Supporting Information to Manuscript:

Urine Nuclear Magnetic Resonance (NMR) Metabolomics in Age-Related Macular Degeneration

Inês Laíns^{1,2,3,4} [¶], Daniela Duarte⁵ [¶], António S. Barros^{5, +}, Ana Sofia Martins⁵, Tatiana J. Carneiro⁵, João Q. Gil^{2,3,4}, John B. Miller¹, Marco Marques^{2,3,4}, Tânia S. Mesquita³, Patrícia Barreto³, Ivana K. Kim¹, Maria da Luz Cachulo^{2,3,4}, Demetrios G. Vavvas¹, Isabel M. Carreira², Joaquim Neto Murta^{2,4}, Rufino Silva^{2,3,4}, Joan W. Miller¹, Deeba Husain^{1 &} and Ana M. Gil^{5 & *}

¹ Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.

² Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.

³ Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.

⁴ Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.

⁵ CICECO- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

[¶]The first two authors contributed equally. [&]The last two authors contributed equally.

⁺ current address: Department of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal

* Corresponding author. E-mail: agil@ua.pt

Figure S1

Figure S1. Histograms of age and BMI distributions for controls and AMD patients for Coimbra and Boston cohorts: controls

Figure S2. PCA and PLS-DA scores obtained for a) control and b) late AMD groups from each cohort. In the PCA of controls, two outlier samples were removed from the Coimbra cohort; in the PCA of late AMD, two Boston outliers and one Coimbra outlier were removed.

◆ Control group (both cohorts) n=98, ■ AMD patients (both cohorts) n=397

Figure S3. a) PCA and b) PLS-DA scores obtained for all controls (Coimbra and Boston cohorts) compared to all AMD patients (Coimbra and Boston, all disease stages).

a) Coimbra cohort

Figure S4. PLS-DA scores for variable-selected spectra of urine from Controls *vs* Late AMD in the a) Coimbra cohort, circles (blue, Controls, n=52; purple, Late AMD, n=53) and b) Boston cohort, diamonds (blue, Controls, n=46; purple, Late AMD, n=48). Q² value and MCCV results are shown for each model.

Figure S5

Figure S5. PLS-DA obtained with the full resolution spectra for both study cohorts: a) Coimbra cohort, circles (blue: controls, n=52; red: early AMD, n=56; green: intermediate AMD, n=141; purple: late AMD, n=54); b) Boston cohort, diamonds (blue: controls, n=46; red: early AMD, n=33; green: intermediate AMD, n=60; purple: late AMD, n=45).

Figure S6. a) Spectra and b) boxplots for unassigned spectral region 2.86-2.88 ppm, which appears to separate controls and early AMD groups in the Coimbra cohort.

Table S1. Comorbidities characterizing each of the subject groups with correspondingpercentages and statistical relevance. Statistical comparison (Person Chi² or Fisher Exact Test,according to Cochran Rules) between groups was performed (control *vs* early AMD; early *vs*intermediate AMD; intermediate *versus* late AMD. *: p-values < 0.05 corresponding to</td>

	Control	Early AMD	Intermediate AMD	Late AMD
Coimbra cohort	n = 53	n = 57	n = 141	n = 54
Hypertension, n (%)	26 (49)	30 (53)	81 (57)	35 (65)
Dyslipidemia, n (%)	26 (49)	32 (56)	63 (47)	28 (52)
Heart disease, n (%)	10 (19)	8 (14)	33 (23)	10 (19)
Blood disease, n (%)	1 (2)	0 (0)	5 (4)	4 (8)
Renal disease, n (%)	1 (2)	2 (4)	7 (5)	3 (6)
Liver disease, n (%)	0 (0)	1 (2)	1 (1)	3 (6)

comparison with previously indicated group.

Prior cancer, n (%)	5 (10)	4 (7)	12 (9)	4 (8)
Rheumatic disease, n (%)	0 (0)	1 (2)	1 (1)	3 (6)
Neurologic disease, n (%)	10 (19)	12 (21)	20 (15)	9 (17)
Thyroid disease, n (%)	9 (17)	4 (7)	12 (9)	0 (0) *
Boston cohort	n = 47	n = 33	n = 66	n = 48
Hypertension, n (%)	14 (30)	8 (24)	25 (37)	23 (47)
Dyslipidemia, n (%)	17 (36)	11 (33)	28 (42)	23 (47)
Heart disease, n (%)	2 (4)	7 (21) *	8 (12)	7 (15)
Blood disease, n (%)	5 (11)	4 (12)	6 (9)	2 (4)
Renal disease, n (%)	2 (4)	2 (6)	2(3)	6 (13)
Liver disease, n (%)	2 (4)	1 (3)	1 (2)	1 (2)
Prior cancer, n (%)	14 (30)	9 (27)	30 (46)	14 (29)
Rheumatic disease, n (%)	4 (9)	4 (12)	11 (17)	10 (21)
Neurologic disease, n (%)	3 (7)	2 (6)	8 (12)	3 (6)
Thyroid disease, n (%)	8 (17)	2(6)	14 (21) *	1 (2)

Table S2. Metabolite identification in the ¹H NMR spectrum of urine of a control subject (Coimbra cohort). The bottom section of the table lists the unassigned spin systems observed in this work to change according to AMD stage. 2-HIBA, 2-hydroxyisobutyrate; 2-KG, 2-ketoglutarate; 2-Py, *N*-methyl-2-pyridone-5-carboxamide; β-HBA: β-hydroxybutyrate; 3-HIVA: 3-hydroxyisovalerate; 4-DEA: 4-deoxyerythronic acid; 4-DTA: 4-deoxythreonic acid; 4-HPA: 4-

	2.4
бн ppm (multiplicity, assignment/ δ C ppm)	PAG:
	pnen
	vlace
	j
	tylgl
	utomi
	utaini
	ne;
	ТМА
	:
	trime
	thylo
	uiyia
	mine;
	TMA
	0:
	trime
	there
	tnyia
	mine

hydroxyphenylacetate; GAA: guanidoacetate; IS: indoxyl sulphate; p-CS: para-cresol sulphate;

-N-oxide. Ui, unassigned resonances according to Table 2.

(please see next 2 pages for full table)

1,6-anhydroglucose	3.54 (m, C2H), 3.69 (m, C3H,C4H), 3.76 (dd), 4.10 (dd, CH), 4.62 (dd,CH ₂),
	5.46 (br, C1H)
1-methyl-histidine	$3.07 (dd, \beta CH_2)$; $3.16 (dd, \beta' CH_2)$; $3.72 (s, CH_3)$; $3.96 (dd, \alpha CH_2)$; $7.05 (s, CH_3)$; $7.05 (s, CH_$
	ring); 7.78 (s, ring)
2-HIBA	1.36 (s, CH ₃)
2-KG	3.45 (t, βCH ₂), 3.01 (t, γCH ₂)
2PY	3.62 (s, CH ₃); 6.67 (d, C3H ring/120.85); 7.97 (dd, C4H ring); 8.33 (d, C6H
	ring/145.46)
3-aminoisobutyricacid	1.19 (d, CH ₃ /17.87); 2.61 (m, αCH); 3.06 (dd, βCH ₂)
β-HBA	1.20 (d, CH ₃); 2.31(m, CH ₂); 2.41 (m, CH ₂); 4.15 (m, CH)
3-HIVA	1.27 (s, βCH ₃ /31.02); 2.37 (s, αCH ₂)
3-methyl-histidine	3.28 (dd, βCH ₂ /28.05); 3.75 (s, NCH3/35.18); αCH/56.52); 7.15 (s,
5	C6H/126.33): 8.12 (s. C2H/140.81)
4-DEA	1.11 (d. γCH ₃ /18.26): 4.08 (d. αCH/78.67): 4.10 (m. βCH/71.54)
4-DTA	1.23 (d, γ CH ₃ /21.37); 3.84 (d, α CH/79.04); 4.12 (m, BCH/71.59)
4-hydroxyhippurate	3 95 (s. CH2): 6 98 (d. C3H, C5H ring): 7 76 (d. C4 2H, C6H ring)
4-HPA	3.46 (s, CH ₂ /46.3): 6.86 (d, C3H, C5H ring/118.4): 7.17 (d, C2H, C6H
	ring/133 3)
Acetate	1 03 (BCH3)
Acetoacetate	$2.20 (c CH_2) \cdot 3.46 (c CH_2)$
Acctono	2.27 (5, C112), 5.40 (5, C113) 2.24 (c)
Alenina	2.24(5) 1 40 (4 8 CH2/18 00), 2 78 (~ ~ CH)
Alanine	1.49 ($a, p \in H_{3}/18.99$); 5.78 ($q, \alpha \in H$)
Allantoin	5.39 (S, CH/66.19)
Ascorbate	3.76 (m, CH2(OH)); 4.01 (m, CH (OH)); 4.52 (d, CH)
Betaine	3.27 (s, CH3/56.13); 3.91 (s, CH2/69.11)
Carnitine	2.44 (dd, αCH2/45.74; 3.23 (s, N(CH3)3/72.80; 3.43 (m, γ CH2/72.80; 4.57 (m BCH2/66.88)
Choline	3.20 (s, N(CH3)3/56.52); 3.52 (m, NH/70.60); 4.07 (m, CH2(OH))
cis-aconitate	3.12 (d. CH/46.13): 5.79 (t. CH2/127.13)
Citrate	2.54 (d, α , β CH2/48.17); 2.69 (d, $\alpha \times \beta \times$ CH2/48.17)
Creatine	3.04 (s. NCH3/39.66): 3.94 (s. NCH2/56.55
Creatinine	3.05 (s, NCH3/32.86): 4.06 (s, NCH2/59.05)
DMA	2.73 (s. CH3/37.41)
DMG	$2.93 (s, (CH3)/(46.21)) \cdot 3.72 (s, CH)$
Formate	8 47 (s, CH/173 97)
Fumoroto	6.52 (s, CH)
Fumalate	0.55 (8, CH) 2.02 (8, CH2): 6.65 (dd, C4H ring/114.08): 7.10(d, C2H ring): 7.70 (d, C5H
rutoyigiyenie	5.75 (5, C112), 0.05 (uu, C4fi 111g/114.96); 7.19(u, C5fi 111g); 7.70 (u, C5fi
Calastasc	$\frac{1111}{2} \frac{1}{40} \frac{1}{44} \frac{1}{44} \frac{1}{2} \frac{1}{21} \frac{1}{275} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{200} \frac{1}{100} \frac{1}{200} \frac{1}{100} \frac{1}{100}$
Galaciose	3.47 (uu, 0.4π), 3.04 (uu, 0.5π), 5.73 (III, 0.1π , 0.2π , 0.12), 5.83 (III, 0.3π), 2.02 (4, 0.211), 2.02 (4, 0.211), 4.10 (4, 0.111), 4.00 (4, 0.121), 5.22 (4, 0.511)
	5.75 (u. $U(2\pi)$), 5.76 (u, $U(2\pi)$), 4.10 (l, $U(1\pi)$), 4.00 (d, $U(12)$), 5.28 (d, $U(5\pi)$)
a-Glucose	3.23 (dd, C2H); 3.44 (m, C4H); 3.50 (t, C3H); 3.72 (dd, C6H'); 3.90 (m, C6H)
0.01	4.65 (d, C1H)
β-Glucose	3.42 (t, C4H); 3.54 (dd, CH); 3.71 (t, C3H); 3.77 (dd, C6H); 3.84 (m, C5H);
	5.25 (d, C1H/94.97)
Glutamine	2.15 (m, βCH2/29.24); 2.47 (m, γCH2/33.67); 3.79(t, αCH/57.41)
Glycine	3.57 (s, αCH2/44.45)
GAA	3.80 (s, CH2/47.44)
Hippurate	3.97 (d, CH2/46.65); 7.56 (t, C4H, C6H ring/131.60); 7.64 (t, C3H, C5H
	ring/134.99); 7.83(d, C4H/129.97); 8.52 (br, NH)
Histidine	3.18 (dd, βCH2/30.40); 3.28 (dd, β'CH2/30.40);4.01(dd, αCH2/57.64); 7.13 (s,
	C4H ring/120.05); 7.98 (s, C2H ring/138.74)
** **	8.20 (s, C2H ring); 8.22 (s, C8H)
Hypoxanthine	
Hypoxanthine IS	7.21 (dd, C8H/122.53), 7.28 (dd, C7H/125.01), 7.36 (s. C2H/119.08), 7.51 (d.
Hypoxanthine IS	7.21 (dd, C8H/122.53), 7.28 (dd, C7H/125.01), 7.36 (s, C2H/119.08), 7.51 (d, C6H/115.04), 7.70 (d, C9H/120.57)
Hypoxanthine IS Isoleucine	7.21 (dd, C8H/122.53), 7.28 (dd, C7H/125.01), 7.36 (s, C2H/119.08), 7.51 (d, C6H/115.04), 7.70 (d, C9H/120.57) 0.94 (t, δCH ₃); 1.01 (d, βCH ₂); 1.26 (m, γCH ₂); 1.47(m, β'CH ₂); 1.98 (m

Lactate	1.34 (d, CH ₃ /22.43); 4.11 (q, CH/71.53)
Lactose	3.28 (dd, C2H); 3.55 (m, C'2H); 3.59 (dd, C2H); 3.66 (m, C'3H, C3H,C5H);
	3.73 (m, C'6H, C'5H); 3.79 (m, C6H); 3.86 (m, C6H, C3H); 3.94 (m, C6H,
	C'4H, C4H); 4.46 (d, C'1H/ 105.8); 5.25 (d, C1H)
Leucine	0.96 (t, γCH ₃); 1.7 (m, CH ₂); 3.73 (t, αCH)
Lysine	1.48 (m, γ CH ₂ /24.28); 1.73 (m, δ CH ₂ /29.06); 1.92 (m, β CH ₂ /32.60); 3.03 (t,
5	εCH ₂)/42.02); 3.77 (t, αCH/57.28)
Malonate	3.11 (s, CH2/48.7)
NMND	4.48 (s, NCH3/51.30); 8.18 (m, C5H ring); 8.90 (d, C4H ring); 8.97 (d, C6H
	ring); 9.29 (s, C2H ring)
p-CS	2.35 (s, CH3); 7.21 (d, C2H, C6H ring/124.12); 7.29 (C3H, C5H ring/125.04)
PAG	1.93 (m, βCH2); 2.11 (m, β'CH2); 2.27 (t, γCH2/34.44); 3.67 (d, CH2); 4.18
	(m, αCH); 7.36 (m, C2H, C4H, C6H ring/132.01); 7.43 (m, C3H, C5H
	ring/131.84)
Pyruvate	2.38 (s, CH3)
Scyllo-inositol	3.36 (s, CH)
Succinate	2.41 (s, CH2/36.85)
Sucrose	3.48 (t, C4H), 3.56 (dd, C2H), 3.63 (s, C1'H2), 3.77 (t, C3H), 3.83 (dd, CH2,
	C'6H2), 3.85 (m, C5H), 3.89 (m, C'5H), 4.06 (t, C'4H), 4.22 (d, C'3H), 5.41
	(d, C1H)
Tartrate	4.35 (s, CH(OH))
Taurine	3.26 (t, CH2SO3); 3.43 (t, NCH2)
Threonine	1.33 (d, CH3/22.44); 3.61 (d, βCH/63.36); 4.26 (dd, αCH/68.90)
Trigonelline	4.44 (s, CH3/50.98); 8.09 (t, C3H ring); 8.84 (br, C2H, C4H ring); 9.12 (s,
-	C6H ring/148.73)
TMA	3.89 (s, CH3/47.40)
TMAO	3.28 (s, CH3/62.31)
Tyrosine	3.06 (dd); 3.21 (dd); 3.95 (dd); 6.91 (d, C3H, C5H ring/118.83); 7.20 (d, C2H,
	C6H ring/124.15)
Urea	5.79 (br s, NH2)
Valine	0.99 (d, γCH3); 1.04 (d, γ'CH3); 2.27 (m, βCH); 3.61 (d, αCH)
Xylose	3.23 (dd, C3H), 3.33 (dd, C6H), 3.42 (t, C4H), 3.53 (dd, C3H), 3.63 (m, C6H,
	C5H, C4H), 3.93 (dd, C6H), 4.59 (d, C2H), 5.21 (d, C2H)
Unassigned spin syst	ems varying with AMD evolution
U1	6.58 (s)
U2	7.68 (d)
U3	4.40 (s), 8.79 (d)
U4	2.39 (d)
U5	8.03 (s)
U6	8.70 (d)