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Supplementary Note 1: Resonant x-ray scattering

Resonant x-ray scattering provides an enhanced sensitivity to charge modulations for

a specific atomic species and orbital. The x-ray beam was tuned resonant to the Cu-L3

edge (≈ 932 eV) probing charge modulations within the CuO2 plane [1]. It is reasonable

to ask whether the ring-like shape could be related to the core-hole potential in the RIXS

experiment. However, we can rule out an interaction between valence electrons and core-

holes as the origin of the ring like shape by looking at the energy dependence. Note that

the core-hole lifetime can be roughly estimated from the width of the Cu-L3 resonance

(< 0.5 eV). Thus the core-hole lifetime is too short to affect the quasi-static (low-energy)

RIXS signal and becomes more influential only at higher energies. Since we do not observe

a ring-like feature for the signal above 0.9 eV, we conclude the ring does not originate from

the core hole potential.

Supplementary Note 2: Data analysis

EI-RXS: The fluorescence background of the θ-scans displayed in Fig. 3a were adjusted

using a polynomial function f(qx) = A ·qx+B in order to match curves for both qx < 0.2 rlu

and qx > 0.4 rlu. Background-subtracted curves shown in the lower panel of Fig. 3a have been

generated by subtracting the high-temperature (300 K) θ-scans. The absolute CO intensity

reported in Fig. 3b is determined by integrating the area under the background-subtracted

CO peaks of Fig. 3a normalizing it by the fluorescence background level at qCO for T = 300 K.

Note that we do not apply any fitting procedure to extract the CO intensity, thus avoiding

model-related uncertainty. The doping dependence of qCO in Fig. 3e was retrieved by fitting

the CO peak position. The cautiously overestimated error bars in Fig. 3b represent system-

atic errors associated with the stability of the instrument (e.g. synchrotron/monochromator

stability or thermally induced fluctuations of the sample position) over multiple θ-scans (ac-

quired over several hours), as well as uncertainties associated to the subtraction of the 300 K

data.

RIXS: Due to variations of the beam position during a θ scan, the position of the

spectrum relative to the spectrometer CCD camera varied slightly over time. To adjust

for this, we re-aligned the spectra for each θ and ϕ to a common reference. 2D-intensity

maps shown in Fig. 1b–c and Fig. 2a–b of the main text have been generated via a radial

(ϕ) Voronoi interpolation procedure (single traces are shown in Fig. 1a). Figure 1a–c of the

main text demonstrates the presence of a ‘ring-like’ scattering pattern only for the LE signal
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Supplementary Fig. 1. Normalized RIXS data. a Energy-Loss RIXS spectrum for

(q,ϕ)=(0.05 rlu, 0◦). The sepia shadow highlights the total energy-integrated RIXS signal
∫
IRIXS .

b q-dependence of
∫
IRIXS for ϕ = 0◦. c Normalized RIXS scattering measured at 50 K as a func-

tion of momentum along different ϕ for different energy ranges: low energy (c1, LE, −0.4 < E <

0.9 eV), elastic (c2, EL, −0.2 < E < 0.2 eV), and inelastic (c3, INEL, 0.4 < E < 0.9 eV) regions.

The blue dashed line displays the featureless normalized high-energy (HE, 1 < E < 3.5 eV) signal.

Each (q,ϕ) point has been normalized by the related
∫
IRIXS(q,ϕ).

(E < 0.9 eV). In an effort to remove any possible geometrical and/or systematic effects,

we normalized each (q,ϕ) data point by the corresponding
∫
IRIXS(q,ϕ) energy-integrated

RIXS intensity (see Fig. 1c). The sepia shadow in Supplementary Fig. 1a highlights the

integrated intensity of the RIXS spectrum (
∫
IRIXS). Supplementary Fig. 1b displays the

q-dependence of the total fluorescence
∫
IRIXS integrated in the [−4, 25] eV energy range for

ϕ = 0. Panels c show that the ϕ-dependence of the scattering pattern changes as a function

of the selected energy range: LE (c1, −0.4 < E < 0.9 eV), EL (c2, −0.2 < E < 0.2 eV), and

INEL (c3, 0.4 < E < 0.9 eV), respectively. In agreement with Fig. 1b–c and Fig. 2a–b of the

main text, the ‘ring-like’ structure appears only in the INEL component. In addition, note

that the normalized HE signal (blue dashed line, 1 < E < 3.5 eV) is featureless. Following

the same approach used for EI-RXS data, normalized RIXS data shown in Supplementary

Fig. 1c have been marginally adjusted by a linear background to match curves for both

qx < 0.15 rlu and qx > 0.35 rlu. The error bars of Fig. 2c represent the variation of the

normalized scattering intensity at q = qCO for different integration windows (0.1 to 0.19 rlu

range).
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Supplementary Note 3: Summary of the materials studied

Figure Material Doping Level Tc (K)

3 Nd2−xCexCuO4 0.145 24

3 Bi2Sr2−xLaxCuO6+δ 0.115 15

3 Bi2Sr2(Ca,Dy)Cu2O8+δ 0.09 37

3 Bi2Sr2(Ca,Dy)Cu2O8+δ 0.097 45

3 Bi2Sr2(Ca,Dy)Cu2O8+δ 0.105 54

1-3 Bi2Sr2CaCu2O8+δ 0.105 54

3 Bi2Sr2CaCu2O8+δ 0.13 75

3 Bi2Sr2CaCu2O8+δ 0.14 82

3 Bi2Sr2CaCu2O8+δ 0.17 91

Supplementary Table 1. Details of the materials studied for this project.

Supplementary Note 4: Calculation of the interacting potential

To calculate the form of V (q), we closely follow the model descriptions in Refs. [2, 3]. The

interaction term V (q) is the sum of two terms: (i) U(q), the short-term Coulomb repulsion;

and (ii) Vc(q), the long-range Coulomb repulsion projected onto the CuO2 plane. Overall,

V (q) = U(q)+Vc(q) (see Supplementary Fig. 2). The q-dependence of the short range U(q)
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Supplementary Fig. 2. Contributions to the interaction term V (q). U (green dashed line) is

the short-term Coulomb repulsion, and Vc (blue dashed line) is the long-range Coulomb repulsion

projected onto the CuO2 plane. V=U + Vc is the overall interaction term (black solid line).
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can be written up to its next-nearest neighbor as [2, 3]:

U(q) = U0 + U1[2− cos(qx)− cos(qy)] + U2[1− cos(qx) cos(qy)]. (1)

To visualize the in-plane q structure of V (q) it suffices to calculate U1 and U2 [2, 3]:

U1 ∝
t

2N

∑
A,B

∑
k

[cos(kx) + cos(ky)]f
(
EA,B

k

)
; (2)

U2 ∝
4t′

2N

∑
A,B

∑
k

[cos(kx) cos(ky)]f
(
EA,B

k

)
, (3)

where N is the number of k points, f is the Fermi-Dirac distribution, and EA,B
k = µ −

2t[cos(kx)+cos(ky)]+4t′ cos(kx) cos(ky)−2t′′[cos 2(kx)+cos 2(ky)]± t⊥[cos(kx)−cos(ky)]
2/4

(A and B are the anti-bonding and bonding bands of Bi2212, respectively). The tight-

binding parameters were obtained from recently reported ARPES data [4].

The long range Coulomb component is very general, obtained simply by solving Poisson’s

equation on a lattice. For a square plane within a 3D tetragonal lattice it follows [5]:

Vc(q) =
vc√
G2

q − 1
,

with vc =
ed

2ε0ε⊥a2
and Gq = 1 +

ε||
ε⊥

(d
a

)2

[2− cos(qx)− cos(qy)].

(4)

Here, e is the electron charge, d the interlayer distance, a the lattice spacing in the CuO2

plane, ε0 the permittivity of free space, and ε|| (ε⊥) is the in-plane (out-of-plane) dielectric

constant. In addition, the components of the dielectric tensor present in Supplementary

Eq. 4 depend on the doping level [6, 7].

The form we use is proportional to q−1 at small q. The in-plane Coulomb potential used

to describe the MEELS data is ∝ e−qd/q [8, 9], which has the same asymptotic behavior

towards small q. The layered electron gas model used to described plasmons in electron-

doped cuprates [10, 11] has different long-range asymptotic behaviors depending on the

value of qz, varying from approaching a constant (qz 6= 0) to q−2 (qz = 0, 2π) behavior. In

principle, any of the above forms plus the short range behavior could produce a minimum

in V (q) in the crossover region from short- to long-range behavior. We note however that

the layered electron gas model goes from highly qz-dependent for small in-plane q to being

qz-independent for large in-plane q. Thus, while qz has a strong effect for plasmons at

low q, it is still unclear what effect it has towards determining the minima of V (q) at the

intermediate range. Experimentally, the location of charge order peaks along qx and qy are

independent of qz – this is likely also the case for the dynamic scattering ring. Nevertheless,

future extensive RIXS investigations will be necessary to resolve the qz dependence.
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Supplementary Fig. 3. Doping dependence of qCO. a–b Momentum structure of the Coulomb

repulsion U1(q)+U2(q)+Vc(q) for two doping levels of Bi2212 (a = 3.82 Å, d = 15.4 Å). Parameters

for p = 0.1: ε|| = 2, ε⊥ = 10, µ = 0.34 eV, t = 0.39 eV, t′ = 0.12 eV, t′′ = 0.045 eV, and

t⊥ = 0.108 eV. Parameters for p = 0.16: ε|| = 2.5, ε⊥ = 15, µ = 0.37 eV, t = 0.36 eV, t′ = 0.108 eV,

t′′ = 0.036 eV, and t⊥ = 0.108 eV. In an effort to provide a simplified case scenario for the p-

dependence of qCO and reduce the number of varying parameters, we assume that the Coulomb

repulsion terms (Supplementary Eqs. 2 and 3) do not strongly vary as a function of p. c Momentum

cuts along (qx,0) of the Coulomb repulsion shown in a (p = 0.1, black line) and b (p = 0.16, green

line).

Supplementary Fig. 3a–b shows the calculated potential for two doping levels, repro-

ducing the isotropic form found in the experiments. Also note that changes in the band

structure and dielectric parameter may also result in small modifications to V (q), which

may be responsible for weakly doping dependent qCO (Supplementary Fig. 3c). Figures 1d–

e of the main text were generated using the following parameters: a = 3.82 Å, d = 15.4 Å,

ε|| = 2.5, ε⊥ = 8. Regarding the band structure, we used only the antibonding (A) band

of Bi2212 with µ = 0.274 eV, t = 0.36 eV, t′ = 0.108 eV, t′′ = 0.036 eV, and t⊥ = 0.108 eV,

which correspond to a hole doping p ≈ 0.1 via a Luttinger count.

Supplementary Note 5: Lindhard approximation

In the framework of the random phase approximation (RPA) the polarizability is

ΠLind(q, ω), which depends on the band structure and Fermi-Dirac distribution function:

ΠLind(q, ω) =

∑
A,B

∑
k,σ

f
(
EA,B

k+q

)
− f

(
EA,B

k

)
EA,B

k+q − E
A,B
k + ω

. (5)
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Supplementary Fig. 4. Fermi surface of Bi2212. a Fermi surface for Bi2212 p = 0.1 calculated

using tight-binding parameters from Ref. [4] for doping p = 0.1 (underdoped 54 K). b Momentum

dependence of the Lindhard function (Supplementary Eq. 5) calculated using the Fermi surface

shown in panel a. c Lindhard function along the momentum direction (qx, qy = 0).

0.4

0.2

0.0

-0.2

-0.4

0.40.20.0-0.2-0.4

q y (
r.l

.u
.)

qx (r.l.u.)

a U0
eff (eV):

-1
-3
-5

f:
0o

45o

x5

x6

0.30.20.1
q (r.l.u.)

0.4

b

0

1

2

3

c
(q
)

c(q)

p=0.1; U0
eff=-5 eV

2

1

Supplementary Fig. 5. Anisotropy of χRPA. a χRPA calculated for p = 0.1 doping assuming an

effective attractive onset U eff
0 = −5 eV. (b) Momentum cuts of χRPA along ϕ = 0◦ (solid lines) and

ϕ = 45◦ (dashed lines) as defined in the main text and panel a. Different colors indicate different

values of U eff
0 .

Here the Fermi surface instability mechanism is captured by the static response which is

dominated by the Fermi surface, ΠLind(q, ω = 0). The doping dependence of qCO has been

historically proposed to bear a relation to the change of EA,B
k , which would be encoded in the

Lindhard function (Supplementary Eq. 5). In particular, the large density of states across

the hot-spots at the end of the Fermi arcs could induce the CO instability [12]. However,

our Bi2201 data shown in Fig. 3 of the main text demonstrates the presence of a sizable CO

even for temperatures higher than the pseudogap onset temperature (T ∗), i.e. in the absence

of hot spots. Supplementary Fig. 4 displays the Fermi surface of underdoped Bi2212 (p ≈
0.1, panel a, computed using the tight binding parameters described in the Supplementary

Note 4), as well as the related Lindhard function and its momentum dependence along
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Supplementary Fig. 6. Energy-integrated ΠLind and χRPA. a Momentum dependence of the

Lindhard function integrated over MIR energy range (0to0.5 eV). Only the AN band was used

for this calculation for p = 0.1 doping. b Momentum cuts of the energy-integrated Lindhard

function along ϕ = 0◦ (solid lines) and ϕ = 45◦ (dashed lines) as defined in panel a. c Momentum

dependence of χRPA integrated over MIR energy range. The Coulomb repulsion of Supplementary

Fig. 3a was used. d Momentum cuts of χRPA along ϕ = 0◦ (solid lines) and ϕ = 45◦ (dashed lines)

as defined in panel c.

(qx,0) in panels b and c, respectively. Note that the maximum of the Lindhard function,

Supplementary Eq. 5, calculated for the normal state Fermi surface (i.e. for T > T ∗), falls

short of the experimental qCO (see Supplementary Fig. 4c). Regardless, the most relevant

qualitative feature of the Lindhard function to our studies is that it displays a C4 symmetry,

with square-like contours, in contrast to the circular symmetry (C∞) reported in Figs. 1 and

2 of the main text.

To demonstrate the square-like structure of the static RPA susceptibility, we perform a

simple proof-of-principle calculation using the following formula:

χRPA(q, ω = 0) =
ΠLind(q, ω = 0)

1 + V (q)ΠLind(q, ω = 0)
. (6)

The results show deviations from the isotropic form observed in our experiments. This is well

displayed in Supplementary Fig. 5a where χRPA is calculated using the Lindhard function

of Supplementary Fig. 4b, the Coulomb repulsion of Supplementary Fig. 3a, and assuming
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an effective attractive onset U eff
0 = −5 eV. To show the weak dependence of the anisotropy

of χRPA on the value of U eff
0 , we display momentum cuts along (qx,0), solid lines, and the

diagonal, dashed lines, for three different values of U eff
0 , Supplementary Fig. 5b.

We showed that the Lindhard function and RPA susceptibility deviate significantly from a

circular scattering pattern in the ω = 0 static limit (see Supplementary Figs. 4–5). However,

the momentum-pattern of both ΠLind(q, ω) and χRPA(q, ω) may change when integrated

over ω. Supplementary Fig. 6a–b displays ΠLind integrated over the MIR energy range (0 to

0.5 eV). The energy-integrated ΠLind deviates even more from a a circular pattern, making

ΠLind almost featureless as a function of the momentum q (see Supplementary Fig. 6b).

However, the energy-integrated χRPA approaches a circular pattern in qx-qy (Supplementary

Fig. 6c–d). This happens because the q space patterns in ΠLind(q, ω) disperse and broaden

with energy, which causes them to be washed out by the energy summation. At the same

time, V (q) is energy independent, allowing it to more strongly influence χRPA, relative to

the contribution from ΠLind.
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