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Appendix note 1 

The COSMOS network solution aims at connecting a downstream layer (the measurements) with upstream 
regulators (the inputs). The choice of the cutoff will determine which inputs and measurements will be 
connected together by COSMOS. Thus, changing the cutoff has two main consequences with respect to 
the resulting COSMOS network.  

First, if more (or less) inputs and measurements are provided, the network solution will contain additional 
(or fewer) edges to connect them.  

Second, giving more (or less) inputs and measurements to COSMOS means giving more (or less) 
information to COSMOS to build a coherent network to connect them, making the problem easier (or 
harder) to solve.  

Knowing that, the choice of the threshold has to be decided with respect to (i) which are the TFs, kinases, 
phosphatase and metabolites that a user wishes to potentially connect together (ii) how confident the user 
is that the TFs, kinases, phosphatase and metabolites are actually deregulated and (iii) how much 
information should be provided to COSMOS to find a coherent network connecting TFs, kinases, 
phosphatase and metabolites.  

To illustrate this and show how the COSMOS network may change with respect to cutoff changes, we 
made three additional runs of COSMOS (connecting downstream metabolites with upstream TFs and 
kinases, that is the “forward” run). We chose (1) a very loose cutoff (p-value < 0.5 and absolute activity 
score > 0.6 sd, essentially including everything), (2) a cutoff reducing the number of upstream TFs and 
kinases used as upstream input while keeping the same measurements as the original COSMOS run (p-
value < 0.05 and absolute activity score > 2.4 sd) and (3) a very stringent cutoff (p-value < 0.001 and 
absolute activity score > 5.2 sd).  

As expected, the loose threshold yielded the largest network while the most stringent one yielded the 
smallest (200 edges cutoff (1), 108 edges for cutoff (2) and 50 edges for cutoff (3), compared the 162 
edges of the original network). COSMOS also had more difficulty solving the problem when less TFs and 
kinases were given as upstream inputs (optimality gap = 8.17% for cutoff (2) compared to the original 
optimality gap = 2.36%). We compared the network of cutoff (2) with the original network (in the same 
manner as for the network shuffling analysis, see Material and Methods, Meta PKN contextualisation for 
explanation on the edge weight) and found that the solutions were relatively similar, with a median absolute 
weight difference of 25%. 

To conclude, the cutoff choice depends on the situation. For example, we may be specifically interested in 
some TFs or metabolites, or we may want to give more importance to finding a large network connecting 
as many TFs, kinase and metabolites together (while being less confident regarding their actual 
deregulation). 
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Appendix Figure S1
Coherence assessment between CARNIVAL hypotheses and underlying data. On the left, the 
predicted activity TF targets of the COSMOS network are compared to the actual t-value 
(tumor - healthy) of their corresponding transcript to filter incoherent interactions (correction 
step of the network pre-processing, see Meta PKN contextualisation). On the right, 
coregulations predicted by COSMOS are compared against a correlation network of kinase/
TF activities to determine TPR.

A) B)

https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.y0nucc1n6q1


Appendix Figure S2
Causal network summarising the mechanistic hypotheses systematically generated by CARNIVAL. 
The network comprises 449 edges. It represents the propagation of signals connecting the 
deregulated kinases, phosphatases, TFs and metabolites in kidney cancer.
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Appendix Figure S3
Comparison of COSMOS network co-regulation predictions with data-driven co-regulations between 
kinases phosphatases and TFs. Top panel shows the performance of COSMOS with all three omics 
layers. Middle panel shows performance when TFs are hidden. Bottom panel shows performance 
when kinases are hidden. Each panel compares the ability of COSMOS to capture co-regulation 
events between kinases/phosphatases and transcription factors that are consistent with observed 
correlations in the data itself.
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Appendix Figure S4
Distribution of edge weight differences between A) ‘forward’ and B) ‘backward’ results obtained from 
the original PKN and 2, 10, 20, 30, 40 and 50% shuffled PKNs. Each dot represents the absolute 
weight difference for a given edge. The diamonds represent the medians of the weight  difference 
distributions. The boxes cover 25th to 75th percentiles of the distributions.
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Appendix Figure S5
COSMOS solution network connecting metabolic fluxes and TF activity deregulations observed 
in a breast cancer cell line cultured with and without glutamine.


