

Supplementary Material

Supplementary Figure S1. Wt and TLR3^{-/-} underwent IM. ME was isolated 15 min after surgery and snap frozen in liquid nitrogen. Release of ph-I κ B was measured with ME RIPA lysates by ELISA following the manufacturer's instructions. n = 6 for all groups. Samples were analyzed by 2-way analysis of variance with Tukey post-hoc test and the results are displayed as means ± SEM. *p≤0.05, ***p≤0.001 versus indicated groups.

В

Supplementary Figure S2. (A) Bioluminescence was measured in IFN- β luc^{+/-} (mouse 1 & 2) and wildtype (mouse 3) mice 3, 6 or 24 hrs after IM (mouse 1 and 3) or after i.p. injection of 200µg PolyI:C (mouse 2) using an IVIS 200 system (Caliper LifeSciences) 5 min after i.p. injection of luciferin (50 mM, Caliper Life Sciences) in PBS. (B) Data from dataset A were analyzed using the LivingImage software. n= 3 animals per group, 1 experiment.

Supplementary Figure S3. Wt and IFNAR^{-/-} mice underwent IM. In ME 24h after surgery absolute cell counts of CD45⁺ leukocytes, Ly6G-Ly6C⁺ monocytes, Ly6G⁺Ly6C⁺ neutrophils and F4/80⁺Ly6C⁻ resident macrophages were analyzed. n = 7 for all groups. Samples were analyzed by student's t-test, and the results are displayed as means \pm SEM. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 versus indicated groups.

Supplementary Figure S4. Representative gating strategy on MHCII expression levels of CD45⁺ cells from the ME of CX3CR1^{GFP/+} mice, LysM^{cre+};ROSA26^{LSL-eYFP} and C57BL6 mice. Note that the majority of the CX3CR1⁺ macrophages is present in the MHCII^{hi} population. Therefore, we followed this MHCII^{hi} population in our further analysis.

Supplementary Figure S5. Lethally irradiated shielded and non-shielded CX3CR1^{GFP/+} were recovered 6-7h after radiation with a total of 1.2 x 107 bone marrow (BM) cells of LysM^{cre+};ROSA26^{LSL-eYFP} donor mice. 6 weeks later, FACS analysis and quantification of total CD45⁺ cells in shielded and non-shielded mice was performed. n=3. Samples were analyzed by student's t-test and the results are displayed as means \pm SEM.

Supplementary Material

Supplementary Figure S6. Immunohistochemical analysis of ileal whole mount specimen in naive controls (ctrl), lethally irradiated shielded and non-shielded CX3CR1^{GFP/+} mice that were recovered with a total of 1.2×10^7 bone marrow cells of LysM^{cre+};ROSA26^{LSL-eYFP} donor mice. 6 weeks later immunhistochemistry was performed. (A) Representative whole mounts were stained with MHCII (purple) and Hoechst (blue), scale bars 100µm and (B) quantification of total MHCII⁺ cells was performed. n=3 mice per group. Samples were analyzed by student's t-test and the results are displayed as means ± SEM.

Supplementary Figure S7. Representative 3D projection of stainings for βIII-tubulin (blue), MHCII (red), GFP (green) and IBA-1 (grey) demonstrating the prominent network of MHCII⁺CX3CR1⁺ and MHCII⁺CX3CR1⁻ cells located in small intestine whole mounts of the muscularis externa in CX3CR1^{GFP/+}. Note that MHCII⁺CX3CR1⁻ cells (*) lay in a different layer, the deep myenteric plexus (DMP), while MHCII⁺CX3CR1⁺ cells are located in the myenteric (MP, arrow heads) and serosal (SP,§) plexus. Presence of three individual layers can also be nicely observed in the individual IBA-1 and MHCII stainings while the CX3CR1-GFP staining only shows two cell layers. Notably, all MHCII⁺ cells are also IBA-1⁺, indicating that these cells are resident macrophages. (Representative image taken from two individual experiments).

В

Supplementary Figure S8. Representative FACS staining of the expression of CD11b, CD103 and CD11c on (**A**) Near-IR⁻CD45⁺MHCII^{hi}CX3CR1⁺ and (**B**) Near-IR⁻CD45⁺MHCII^{hi}CX3CR1⁻ gated ME cells of untreated CX3CR1^{GFP/+} mice. n = 3 (the ME of 3 mice was pooled for each replicate).

8

Supplementary Figure S9. MHCII^{hi}CX3CR1⁺ and MHCII^{hi}CX3CR1⁻ cell populations of the ME of naive CX3CR1^{GFP/+} mice were flow cytometry sorted and underwent RNA sequencing. (**A**) Heatmap of the most differentially expressed genes in MHCII^{hi}CX3CR1⁺ and MHCII^{hi}CX3CR1⁻ cells (according to the volcano plot in Figure 6b). (**B**) Heatmap of the top 25 signature genes differentially expressed between MHCII^{hi}CX3CR1⁺ and MHCII^{hi}CX3CR1⁻ cells.