in all primers attached to one bead; N denotes a random nucleic acid part of the unique molecular identifier, which is a unique sequence in each primar attached to one bead.
DS-TSO	Drop-seq Template Switching Oligo	AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG	Eurogentec	HPLC	rG denotes a riboguanine
DS-TSO-LNA	Drop-seq Template Switching Oligo with Locked Nucleic Acid	AAGCAGTGGTATCAACGCAGAGTGAATrGrG+G	Eurogentec	HPLC	rG denotes a riboguanine; +G denotes a locked nucleic acid guanine
DS-SMART PCR	Drop-seq SMART PCR Primer	AAGCAGTGGTATCAACGCAGAGT	Integrated DNA Technologies	HPLC	
DS-P5	Drop-seq N5 primer	AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGC GGAAGCAGTGGTATCAACGCAGAGT*A*C	Integrated DNA Technologies	HPLC	* denotes a phosphorothioate bond
DS-CR1	Drop-seq Custrom Read 1 Primer	GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC	Integrated DNA Technologies	HPLC	
SCRB-dT plate v1	tSCRB Barcoded Oligo-dT Primer Plate v1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTJ(6)N(10)T(30)VN	Integrated DNA Technologies	Ultramer Plate; Standard desalting	/5Biosg/ denotes a 5' biotin; J denotes a nucleic acid part of the cellular barcode; N denotes a random nucleic acid part of the unique molecular identifier; V denotes A or C or G
SCRB-dT plate v2	tSCRB Barcoded Oligo-dT Primer Plate v2 and v3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTJ(7)N(9)T(30)VN	Integrated DNA Technologies	Ultramer Plate; Standard desalting	/5Biosg/ denotes a 5' biotin; J denotes a nucleic acid part of the cellular barcode; N denotes a random nucleic acid part of the unique molecular identifier; V denotes A or C or G
SCRB-TSO	tSCRB-seq Template Switching Oligo	iC-iG-iCACACTCTTTCCCTACACGACGCrGrGrG	Eurogentec	HPLC	iC denotes a iso-dC; iG denotes a iso-dG; rG denotes a riboguanine
SCRB-TSO-LNA	SCRB-seq Template Switching Oligo with Locked Nucleic Acid	iC-iG-iCACACTCTTTCCCTACACGACGCrGrG+G	Eurogentec	HPLC	iC denotes a iso-dC; iG denotes a iso-dG; rG denotes a riboguanine; +G denotes a locked nucleic acid guanine
SCRB-SMART-PCR	SCRB-seq SMART PCR Primer	/5Biosg/ACACTCTTTCCCTACACGACGC	Integrated DNA Technologies	HPLC	/5Biosg/ denotes a 5' biotin
SMART-P5	SCRB-seq N5 primer	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC TCTTCCG*A*T*C*T*	Integrated DNA Technologies	HPLC	* denotes a phosphorothioate bond
SCRB-CR1	SCRB-seq Custrom Read 1 Primer	TCTTTCCCTACACGACGCTCTTCCGATCT	Integrated DNA Technologies	HPLC	

Supplementary Table 4. tSCRB Barcoded Oligo-dT Primer Plate v1

/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTJ(6)N(10)T(30)VN

/5Biosg/ denotes a 5' biotin; J denotes a nucleic acid part of the cellular barcode; N denotes a random nucleic acid part of the unique molecular identifier; V denotes A or C or G; IDT Ultramer Plate; Standard desalting

		_	
A1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACGCNNNNNNNNNN	E1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCTCNNNNNNNNNN
A2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACACGNNNNNNNNNN	E2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGTGNNNNNNNNNN
A3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACCAGNNNNNNNNNN	E3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTCCGNNNNNNNNNN
A4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACCGTNNNNNNNNNN	E4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTGCCNNNNNNNNNN
A5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACGTGNNNNNNNNNN	E5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAACACNNNNNNNNNN
A6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACTGGNNNNNNNNNN	E6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAACGTNNNNNNNNNN
A7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGCCTNNNNNNNNNN	E7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAAGAGNNNNNNNNNN
A8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGGACNNNNNNNNNN	E8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAAGTCNNNNNNNNNN
A9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGTCGNNNNNNNNNN	E9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACAACNNNNNNNNNN
A10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATCGGNNNNNNNNNN	E10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACGTTNNNNNNNNNN
A11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAAGCNNNNNNNNNN	E11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACTTGNNNNNNNNNN
A12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACACGTNNNNNNNNNN	E12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGATCNNNNNNNNNN
B1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAGACNNNNNNNNNN	F1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGGTANNNNNNNNNN
B2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAGTGNNNNNNNNNN	F2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGTGTNNNNNNNNNTTTTTTTTTT
В3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCAAGNNNNNNNNNN	F3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATAGCNNNNNNNNNN
B4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCAGANNNNNNNNNN	F4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATCGANNNNNNNNNN
В5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCTCANNNNNNNNNN	F5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGACNNNNNNNNNN
В6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCTTCNNNNNNNNNTTTTTTTTTT	F6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGTGNNNNNNNNNN
В7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGACANNNNNNNNNN	F7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCAAGANNNNNNNNNN
В8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGATGNNNNNNNNNN	F8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCAGTANNNNNNNNNN
В9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGCTANNNNNNNNNN	F9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCATTCNNNNNNNNNTTTTTTTTTT
B10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTCTNNNNNNNNNTTTTTTTTTT	F10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCCATANNNNNNNNNN
B11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTACGNNNNNNNNNN	F11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCGAAANNNNNNNNNN
B12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTCCANNNNNNNNNTTTTTTTTTT	F12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCGTTANNNNNNNNNN
C1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGCTNNNNNNNNNN	G1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTACANNNNNNNNNN
C2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGTCNNNNNNNNNTTTTTTTTTT	G2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTGTTNNNNNNNNNN
C3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAACCNNNNNNNNNN	G3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAAAGNNNNNNNNNN
C4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGACGANNNNNNNNNN	G4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAATCNNNNNNNNNN
C5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGAGNNNNNNNNNN	G5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAGATNNNNNNNNNN
C6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGTCNNNNNNNNNN	G6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATCANNNNNNNNNN
C7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCAGTNNNNNNNNNN	G7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGCTAANNNNNNNNNN
C8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCATNNNNNNNNNTTTTTTTTTT	G8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGATANNNNNNNNNN
C9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCGAANNNNNNNNNN	G9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTAGTNNNNNNNNNTTTTTTTTTT
C10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTACNNNNNNNNNTTTTTTTTTT	G10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTCATNNNNNNNNNN
C11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTGANNNNNNNNNN	G11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTTGANNNNNNNNNN
C12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGACTNNNNNNNNNN	G12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTAACGNNNNNNNNNN
D1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGCTTNNNNNNNNNN	H1	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTACAGNNNNNNNNNN
D2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGTAGNNNNNNNNNN	H2	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTACGANNNNNNNNNN
D3	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGTGTNNNNNNNNNN	НЗ	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTAGACNNNNNNNNNN
D4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTCAGNNNNNNNNNN	Н4	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTATGGNNNNNNNNNN
D5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTCTCNNNNNNNNNN	H5	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCATCNNNNNNNNNTTTTTTTTTT
D6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGCANNNNNNNNNN	Н6	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCGATNNNNNNNNTTTTTTTTTT
D7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTCCNNNNNNNNNTTTTTTTTTT	H7	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTNNNNNNNNNTTTTTTTTTT
D8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATAGGCNNNNNNNNNN	Н8	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAGANNNNNNNNNTTTTTTTTTT
D9	/SBiosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCACNNNNNNNNNTTTTTTTTTT	H9	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGGAANNNNNNNNNN
D10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCTGNNNNNNNNNTTTTTTTTTT	H10	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTCTNNNNNNNNNTTTTTTTTTT
D11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCGTCNNNNNNNNNTTTTTTTTTT	H11	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTACCNNNNNNNNNTTTTTTTTTT
D12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGACCNNNNNNNNNTTTTTTTTTT	H12	/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTCACNNNNNNNNNN
•	. •	•	

Supplementary Table 5. tSCRB Barcoded Oligo-dT Primer Plate v2

/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTJ(7)N(9)T(30)VN

/5Biosg/ denotes a 5' biotin; J denotes a nucleic acid part of the cellular barcode; N denotes a random nucleic acid part of the unique molecular identifier; V denotes A or C or G; IDT Ultramer Plate; Standard desalting

A1 A2 E2 A3 A4 E4 E5 A5 E6 Α7 E7 Α8 Α9 A10 A11 A12 E12 B1 F1 B2 F2 В3 В4 F5 B5 В6 F6 В7 F7 В8 F8 R9 B12 F12 C1 G1 C2 G2 C3 G3 C5 G5 C6 G6 C.7 G7 C8 G8 C9 G9 C10 C12 D1 D2 H2 D3 НЗ D4 H4 D5 D6 Н6 Н7 D7 D8 D9 Н9 D10 H10 D11 D12

Supplementary Table 6. tSCRB Barcoded Oligo-dT Primer Plate v3

/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCTJ(7)N(9)T(30)VN

/5Biosg/ denotes a 5' biotin; J denotes a nucleic acid part of the cellular barcode; N denotes a random nucleic acid part of the unique molecular identifier; V denotes A or C or G; IDT Ultramer Plate; Standard desalting

A1 E2 A2 A3 E3 A4 E4 A5 E5 Α6 Α7 Α8 F8 E9 Α9 E10 A10 A11 A12 В1 B2 В3 В4 В5 В6 В7 В8 В9 F9 B10 F10 B11 B12 C1 C2 C3 G3 C4 C5 G5 C6 C7 C8 C9 G9 C10 G10 C11 G11 C12 D2 D3 D5 H5 D6 D7 H7 D8 D9 D10 H10 D11