Supporting Information

Selective Hydrogenation of 5-(Hydroxymethyl)furfural to 5-

Methylfurfural over Single Atomic Metals Anchored on Nb₂O₅

Shaopeng Li,^{1,2} Minghua Dong,^{1,2} Junjuan Yang,¹ Xiaomeng Cheng,^{1,2} Xiaojun Shen,^{1,2} Shulin Liu,^{1,2} Zhi-Qiang Wang³*, Xue-Qing Gong³*, Huizhen Liu^{1,2,4}*, Buxing Han^{1,2,4}*

1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

3. Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

4. Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China.

*Correspondence to: zhiqiangwang@ecust.edu.cn (Zhi-Qiang Wang); xgong@ecust.edu.cn (Xue-Qing Gong); liuhz@iccas.ac.cn (Huizhen Liu); hanbx@iccas.ac.cn (Buxing Han).

Additional figures

Supplementary Fig. 1 Characterization results from electron-paramagnetic resonance spectra. (a) EPR of Nb₂O₅, Nb₂O₅-Ov and Pt₁/Nb₂O₅-Ov. (b) Quantitative EPR analysis at room temperature. Data for the reduced samples were acquired under vacuum.

Supplementary Fig. 2 Characterization results from EXAFS. (a, c, e) EXAFS in k space of Pt foil, PtO₂, and Pt₁/Nb₂O₅-Ov. (b, d, f) The corresponding EXAFS fitting of Pt foil, PtO₂, and Pt₁/Nb₂O₅-Ov at R space.

Supplementary Fig. 3 Characterization results from XPS. The Pt 4f of Pt₁/Nb₂O₅-Ov.

Supplementary Fig. 4 Characterization results from FT-IR. FT-IR spectra of methanol and n-propanal adsorbed on Pt₁/Nb₂O₅-Ov.

Supplementary Fig. 5 Recycling test of the Pt₁/Nb₂O₅-Ov catalyst. (a) Time-yield plots for MF from selective hydrodeoxygenation of HMF over Pt₁/Nb₂O₅-Ov (black line) or removing Pt₁/Nb₂O₅-Ov after 1 h (red line); (b) Reusability of the Pt₁/Nb₂O₅-Ov. Reaction conditions: HMF (0.3 mmol), catalyst (20 mg), solvent (THF 2 mL), reaction temperature (160°C), H₂ pressure (4.0 MPa), reaction time (1 h), stirring speed (600 rpm).

Supplementary Fig. 6 The HR-TEM image and corresponding EDS pattern of Pt1/Nb2O5-Ov. (a) TEM images of the used Pt1/Nb2O5-Ov. (b) EDS mapping images of the used Pt1/Nb2O5-Ov.

Supplementary Fig. 7 Characterization results from XPS. The Pt 4f of the used Pt₁/Nb₂O₅-Ov.

Supplementary Fig. 8 Calculated structures of the stoichiometric. (a) Nb₂O₅, (b) Pt₁/Nb₂O₅, (c) Pt₁/Nb₂O₅-Ov surfaces (Left: top view; Right: side view). Red: O, light blue: Nb, blue: Pt; the dotted circles label the missing oxygens (vacancies). These notations are used throughout the paper.

Supplementary Fig. 9 Calculated structures and the oxygen vacancy energies. (a, b) Nb₂O₅ and (c, d) Pt₁/Nb₂O₅ surfaces. The dotted circles label the missing oxygens (vacancies). (Left: top view; Right: side view). Red: O, light blue: Nb, blue: Pt.

Supplementary Fig. 10 Calculated adsorption energy and structures of H2 on Pt1/Nb2O5-Ov surfaces. (a) Pt site, (b) O site. (Left: top view; Right: side view). Red: O, light blue: Nb, blue: Pt, green: H.

Supplementary Fig. 11 AC–HAADF–STEM image and XPS pattern of Pd₁/Nb₂O₅-Ov. (a) AC–HAADF–STEM image of Pd₁/Nb₂O₅-Ov. The XPS spectra of Pd 3*d* (b), Nb 3*d* (c) and O 1*s* (d) of Nb₂O₅ and Pd₁/Nb₂O₅-Ov.

Supplementary Fig. 12 AC-HAADF-STEM image and XPS pattern of Au₁/Nb₂O₅-Ov. (a) AC-HAADF-STEM image of Au₁/Nb₂O₅-Ov. The XPS spectra of Au 4f(b), Nb 3d(c) and (d) O 1s of Nb₂O₅ and Au₁/Nb₂O₅-Ov.

Supplementary Table 1. Structural parameters extracted from quantitative EXAFS curve-fitting.

Tementary Table I.	Structura	paramete	is extracted if	om quantita		ui ve nitting.
Sample	Shell	C. N.	$\sigma^{2}/10^{-3}(\text{\AA}^{2})$	E ₀ /eV	R/ Å	R-factor
Pt foil	Pt-Pt	12	4.63	8.576	2.76	0.002
PtO ₂	Pt-O 1	2	3.10	11.98	1.92	0.017
	Pt-O 2	4	0.87	11.98	2.02	
	Pt-Pt	2	3.80	14.55	3.14	
Pt_1/Nb_2O_5 -Ov	Pt-O	2.11	2.93	14.10	2.00	0.019
	Pt-Nb	3.24	5.66	12.15	2.92	

EXAFS fitting details of Pt foil, PtO_2 and Pt_1/Nb_2O_5 -Ov, catalyst. The EXAFS data (k-range: -12.5 Å⁻¹ and R-range: 1-3.3 Å) were fitted in 1,2 and3 k-weighted R-space. Amplitude reduction factors were evaluated for reference spectra.

supprementary rable 2. Catalytic refformances of re-based Catalysis for the Conversion of more								
Entry	Catalyst	T(°C)	P(MPa)	Product	Conv. (%)	Yield (%)	TOF (h ⁻	Refrences
1	Pt/C	120	6.2	BHMF	11	2	21.3	1
2	Pt/MCM-41	35	0.8	BHMF	100	98.9	386.3	2
3	Pt ₃ Sn/SnO ₂ /rGO	70	2	BHMF	>99	>99	1308.0	3
4	Pt/AC	120	3	DMF	67.4	32.6	33.7	4
5	Pt/rGO	120	2	DMF	100	73.2	50.0	4
6	Pt/NaY	220	1.5	DMF	100	30.4	195.1	5
7	PtCo@HCS ^a	180	2	DMF	100	98	32.5	6
8	$Pt_1\!/Nb_2O_5\text{-}Ov$	160	4	MF	>99	>99	1875.3	This work

Supplementary Table 2. Catalytic Performances of Pt-Based Catalysts for the Conversion of HMF.

^aHCS, hollow carbon spheres.

Supprementary fuble	5. Calculated the ent	opy and ener	gy of cach comp	pound at the 419	.10 K.	
	H ₂ O	H_2	HMF	MF	DMF	
S/cal/mol/K	45.08	31.13	90.51	84.18	81.81	
E/eV	-14.22	-88.7	-6.76	-94.95	-89.97	

Supplementary Table 3. Calculated the entropy and energy of each compound at the 413.15 K.

Supplementary Table 4. The hydrodeoxygenation of MF to DMF over Pt1/Nb2O5-Ov.

Entres	Catalant	Temperature	Time	Commission (0/)	Yield
Entry	Catalyst	(°C)	(h)	Conversion (%)	(%)
1	Pt_1/Nb_2O_5-Ov	160	2	trace	-

Reaction conditions: MF (0.3 mmol), catalyst (20 mg), solvent (THF 2 mL), H₂ pressure (4 MPa), stirring speed (600 rpm).

Enters	Cubatrata	Temperature /	Time /	Draduat	Conversion	Yield.
Entry	Substrate	°C	h	Product	/ %	/ %
1	о в страната с с с с с с с с с с с с с с с с с с	160	4	° S	>99	98
2	Сустон	160	4	€ ` →	>99	>99
3		160	4	Сулон	trace	trace
4	С	160	4	_°	>99	>99
5		160	4	OH	trace	-
6	СУ-он	160	6	$\bigcirc \frown$	trace	-
7 ^b	ОН	160	1		24	24
8 ^b	0	160	1	ОН	55	45
9 ^b	но	160	1	0	>99	23
10°	но он он	200	6	ОН	11	9
11°	ноон ОН	200	6	ноон но	26	14.6 11.4
12 ^b	HO	160	2	~~~ ⁰	trace	trace
13 ^b	OH OH OH	160	4		trace	trace

Supplementary Table	e 5. Hydrodeoxygenation	of different substrates	over the Pt ₁ /Nb ₂ O ₅ -Ov catalyst ^a .
---------------------	-------------------------	-------------------------	--

[a] Reaction conditions: substrate (0.3 mmol), catalyst (20 mg), solvent (THF 2 mL), H₂ pressure (2.0 MPa), stirring speed (600 rpm). [b] solvent (ethanol 2 mL). [c] 10wt% solution (2 mL).

Structure	Frequency (cm ⁻¹)
TS1	971.15
TS2	319.98

Supplementary Table 6. The imaginary frequency of TS.

Fractional coordinates for optimized DFT structures

Fractional coordinates are provided in CIF-format and are labeled according to the nomenclature introduced in Supplementary Fig. 8c. The structures with CIF-format can be found in the Supplementary Data 1.

AutoCreatByScript: O Nb Pt

1.000000000000000

12.255509999999	99992 0.0000	0000000000000	0.0000000000000000000000000000000000000
0.00000000000000	00000 11.4381	59999999999999	0.000000000000000000
0.000000000000000	00000 0.0000	0000000000000000	32.74155999999999998
a=12.25551; b=11.438	316; c=32.74156		
alpha=90.00; beta=90.	00; gamma=90.0	C	
O Nb Pt			
104 50 1			

134 53 1

Selective dynamics

Direct

0.104675000000003	0.125098000000013	0.000506000000014
0.438008000000035	0.125098000000013	0.000506000000014
0.77134199999999971	0.125098000000013	0.000506000000014
0.104675000000003	0.4584309999999974	0.000506000000014
0.438008000000035	0.4584309999999974	0.000506000000014
0.7713419999999971	0.4584309999999974	0.000506000000014
0.104675000000003	0.7917649999999981	0.000506000000014
0.438008000000035	0.7917649999999981	0.000506000000014
0.7713419999999971	0.7917649999999981	0.000506000000014
0.2690119999999965	0.2918859999999981	0.015340000000019
0.60234499999999997	0.2918859999999981	0.015340000000019
0.935679000000004	0.2918859999999981	0.015340000000019
0.2690119999999965	0.625219000000013	0.015340000000019
0.60234499999999997	0.625219000000013	0.015340000000019
0.935679000000004	0.625219000000013	0.015340000000019
0.2690119999999965	0.958553000000020	0.015340000000019
0.60234499999999997	0.958553000000020	0.015340000000019
0.935679000000004	0.958553000000020	0.015340000000019
0.1019549999999967	0.291744000000013	0.073630000000014
0.43528799999999999	0.291744000000013	0.073630000000014
0.768621000000031	0.291744000000013	0.073630000000014
0.1019549999999967	0.6250769999999974	0.073630000000014
0.43528799999999999	0.6250769999999974	0.073630000000014
0.768621000000031	0.6250769999999974	0.073630000000014
0.1019549999999967	0.958410000000007	0.073630000000014
0.43528799999999999	0.958410000000007	0.073630000000014
0.768621000000031	0.9584100000000007	0.073630000000014

0.2682059999999993	0.291907000000019	0.1319280000000020
0.601539000000025	0.291907000000019	0.131928000000020
0.9348719999999986	0.291907000000019	0.131928000000020
0.2682059999999993	0.625241000000026	0.131928000000020
0.601539000000025	0.625241000000026	0.131928000000020
0.9348719999999986	0.625241000000026	0.131928000000020
0.2682059999999993	0.9585739999999987	0.131928000000020
0.601539000000025	0.9585739999999987	0.131928000000020
0.9348719999999986	0.9585739999999987	0.131928000000020
0.099246000000008	0.125086000000031	0.146762000000025
0.432580000000015	0.125086000000031	0.146762000000025
0.7659129999999976	0.125086000000031	0.146762000000025
0.099246000000008	0.45841899999999992	0.146762000000025
0.432580000000015	0.45841899999999992	0.146762000000025
0.7659129999999976	0.45841899999999992	0.146762000000025
0.099246000000008	0.791752000000025	0.146762000000025
0.432580000000015	0.791752000000025	0.146762000000025
0.7659129999999976	0.791752000000025	0.146762000000025
0.0967384831806638	0.2919264668021148	0.1984400293401334
0.7633702939764444	0.2918463737024006	0.1982576030819374
0.0971206506621761	0.6250909529761465	0.1983878578118828
0.7634294359203646	0.6250966884819221	0.1982460873406816
0.0966932167884315	0.9582605589000740	0.1984300736910830
0.7633422942710378	0.9583447604589306	0.1982478609843255
0.4297374153903777	0.2919142787076252	0.1983488579934903
0.4298853475262861	0.6250941586259811	0.1983060467367977
0.4297712531649505	0.9582517621830781	0.1983427581346141
0.9279896457040449	0.1250987434243782	0.2131721172285505
0.5949145351940190	0.4584154001893054	0.2134919369321027
0.9287486032954083	0.4585397009892780	0.2136394736799698
0.5949168655922191	0.7918382706848894	0.2134986203349254
0.2604870360221487	0.1250587220288560	0.2131724963624038
0.5947379109047489	0.1251159969797582	0.2132821556504050
0.9287548278316127	0.7916380197975730	0.2136479386291137
0.2614669053601289	0.4583511239489104	0.2136241332619642
0.2614724407113575	0.7918740188883564	0.2136203968619255
0.0953750192939599	0.1250693949496435	0.2715405390907309
0.0971147257918388	0.4596204952264579	0.2718951093591232
0.7634517416280708	0.4585604165740847	0.2713297929615547
0.7634646167677192	0.7915705068191381	0.2713295617947069
0.0971304490535625	0.7904640380633817	0.2718950335460938
0.7632650214719167	0.1250583530656517	0.2713001901858339
0.4287934200799147	0.1250510725788244	0.2710733326445434
0.4296972187371549	0.4603203353797182	0.2717287006656023

0.4296637932954322	0.7897674883628688	0.2717353462084565
0.9319189361880247	0.4585762443060655	0.3295517284746268
0.9319165758150081	0.7915576413163434	0.3295637208441026
0.9308058116940464	0.1250439463269523	0.3294885750261653
0.2635185682498307	0.1250808948761115	0.3291619754539143
0.2646192950144067	0.7911650629360718	0.3300675558900302
0.5980910335082473	0.1250352245843126	0.3290300291172414
0.2646234202365119	0.4589115597625991	0.3300530164015094
0.5989311299406582	0.4594414149297243	0.3295998084379418
0.5989502571743724	0.7906487414441394	0.3295896953984611
0.0984038125335431	0.6250457919591238	0.3467621836557412
0.7653917003672691	0.6250401390263491	0.3449407998099518
0.0961943523013620	0.2922147753276315	0.3451519070453558
0.0962023216426950	0.9578989733830036	0.3451426884650150
0.7629578203353753	0.2915987060124003	0.3444569939178252
0.7629555862741287	0.9584858186792228	0.3444588727456003
0.4305134026630895	0.6250478559657293	0.3455502428024928
0.4290752554803171	0.2925120667009361	0.3440310428832525
0.4290599888767632	0.9575799936111200	0.3440272752333387
0.4246901410599921	0.1250470160755480	0.3940376652039960
0.0952249583435874	0.7916932883949042	0.3974546254629856
0.0952886426134878	0.4584130692123413	0.3974585186373547
0.7617019902256740	0.4584301540717542	0.3955905980373277
0.7616804484742511	0.7916455246705656	0.3955893843150073
0.0921254821265388	0.1250492868105925	0.3960578745257074
0.7598696712238603	0.1250392432599752	0.3964994427224630
0.4285716792412718	0.7922050860278211	0.3968042906576499
0.4285356387150160	0.4578874466522357	0.3967970915090651
0.9324303803556799	0.6250174527108168	0.4133414922763171
0.9241819980998438	0.2920988843618146	0.4111505904056120
0.9241796000060032	0.9579773813058946	0.4111547693554463
0.2636559533761375	0.6250408339289625	0.4159515500451852
0.5914775448173848	0.2913170631876459	0.4095032404490519
0.5914643946360106	0.9587851749490137	0.4095004755538910
0.2564817037160334	0.2918066407754727	0.4121595503737812
0.2564717510037164	0.9582458408300001	0.4121553641068004
0.5966481006185710	0.6250306095885789	0.4129600395285075
0.0997555617931737	0.6250564508808697	0.4730802251252829
0.7725003651296061	0.6250583609492170	0.4684890110233368
0.4292371055069948	0.2788086520199484	0.4676184917585288
0.4292252938172117	0.9714850192542571	0.4676097684462406
0.7522710481620022	0.3005063555074715	0.4694829809991091
0.7522512579070352	0.9495712541602809	0.4694792091614182
0.0848564676180657	0.2854729613920871	0.4702366964737550

0.0848752556488260	0.9647111163755776	0.4702371578426683
0.4393291162343874	0.6250697596549193	0.4714142702747652
0.2314791599114371	0.6249246385393541	0.5563379522861980
0.9322118840212770	0.6250762303095226	0.5414169326501056
0.2397825289283950	0.2769578301455380	0.5352191987249559
0.2397961798760778	0.9731678054555774	0.5352291992225030
0.5728510430959460	0.3043965376899503	0.5389456559204148
0.5728736782126918	0.9457552098110376	0.5389223153526921
0.3862237883151764	0.4502418319895083	0.5277218207415386
0.3862684189367631	0.7999890579058885	0.5276946388191776
0.7290064651582545	0.1250684502870615	0.5337912477647183
0.8857050551941681	0.3001860051783070	0.5411788035341618
0.8857903806801317	0.9499920046897491	0.5411324548705234
0.7309232154813737	0.7708008762808352	0.5403624398863778
0.7309131894517608	0.4794444045610722	0.5403565127446199
0.0602818576864900	0.1250415846896321	0.5432595443091922
0.0794896902960987	0.4526347691003026	0.5389850883974350
0.0795656213127501	0.7974344343726947	0.5389865014831875
0.4131966938617996	0.1250790315110344	0.5396000313261838
0.4137089999999972	0.291814000000022	0.0158879999999968
0.747042000000004	0.291814000000022	0.0158879999999968
0.0803749999999965	0.291814000000022	0.0158879999999968
0.4137089999999972	0.6251469999999983	0.0158879999999968
0.747042000000004	0.6251469999999983	0.01588799999999968
0.08037499999999965	0.6251469999999983	0.01588799999999968
0.4137089999999972	0.95848099999999990	0.0158879999999968
0.747042000000004	0.95848099999999990	0.0158879999999968
0.0803749999999965	0.95848099999999990	0.0158879999999968
0.123525000000008	0.2918209999999988	0.131379000000026
0.45685799999999969	0.2918209999999988	0.131379000000026
0.7901909999999930	0.2918209999999988	0.131379000000026
0.123525000000008	0.625154000000020	0.131379000000026
0.45685799999999969	0.625154000000020	0.131379000000026
0.7901909999999930	0.625154000000020	0.131379000000026
0.123525000000008	0.958488000000027	0.131379000000026
0.45685799999999969	0.958488000000027	0.131379000000026
0.7901909999999930	0.958488000000027	0.131379000000026
0.7395591494270229	0.7917615370150367	0.2135775210643072
0.7393193094367616	0.1250971830347171	0.2135326479956673
0.0727085108702307	0.1250961388978760	0.2137435493781770
0.7395545254852981	0.4584330543074255	0.2135765957587169
0.0734816091941921	0.4585314083764631	0.2139952591726909
0.0734866378569975	0.7916553095893017	0.2139942706924708
0.4052592422640552	0.1250766376594291	0.2135549136591275

0.4062455735296422	0.4585776163116938	0.2140753199105416
0.4062570249189277	0.7915921156634166	0.2140775250399568
0.1200484072910713	0.4586358115636681	0.3295674323315809
0.7870506836990887	0.4579818790290721	0.3288309346962276
0.7870507137009517	0.7921077287478379	0.3288330729734987
0.1200470128132743	0.7914645541610899	0.3295678121372028
0.1189888664478994	0.1250540466493206	0.3291913379338003
0.7860121966917453	0.1250425281332521	0.3288268172213810
0.4532477832332356	0.1250478899739614	0.3287969204144091
0.4539675700861148	0.7901252491618805	0.3296027371488895
0.4539495625044627	0.4599646772188165	0.3296005717843108
0.0769208367745501	0.6250460580232340	0.4134048907518539
0.7411872834698831	0.6250360301255641	0.4110987028679308
0.7356103076924343	0.2921007867769403	0.4112570435984067
0.7355956825001237	0.9579842241330444	0.4112528134674037
0.0690161888471004	0.9588544391867516	0.4120592244861557
0.0690198101829151	0.2912489741854610	0.4120575271073536
0.4016537683121231	0.2910915181319456	0.4108897864050834
0.4016461487872588	0.9590088481320332	0.4108859125119871
0.4095520558188090	0.6250456753202298	0.4151885685610323
0.0926835913737988	0.6250698141443869	0.5300641591856180
0.7866195387748985	0.6250999974300260	0.5258380981222645
0.4266710020462290	0.9575244020455012	0.5253330434976995
0.4266215587991636	0.2928084395724801	0.5253414101832371
0.7455374675494134	0.2941225059012527	0.5270402579101339
0.7455855954516731	0.9560020376456498	0.5270320813265934
0.0961956434334530	0.2871868952673686	0.5277857786230936
0.0962110145530493	0.9629538965037145	0.5277860229205410
0.3667232892220451	0.6251986412025610	0.5245968267100587

Supplementary References

- 1. Chidambaram, M. & Bell, A. T. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. *Green Chem.* **12**, 1253–1262 (2010).
- Chatterjee, M., Ishizaka, T. & Kawanami, H. Selective hydrogenation of 5hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. *Green Chem.* 16, 4734–4739 (2014).
- Shi, J., Zhang, M., Du, W., Ning, W. & Hou, Z. SnO₂-isolated Pt₃Sn alloy on reduced graphene oxide: an efficient catalyst for selective hydrogenation of CO in unsaturated aldehydes. *Catal. Sci. Technol.* 5, 3108–3112 (2015).
- Shi, J., Wang, Y., Yu, X., Du, W. & Hou, Z. Production of 2,5-dimethylfuran from 5hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions. *Fuel* 163, 74–79 (2016).
- Nagpure, A. S., Lucas, N. & Chilukuri, S. V. Efficient preparation of liquid fuel 2,5dimethylfuran from biomass-derived 5-hydroxymethylfurfural over Ru-NaY catalyst. ACS Sustainable Chem. Eng. 3, 2909–2916 (2015).
- 6. Wang, G. H. et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. *Nat. Mater.* **13**, 293–300 (2014).