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Technical appendix 

1. Re-allocation of patients to new referral pathway 

Each patient had equal probabilities to be reallocated to each of the emergency referral routes. We 

randomly generated their probabilities and selected those patients with random values below the 

thresholds detailed in the paper, and necessary to maintain proportions of patients re-allocated to 

the emergency referral pathway in keeping with the original distributions seen in pre-pandemic 

cohorts (see proportions in Table 1). 

 

2. Estimating net survival and deaths due to cancer 

Baseline, pre-pandemic, levels of cancer-specific survival were assessed through multivariable excess 

hazard models. We use the strcs package in Stata1. strcs implements a two-step method that 

incorporates both analytical and numerical integration to estimate the cumulative hazard function 

required for the log-likelihood function. Flexible parametric survival models are fit using maximum 

likelihood estimation. 

The main assumption of excess hazard models is that the overall mortality of the cohort of patients 

(𝜆) is the sum of two forces of mortality: the excess mortality hazard (𝜆𝐸), assumed to be the 

mortality hazard directly or indirectly due to cancer, and the expected or other causes mortality 

hazard, which is considered to be well approximated by the general population mortality hazard 

(𝜆𝑃).  

𝜆(𝑡, 𝒙) = 𝜆𝐸 (𝑡, 𝒙) + 𝜆𝑃 (𝑎 + 𝑡, 𝑦 + 𝑡, 𝒛), 

The cancer mortality hazard, 𝜆𝐸, at time 𝑡 for given patient’s covariates 𝒙, such as age at diagnosis 

(𝑎), deprivation levels, and referral pathway, is what we need to estimate. The following model is 

fitted: 

𝜆𝐸 (𝑡, 𝒙) = 𝜆0 (𝑡) ∗ 𝑒𝑥𝑝 (𝛽 ∗ 𝒙) 

𝜆𝐸 (i.e. hazard of death due to cancer) was modelled as a function of age at diagnosis (𝑎), 

deprivation (𝑑), and mode of presentation (𝑝) as follows: non-linear effects of age at diagnosis 

(restricted cubic splines, 𝑎1 and 𝑎2) and time-dependent effects of each variable were allowed, as 

well as interactions between age at diagnosis and deprivation and between age at diagnosis and 

mode of presentation. The excess hazard at the reference value of all covariables, the baseline 

hazard, 𝜆0 (𝑡), was modelled using polynomials of follow-up time defined in three contiguous time 
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intervals (restricted cubic splines with 3 degrees of freedom) and smoothly joined at the intervals’ 

boundaries.  

𝜆𝐸 (𝑡, 𝒙) = 𝜆0 (𝑡) ∗ 𝑒𝑥𝑝 (𝛽𝑎,1(𝑡) ∗ 𝑎1 + 𝛽𝑎,2(𝑡) ∗ 𝑎2

+ ∑(𝛽𝑑,𝑗(𝑡) ∗ 𝐼𝑑=𝑗 + 𝛾𝑎,1,𝑗(𝑡) ∗ 𝑎1𝐼𝑑=𝑗 + 𝛾𝑎,2,𝑗(𝑡) ∗ 𝑎2𝐼𝑑=𝑗)

5

𝑗=2

+ ∑(𝛽𝑝,𝑘(𝑡) ∗ 𝐼𝑝=𝑘 + 𝛼𝑎,1,𝑘(𝑡) ∗ 𝑎1𝐼𝑝=𝑘 + 𝛼𝑎,2,𝑘(𝑡) ∗ 𝑎2𝐼𝑝=𝑘)

𝑃

𝑘=2

) 

𝛽𝑎,1 and 𝛽𝑎,2 are the effects of each component of age, 𝛽𝑑,𝑗 are the effects of each deprivation 

quintile 𝑗, 𝑗 = 2, … 5, 𝛽𝑝,𝑘 are the effects of each mode of presentation, and 𝛾𝑎,1,𝑗 , 𝛾𝑎,2,𝑗, 𝛼𝑎,1,𝑘, and 

𝛼𝑎,2,𝑘 are the interactive effects on the excess hazard of death. Each effect is allowed to vary with 

follow-up time 𝑡. The best-fitting forms of effects were selected using a hierarchical model selection 

algorithm designed by Royston and Sauerbrei (mfpigen),2,3 combined with the Akaike Criteria (AIC).4 

The effects selected are presented in the Table below. 

When analysing population-based data, the measure of interest, excess mortality due to cancer, is 

conventionally retrieved by removing the impact of competing risks of death, i.e. the deaths from 

causes other than the cancer of interest. These competing risks, derived from general population life 

tables defined by sex, single years of age, calendar years, deprivation quintile, and Government 

Office Regions (𝒛), were assigned to each patient at their date of last known vital status. 

 

Effects selected for each excess hazard model 

The final model selected for each cancer was fitted on the pre-pandemic cohorts of patients. The 

estimated coefficients associated with the effects of each variable and the parameters 

corresponding to the baseline excess hazard were retained. These inform the prediction of excess 

hazard of death due to cancer for each patient 𝑖 at selected times 𝑡, 𝜆𝐸,𝑖(𝑡). Such predictions were 

made for each patient in the setting of the observed pre-pandemic cohorts in addition to the three 

scenarios A-C. From the individual excess hazards, we derived the following quantities: 

Cohort net survival: the survival of the cohort of cancer patients, assuming patients can only die of 

their cancer. 𝑆𝑁,𝑖 is the individual net survival, and 𝑆𝑁 is the cohort net survival, such that: 

𝑆𝑁,𝑖(𝑡, 𝑥𝑖) = exp (− ∫ 𝜆𝐸,𝑖(𝑢, 𝑥𝑖)𝑑𝑢
𝑡

0

) 

𝑆𝑁(𝑡) =
1

𝑁
∑ 𝑆𝑁,𝑖(𝑡, 𝑥𝑖)

𝑁

𝑖=1

 

 

Age at diagnosis Referral pathway Deprivation Sex Age* referral Age * deprivation

Breast Non linear, non proportional Categorical, non proportional Categorical Included Included

Colorectum Non linear, non proportional Categorical, non proportional Categorical Proportional Included

Lung Linear, non proportional Categorical, non proportional Categorical Proportional Included Included, non proportional

Oesophagus Non linear, non proportional Categorical, non proportional Categorical Non proportional Included

Main effects Interactions
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Crude probability of cancer death: this is the probability of cancer-related death for each patient, 

𝐶𝑃𝐷𝐶,𝑖, or on average in the cohort, in the presence of competing risks of deaths. 

𝐶𝑃𝐷𝐶,𝑖(𝑡, 𝑥𝑖) = ∫ 𝑆𝑂,𝑖(𝑢−|𝑥𝑖) ∗ 𝜆𝐸,𝑖(𝑢, 𝑥𝑖)𝑑𝑢
𝑡

0

 

𝑆𝑂,𝑖(𝑢−) represent individual overall survival of patient 𝑖, estimated just before time 𝑢. These were 

derived from multivariable hazard models, adjusting for the effects of age at diagnosis, deprivation, 

sex and referral pathway on the overall (all-cause) hazard of death. We performed model selection 

identical to that explained for the excess hazard models. 

Number of deaths due to cancer at time 𝑡, 𝐷𝐶 : these are directly derived from the individual crude 

probabilities of death estimated at time 𝑡. 

𝐷𝐶(𝑡, 𝑥𝑖) = ∑ 𝐶𝑃𝐷𝐶,𝑖(𝑡|𝑥𝑖)

𝑁

𝑖=1

 

Number of years of life expectancy lost due to cancer: this is the total number of years of life 

expectancy lost due to cancer-related mortality for the cohort of cancer patients. 𝐿𝐸𝐿𝐶(𝑎, 𝑏, 𝑥𝑖) 

defines the number of years of life expectancy lost due to deaths due to cancer between years 𝑎  

and 𝑏. 

𝐿𝐸𝐿𝐶(0, 𝑡, 𝑥𝑖) = ∑(𝐶𝑃𝐷𝐶,𝑖(0, 𝑡|𝑥𝑖) − 𝐶𝑃𝐷𝐶,𝑖(𝑡, ∞|𝑥𝑖))

𝑁

𝑖=1

∗ ∫ 𝑆𝑖
∗(𝑢|𝑧𝑖)𝑑𝑢

∞

𝑡

 

𝑒𝑥,𝑖(𝑡) = ∫ 𝑆𝑖
∗(𝑢|𝑧𝑖)𝑑𝑢

∞

𝑡
 is the life expectancy of patient 𝑖 at time 𝑡. 

Each of these quantities were compared between the pre-pandemic setting and the 3 scenarios 

explored up to 5 years following diagnosis. The differences provided an estimated decrease in net 

survival, additional number of deaths due to cancer and additional numbers of years of life 

expectancy lost due to cancer, namely: 

𝐷𝑖𝑓𝑓𝐷𝐶
𝑋(𝑡, 𝑥𝑖) = 𝐷𝐶

𝑋
(𝑡, 𝑥𝑖) − 𝐷𝐶

𝑃𝑃(𝑡, 𝑥𝑖) 

Whereby 𝐷𝐶
𝑋 is the number of deaths due to cancer in Scenario X (X=A, B, or C) and 𝐷𝐶

𝑃𝑃 is the 

number of deaths due to cancer in the pre-pandemic period, and 

𝐷𝑖𝑓𝑓𝐿𝐸𝐿𝐶
𝑋(0, 𝑡, 𝑥𝑖) = 𝐿𝐸𝐿𝐶

𝑋(0, 𝑡, 𝑥𝑖) − 𝐿𝐸𝐿𝐶
𝑃𝑃(0, 𝑡, 𝑥𝑖) 

We make the conservative assumption that 𝐶𝑃𝐷𝐶,𝑖(𝑡, ∞|𝑥𝑖) are equivalent in the pre-pandemic 

cohort and the cohort in each scenario, leading to: 

𝐷𝑖𝑓𝑓𝐿𝐸𝐿𝐶
𝑋(0, 𝑡, 𝑥𝑖) = ∑(𝐶𝑃𝐷𝐶,𝑖

𝑋(0, 𝑡|𝑥𝑖) − 𝐶𝑃𝐷𝐶,𝑖
𝑃𝑃(0, 𝑡|𝑥𝑖))

𝑁

𝑖=1

∗ ∫ 𝑆𝑖
∗(𝑢|𝑧𝑖)𝑑𝑢

∞

𝑡

 

For the later, only the figures at t=5 years were calculated and presented.  

We provide the point estimates and their 95% CI around the estimations of 𝐶𝑃𝐷𝐶, 𝐷𝐶 , and 𝐿𝐸𝐿𝐶  

based on bootstrap samples.5,6  
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Appendix Figure 1 

1-, 3- and 5-year net survival, by referral pathway and overall, pre-pandemic and by scenario A-C 

 

 

 


