In vivo silencing of amphiregulin by a novel effective Self-Assembled-Micelle inhibitory RNA ameliorates renal fibrosis via inhibition of EGFR signals

Seung Seob Son^{1,7}, Soohyun Hwang^{1,7}, Jun Hong Park¹, Youngho Ko¹, Sung-Il Yun², Ji-Hye Lee³, Beomseok Son¹, Tae Rim Kim¹, Han-Oh Park^{1,2*}, and Eun Young Lee^{4,5,6*}

¹siRNAgen Therapeutics, Daejeon 34302, Republic of Korea; ²Bioneer Corporation, Daejeon 34302, Republic of Korea; ³Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; ⁴Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; ⁵Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; ⁶BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; ⁷These authors contributed equally: Seung Seob Son and Soohyun Hwang.

Correspondence: Eun Young Lee, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, 31 Soonchunhyang 6-gil, Cheonan 31151, Republic of Korea, Tel: +82-41-570-3684, Fax: +82-41-570-2958, E-mail: eylee@schmc.ac.kr

Han-Oh Park, Bioneer Corporation and siRNAgen Therapeutics, 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon 34302, Republic of Korea, Tel: +82-42-930-8500, Fax: +82-42-930-8600, E-mail: hpark@bioneer.com

Mouse proximal tubule cells

Supplementary Figure S1. SAMiRNA-AREG ameliorated the fibrosis-related mRNA levels during TGF- β 1 induction *in vitro*. mProx24 mouse proximal tubule cells were stimulated with or without TGF- β 1 (10 ng/mL) for 24 h and co-treated with SAMiRNA-AREG at 1 μ M or 2 μ M for 24 h. The mRNA expression of AREG, α 1(I) collagen, fibronectin, and α -SMA is shown using RPL13A as a reference gene. (mean \pm SEM). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to TGF- β 1-treated cells by ANOVA with the Newman-Keuls post-hoc test.

Supplementary Figure S2

NIH-3T3 cells

Supplementary Figure S2. SAMiRNA-AREG downregulated fibrosis-related mRNA levels induced by TGF- β 1 in NIH-3T3 fibroblasts. NIH-3T3 mouse fibroblasts were stimulated with or without TGF- β 1 (10 ng/mL) for 24 h and co-treated with SAMiRNA-AREG at 1 μ M or 10 μ M for 24 h. The mRNA expression of AREG, α 1(I) collagen, fibronectin, and α -SMA is shown using RPL13A as a reference gene. (mean \pm SEM). ** p < 0.01, *** p < 0.001 compared to TGF- β 1-treated cells by ANOVA with the Newman-Keuls post-hoc test.

HK-2 cells

Supplementary Figure S3. SAMiRNA-AREG downregulated fibrosis-related mRNA levels induced by TGF- β 1 in HK-2 human proximal tubule cells. HK-2 cells were stimulated with or without TGF- β 1 (10 ng/mL) for 24 h and co-treated with SAMiRNA-AREG at 1 μ M or 10 μ M for 24 h. The mRNA expression of AREG, α 1(I) collagen, fibronectin, and α -SMA is shown using GAPDH as a reference gene. (mean \pm SEM). * p < 0.05, ** p < 0.01 compared to TGF- β 1-treated cells by ANOVA with the Newman-Keuls post-hoc test.

Supplementary Table S1. Analysis of renal function in UUO- or AD-treated mice. Abbreviations: BW, body weight; BUN, blood urea nitrogen; Cr, serum creatinine. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to controls. Values are expressed as the mean ± SEM.

	Sham	UUO
BW (g)	24.80 ± 0.79	24.49 ± 0.73
BUN (mg/dl)	21.1 ± 1.07	24.9 ± 1.88
Cr (mg/dl)	0.07 ± 0.01	0.11 ± 0.02
	Control	AD
BW (g)	22.26 ± 0.02	17.26 ± 0.72***
BUN (mg/dl)	17.95 ± 0.06	89.37 ± 35.08**
Cr (mg/dl)	0.14 ± 0.01	0.48 ± 0.21 *

Gene	Species		Sequence
RPL13A	Mouse	Forward	CGATAGTGCATCTTGGCCTTT
	Mouse	Reverse	CCTGCTGCTCTCAAGGTTGTT
AREG	Marra	Forward	GAGGCTTCGACAAGAAAACG
	wouse	Reverse	ACCAATGTCATTTCCGGTGT
fibronectin	Mouse	Forward	TGGTGGCCACTAAATACGAA
		Reverse	GGAGGGCTAACATTCTCCAG
α-SMA	М	Forward	GGCTCTGGGGCTCTGTAAGG
	wouse	Reverse	CTCTTGCTCTGGGCTTCATC
α1(I) collagen	Marra	Forward	TCATCGTGGCTTCTCTGGTC
	Mouse	Reverse	GACCGTTGAGTCCGTCTTTG
	Manaa	Forward	TCACCAGGACAAAGAGGGGA
αl(III) collagen	Mouse	Reverse	CCACCAGGACTGCCGTTATT
	Marra	Forward	ACGAGGCTGGAATTAGCAGA
VCAM-1	Mouse	Reverse	TTCGGGCACATTTCCACAAG
ICAM-1	N	Forward	GTGCTTTGAGAACTGTGGCA
	Mouse	Reverse	GGTGAGGTCCTTGCCTACTT
TNF-α	Marra	Forward	CCTGTAGCCCACGTCGTAG
	Mouse	Reverse	GGGAGTAGACAAGGTACAACCC
MCP-1	М	Forward	AACTGCATCTGCCCTAAGGT
	Mouse	Reverse	CTGTCACACTGGTCACTCCT
AREG	TT	Forward	ACACCTACTCTGGGAAGCGT
	Human	Reverse	GCCAGGTATTTGTGGTTCGT
α1(I) collagen	TT	Forward	CCTGGCCCCATTGGTAATGTT
	Human	Reverse	CCCCCTCACGTCCAGATTCAC
fibronectin	TT	Forward	CAAGCCAGATGTCAGAAGC
	Human	Reverse	GGATGGTGCATCAATGGCA

Supplementary Table S2. Sequences of primers used for real-time qRT-PCR

	Humon	Forward	GATCTGGCACCACTCTTTCTAC
	nuillail	Reverse	CAGGCAACTCGTAACTCTTCTC
	II	Forward	ATCAAGAAGGTGGTGAAGCAG
GAPDH	Human	Reverse	GTCGCTGTTGAAGTCAGAGG

Supplementary Materials and Methods

SAMiRNA synthesis and manufacture²³

1) Preparation of C18-6 Disulfide Phosphoramidite

To bond C18-6 disulfide to a double-helix oligo RNA structure, C18-6 disulfide phosphoramidite was prepared as shown in the following reaction scheme 1.

2) Preparation of Atom 18 Spacer Phosphoramidite

To bond an Atom 18 Spacer to a double-helix oligo RNA structure, Atom 18 Spacer phosphoramidite was prepared as shown in the following reaction scheme 2.

Reaction scheme 2

