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1st Jul 20201st Editorial Decision

Thank you again for submit t ing your work to Molecular Systems Biology. We have now heard back 
from two of the three referees who agreed to evaluate your study. Unfortunately, after a series of 
reminders we did not manage to obtain a report from reviewer #2. In the interest of t ime, we have 
decided to proceed with making a decision based on the two available reports. Overall, the 
reviewers recognize that the presented framework seems interest ing. However, they raise a 
series of concerns, which we would ask you to address in a major revision. 

Without repeat ing all the points listed below, some of the more fundamental issues are the 
following.



REFEREE REPORTS
-------------------------------------------------------- 

Reviewer #1: 

In this manuscript , Dugourd et al. presents a method named COSMOS that integrates 
t ranscriptome, phosphoproteome and metabolome data into a directed network represent ing prior 
knowledge on transcript ion regulat ion, signaling t ransduct ion via phosphorylat ion, and cellular 
metabolism. The authors applied this method to a mult i-omic dataset from a total of 11 renal cell 
carcinoma pat ients, and demonstrated that COSMOS was able to generate meaningful and 
reasonable biological hypotheses. The method seems to be a natual extended applicat ion of the 
CARNIVAL algorithm that the authors have developed previously to mult i-omic data and mult i-omic 
prior knowledge network (PKN). However, the authors has pointed out that this methodological 
framework can in theory be applied to any types of mult i-omic data where the corresponding PKN 
can be reliably constructed, which makes COSMOS interest ing for potent ially broader applicat ions. 
Overall we feel that the manuscript is clearly writ ten and the results quite interest ing. Our specific 
comments are as follows. 

Major comments: 

1. One key novelty of the COSMOS method over the previous CARNIVAL method is that  COSMOS
extends the applicat ion to mult i-omic data. Therefore it  can be important and valuable to show that
the added domains of omic data can really lead to improved performance (e.g. accuracy of the
predict ions) over a single omic approach. The rat ionale of this comment is that  due to technical
limitat ions and noise in data, different omic data can have very poor correlat ion or consistency, and
adding further omic data may not lead to a significant gain in pract ise. Specifically, for example,
comparing the COSMOS predict ion using the full data and PKN (involving three types of omic data)
to that using only two of the three types of omic data, does the former have higher t rue-posit ive
rate as measured from the consistency analysis the authors used?

2. One key novelty and potent ial value of COSMOS (and CARNIVAL) over common pathway
enrichment or the various "footprint-based" methods is that  COSMOS can infer "causal" links that
represent hypotheses about the potent ial mechanisms of act ions underlying the observed biology,
which can be further invest igated using experiments. We understand that addit ional experimental
validat ion may be out of the scope of this study, but we think that it  is highly desirable if the authors
can try to provide more direct  validat ions of their inferred causal "paths", beyong the consistency
analysis the authors have shown. The may be achevied using existent data. For example, it  can be
possible to mine pulic datasets where a input node or "upper-stream" node gene is knocked out or
inhibited with drugs, and demonstrate with such data that some of the downstream node changed
in the direct ion as predicted by COSMOS.

3. The authors ment ioned that the method relies on reliable sources of prior knowledge to
construct  a decent PKN. Therefore the important quest ion is how robust the predict ions are
subject  to the quality of the PKN? It  may be desirable to perform a robustness analysis by, e.g.
removing a certain fract ion of the edges from the PKN and assess how much the results are
affected.

4. In the metabolomic part  of the PKN construct ion, when a metabolic enzyme X catalyzed the
conversion of metabolite A to metabolite B, the current network structure represent ing this is "A -->



X --> B". However, another equally reasonable "causal" path is "B --| X --| A" (i.e. the product B
inhibits the enzyme X in a negat ive feedback via allosteric regulat ion; and X consumes the reactant
A, therefore effect ively represented by an inhibit ion edge). Both paths may be added to the PKN
without addit ional prior knowledge on which actually happens. 

5. In the sect ion, 'Building the mult i-omics dataset ', the authors concluded that TF dysregulat ion is
more pervasive than signaling, t ranscript ion, and metabolism. First ly, it  is not explained well how the
author came to the conclusion. Secondly, it  may help strengthen this claim by a plot  of fold change
(or Effect  Size) for each gene for all the t ranscripts, metabolites, and phosphites. 

Minor comments: 

1. Does the PKN contain cycles (i.e. loops) that  are inconsistent within itself (i.e. contain inconsistent
signs)? If yes, does such structures pose a problem in the computat ion or interpretat ion of results,
and how are they handled in the method? If not , are these structures removed explicit ly and how? 

2. We feel that  the Methods need to be expanded to provide addit ional necessary details. For
example, how was the integer programming (ILP) part  of the COSMOS algorithm formulized? It  may
help to explicit ly describe the ILP formulat ion of the problem. The part  on the "footprint-based"
inference of t ranscript ion factor (TF)/kinase/enzyme act ivity also needs further clarificat ion -- to
readers not familiar with such methods, it  is not clear how this works or what algorithm(s) is/are
used for TF/kinase/enzyme. 

3. In Figure 4, the "Edge arrow shape" and the corresponding "Effect" legend seems to be wrong? 

Reviewer #3: 

Summary 
The authors developed COSMOS, a novel Prior Knowledge Network (PKN), that  uses a previously
published tool, CARNIVAL, to generate networks using transcriptomics, metabolomics, and
phosphoproteomics data. They applied this tool to a dataset of tumor and normal t issue samples
from 11 ccRCC pat ients. Their work ident ifies t ranscript ion factors, kinases, and metabolites that
are dysregulated in ccRCC and, using COSMOS/CARNIVAL, generate a network that suggests
novel mechanist ic hypotheses. The authors have generated a useful PKN and tool for analyzing a
novel combinat ion of omics data. However, the ut ility of COSMOS/CARNIVAL as a tool for generally
combining mult iple omics datasets is unclear. This study may contribute novel understanding of
ccRCC biology, however, further validat ion of their network is necessary to validate both the
hypotheses their network proposes and the tool itself. 

General Remarks 
1. Throughout the manuscript  the authors make a clear dist inct ion between data generated by
COSMOS and data generated by CARNIVAL. This dist inct ion implies that these tools are disparate
and limits COSMOS as a tool to analyze different ial expression. The addit ion of metabolomics in
trans-omics research is certainly useful, but  COSMOS may be best ut ilized as part  of Omnipath.
Furthermore, the flexibility and applicability of COSMOS to other datasets is unclear. 

2. Extensive prior work with ccRCC has highlighted the importance of changes in the TCA cycle in
ccRCC tumors. It  is discouraging that COSMOS network did not capture this. The authors note



support  for their hypotheses on a gene by gene basis but this work would benefit  from comparison
of their network to pathways ident ified in other t rans-omic studies of ccRCC (citat ions below).
Furthermore, the authors do not provide any biological evidence support ing the validity of
mechanist ic hypotheses generated by their network. This evidence would demonstrate the ut ility of
COSMOS and would build upon previous trans-omics studies related to ccRCC. 

Hakimi AA, Reznik E, Lee CH, et  al. An Integrated Metabolic At las of Clear Cell Renal Cell Carcinoma.
Cancer Cell. 2016;29(1):104-116. doi:10.1016/j.ccell.2015.12.004 

Popławski P, Tohge T, Bogusławska J, et  al. Integrated transcriptomic and metabolomic analysis
shows that disturbances in metabolism of tumor cells contribute to poor survival of RCC pat ients.
Biochim Biophys Acta Mol Basis Dis. 2017;1863(3):744-752. doi:10.1016/j.bbadis.2016.12.011 

Cancer Genome At las Research Network. Comprehensive molecular characterizat ion of clear cell
renal cell carcinoma. Nature. 2013;499(7456):43-49. doi:10.1038/nature12222 

Clark DJ, Dhanasekaran SM, Petralia F, et  al. Integrated Proteogenomic Characterizat ion of Clear
Cell Renal Cell Carcinoma. Cell. 2020;180(1):207. doi:10.1016/j.cell.2019.12.026 

3. The authors recognized the importance of validat ing the COSMOS network. However, their
validat ion seems circular in that  they use informat ion that was excluded from their final network, but
was considered as input for the network. This is an important problem that needs to be addressed.
To test  the consistency of the network we propose a 5-fold validat ion method where the authors
divide their input node data into 5 groups and withhold one group and generate the network with
the remainder. A t rue posit ive rate could be calculated by examining a pair of nodes that the
network predicts would interact  and determining whether the observed effect  direct ions are
consistent with what the network predicts. Similarly, a t rue negat ive can be calculated by examining
cases where the network correct ly does not place a connect ion between a pair of nodes in the
withheld group. In addit ion, validat ion could be performed by using an independent dataset. A
dataset was published in Clark et  al. Cell 2019 (full citat ion above) with t ranscriptomic and
phosphoproteomic data for 110 ccRCC pat ients, though this study does not include metabolomics,
it  would be interest ing to see the network your tool develops using their dataset and may
emphasize the value of metabolomics in ccRCC. 

4. This manuscript  would benefit  from addit ional t ransparency in the methods and by supplying
addit ional informat ion as supplementary tables, see minor remarks. 

Minor Remarks: 
1. Methods 
- Explain number of technical replicates for each data type and how they were processed in
batches/blinded. We suggest a table explaining which samples were used for which data type, how
many technical or biological replicates for each sample and a diagram of the processing pipeline.
The phosphoproteomics sect ion is well detailed, however, the TMT labelling informat ion was
confusing as it  was not clear how many replicates of which samples were being used. 
- The account for ProteomeXchange did not work. 
-Given the paired data structure of your dataset, did you implement a paired analysis in LIMMA? 
-In 4.5 the authors comment that they chose cutoffs for their omics data such the input data was a
"comfortable size". Is this in reference to computat ional t ime, interpretat ion of the network? How
sensit ive is the network to changes in these cutoffs? 
-In describing the Meta PKN contextualizat ion the authors say that, "there were no incoherences in



the predicted act ivity signs between the common part  of the two result ing networks, they were
simply merged together, result ing in a combined network of 250 unique edges". Further elaborat ion
on how the networks are combined is necessary. Is this process automated or manual? What
factors are considered during this merging process? 

2. Results 
-Missing Supplemental Tables - Supp Table 1 should also out line which samples were used for
which analyses as they change for each data type 
-Provide supplemental table(s) with data on the 11 phosphosites and 21 metabolites used in
network model. How many unique proteins are represented in the 11 phosphosites? Can the
authors account for discrepancies in their expression and phosphosite data compared to previous
trans-omics research on ccRCC? 
-Authors should address the fact  that  their network is largely based on transcript  level data, can
they highlight  examples where the phosphosite and/or metabolite data were crit ical in ident ifying a
novel hypothesis? 
-Are the transcript ion factors you detect  as dysfunct ional t issue specific? It  would be interest ing to
know if you are picking up on some kidney-specific gene regulat ion. 
-Provide citat ions for the following statement: "For instance, hypoxia, inflammation and oncogenic
markers were up-regulated in tumors compared to healthy t issues". 
-The authors use reference 23 to support  the statement: "...among suppressed TFs we ident ified,
HNF4A has been previously associated with ccRCC". This is accurate, however, the authors
neglect  to ment ion reference 23 reported that HNF4a is frequent ly reduced in renal cell carcinoma
whereas Figure 2A suggests it  is increased in data presented here. 
-Figure 2A: The x-axis labels should be lined up more direct ly with the bars to facilitate
interpretat ion. Further, it  would be valuable to group the proteins by class, i.e. cluster the TF, the
kinases, and the phosphatases. 
-Figure 2C: The right  panel shows a single blue dot in the top 10 targets, yet  the left  panel does not
have a blue dot. 
-Figure 4: Recommend black edges for visibility. Also, counter-intuit ive that negat ive
regulat ion/inhibit ion uses a pointed arrow while posit ive regulat ion/act ivat ion uses a flat  arrow.
Examinat ion of the colors in the network and the arrows suggest that  perhaps your legend is
backwards for the Arrow Shape Effect? 
-Figure 4: For a kinase, can you make the dist inct ion between increased act ivity as measured by
different ial expression as opposed to increased act ivity as measured by phosphosite enrichment?
Similarly, does a t ranscript ion factor have increased act ivity because expression levels of the
transcript ion factor itself are increased or because the targets of the t ranscript ion factor are
increased? 

3. Discussion: 
"It  also predicted a deplet ion of adenine and consequent ly the down-regulat ion of PDPK1 act ivity
through CXCR4." Adenine appears to be an input node in Figure 4A, so the decrease is observed
not predicted? Careful discussion of what is actually observed as opposed to what the model
predicts is necessary. 

4. General: 
-By specifically referencing either COSMOS or CARNIVAL the authors imply that they are separate
tools. It  would be more useful if CARNIVAL were integrated into COSMOS for ut ility and also in the
manuscript  as switching between the two names throughout the manuscript  is challenging.
Addit ionally, it  is unclear the output of COSMOS/CARNIVAL will be for future users. It  would be
valuable to provide documentat ion on using the tool as part  of the manuscript  review. 



-Throughout the manuscript  authors refer to t ranscript ion factor and kinase act ivity as measured
by transcript  expression. Act ivity is a poor word choice as it  specifically refers to catalyt ic act ivity.
The phosphosite data demonstrates an enrichment of a part icular substrate phosphorylat ion
event, not  necessarily increased general kinase act ivity. Similarly, increased expression of genes
targeted by a part icular t ranscript ion factor does not mean that this part icular t ranscript ion factor
has increased act ivity - t ranscript ion factors do not have catalyt ic act ivity. 
-Throughout the manuscript  gene names are not italicized. 
-Throughout the manuscript  numbers in the thousands do not have commas. ex. 32586 instead of
32,586 
-Throughout the manuscript  there are inconsistencies in how tool names are reported. ex. limma vs.
LIMMA, Omnipath vs. OmniPath, DOROTHEA vs. DoRothEA
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Reviewer #1: 

In this manuscript, Dugourd et al. presents a method named COSMOS that integrates 

transcriptome, phosphoproteome and metabolome data into a directed network representing 

prior knowledge on transcription regulation, signaling transduction via phosphorylation, and 

cellular metabolism. The authors applied this method to a multi-omic dataset from a total of 

11 renal cell carcinoma patients, and demonstrated that COSMOS was able to generate 

meaningful and reasonable biological hypotheses. The method seems to be a natual 

extended application of the CARNIVAL algorithm that the authors have developed previously 

to multi-omic data and multi-omic prior knowledge network (PKN). However, the authors has 

pointed out that this methodological framework can in theory be applied to any types of multi-

omic data where the corresponding PKN can be reliably constructed, which makes COSMOS 

interesting for potentially broader applications. Overall we feel that the manuscript is clearly 

written and the results quite interesting. Our specific comments are as follows.  

We appreciate the overall positive comments on our work and provide point by point 

responses to the questions below. 

Major comments: 

1. One key novelty of the COSMOS method over the previous CARNIVAL method is that

COSMOS extends the application to multi-omic data. Therefore it can be important and

valuable to show that the added domains of omic data can really lead to improved

performance (e.g. accuracy of the predictions) over a single omic approach. The rationale of

this comment is that due to technical limitations and noise in data, different omic data can

have very poor correlation or consistency, and adding further omic data may not lead to a

significant gain in practise.

We agree with this rationale, which is something that we were carefully considering when 

developing COSMOS. To minimise the lack of consistency between different omics data, we 

worked with a dataset where each omics layer was measured from the same snap frozen 

tissue sample. This point is now made clearer in the new Appendix Figure S9. We agree that 

technical limitations can affect the amount of information that can be extracted from 

combining together these different layers, as we explore below.  

9th Nov 20201st Authors' Response to Reviewers
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Appendix Figure S9 

Schematic of the process sample collection and multi-omics data generation. 

Specifically, for example, comparing the COSMOS prediction using the full data and PKN 

(involving three types of omic data) to that using only two of the three types of omic data, 

does the former have higher true-positive rate as measured from the consistency analysis 

the authors used?  

We agree that it is relevant to show how COSMOS performs when increasing the number of 

omics layers that are integrated. Thus, we ran COSMOS (i) with all three layers (TFs, 

kinases/phosphatases and metabolomics data), (ii) with only TFs and metabolomics data, 

and (iii) with only kinases/phosphatases and metabolomics data. We compared the outputs 

of each run and performed the correlation network consistency analysis for each of them. We 

describe the results in the following paragraph that was added to the manuscript: 

“Assuming thresholds of absolute values of correlation ranging between 0 and 1 to define 

true positive co-regulations, the comparison between the topology driven coregulation 

network and the data driven correlation network yielded a TPR ranging between 0.55 and 0 

(n = 269 pairs of predicted/measured co-regulations) for the predictions (Appendix Figure 

S6). It performed consistently better than a random baseline (see methods) over the 

considered range of correlation coefficient thresholds. We also compared the results with 

network solutions obtained hiding either TFs or kinases/phosphatases. When TFs were 

hidden, COSMOS performed consistently better than the random baseline, and reached a 

maximum TPR of 0.62. Of note, this curve was estimated from only n = 21 coregulation 

events. When kinases and phosphatases were hidden, COSMOS performed again 

consistently better than the random baseline, and reached a maximum TPR of 0.58 (n = 228). 

In both cases the performance of COSMOS was slightly larger than the full COSMOS 

performance (TPR = 0.55). This could be due to a lack of consistency across the omics data, 

although due to the low number of comparisons we could not make a conclusive statement. 

These results suggest that COSMOS’ performance is relatively robust to removing either the 

phosphoproteomics or transcriptomics layers when trying to find connection between 

signaling and metabolism. However, using the three omics layers together yielded a larger 

network (367 edges (full) (full) vs 294 (hidden kinases) (hidden kinases) and 135 edges 

(hidden TFs)) and denser (1.67 edge/node ratio vs 1.54 and 1.19 edge/node ratio, 

respectively) than when  one omics layer was removed (Dataset EV3). Hence, considering 

all layers yield a greater number of mechanistic hypotheses, even if not necessarily of higher 

quality.” 

These results highlight that integrating both kinases/phosphatases and TFs when searching 

for regulation events between signaling and metabolism will lead to a larger and broader 

amount of mechanistic hypotheses to explore. At the same time, our results indicate that 

including more omics layers does not necessarily  improve the quality of the predictions, 

along the lines of the reviewers  comment above.  
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Appendix Figure S6 

Comparison of COSMOS network co-regulation predictions with data-driven co-regulations between 

kinases phosphatases and TFs. Top panel shows the performance of COSMOS with all three omics 

layers. Middle panel shows performance when TFs are hidden. Bottom panel shows performance 

when TFs are hidden. Each panel compares the ability of COSMOS to capture co-regulation events 

between kinases/phosphatases and transcription factors that are consistent with observed correlations 

in the data. 
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Appendix Table 3 

 

2. One key novelty and potential value of COSMOS (and CARNIVAL) over common pathway 

enrichment or the various "footprint-based" methods is that COSMOS can infer "causal" links 

that represent hypotheses about the potential mechanisms of actions underlying the 

observed biology, which can be further investigated using experiments. We understand that 

additional experimental validation may be out of the scope of this study, but we think that it is 

highly desirable if the authors can try to provide more direct validations of their inferred 

causal "paths", beyong the consistency analysis the authors have shown. The may be 

achevied using existent data. For example, it can be possible to mine pulic datasets where a 

input node or "upper-stream" node gene is knocked out or inhibited with drugs, and 

demonstrate with such data that some of the downstream node changed in the direction as 

predicted by COSMOS.  

 

We agree that it is important to assess the ability of our approach to generate hypotheses 

that are consistent with data. In the CARNIVAL publication (Liu et al. 2019), we studied  the 

consistency of CARNIVAL predictions with experimental perturbations, and found that causal 

pathway inference with CARNIVAL - the backbone of COSMOS - outperforms classic 

pathway analysis approaches such as GSEA. To expand these comparisons to COSMOS, 

we would need similar perturbation datasets with transcriptomics, phosphoproteomics and 

metabolomics, that we are not aware of. 

 

As an alternative way to evaluate the relevance of COSMOS results, we have  mined the 

literature to see if the mechanistic hypotheses obtained with COSMOS are coherent with 

what has already been reported in the context of ccRCC. We focused mainly on the 

interferon gamma response because it was enriched in our COSMOS network solution 

network. COSMOS highlighted many relevant crosstalks, some of them being actually drug 

targets in ccRCC therapies. They are outlined in the following paragraph that was added to 

the manuscript result section: 

 

“We then used our network to investigate the regulation of relevant signalling cascades and 

metabolic reactions in ccRCC. An over-representation analysis of the network solution nodes 

(with the hallmark genesets of MSigDB) displayed  the interferon gamma (IFNg) response as 

the top significant pathway in our COSMOS network. Hence, we focused on the interaction 

members of this pathway (such as NFKB1, HIF1A and PNP) and their crosstalks with 

metabolic deregulations to assess the relevance of the mechanistic hypotheses generated by 

COSMOS. We found that NFKB1, a central actor of the IFNg pathway is activated in ccRCC, 

consistently with other reports(Zhang et al, 2018; Rodrigues et al, 2018) where  it was also 

demonstrated to be regulated by the  PI3K/AKT pathway(An & Rettig, 2007). Interestingly, 

COSMOS also proposed the activation of BCAT1, one of the key enzymes of the  branched-

chain amino acid metabolism, orchestrated by HIF1A and MYC  (Gordan et al, 2008; 

Ananieva & Wilkinson, 2018). Both mechanisms are shown in Figure 4 (1) and (2).  

 

https://paperpile.com/c/Fw7jRB/39xB
https://paperpile.com/c/dBJ6iI/f7SKD+TTqaq
https://paperpile.com/c/dBJ6iI/f7SKD+TTqaq
https://paperpile.com/c/dBJ6iI/f7SKD+TTqaq
https://paperpile.com/c/dBJ6iI/f7SKD+TTqaq
https://paperpile.com/c/dBJ6iI/f7SKD+TTqaq
https://paperpile.com/c/dBJ6iI/beUs8
https://paperpile.com/c/dBJ6iI/9f3z+A0HoC
https://paperpile.com/c/dBJ6iI/9f3z+A0HoC
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
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Of note, COSMOS provided deeper insights into these molecular mechanisms by linking 

MYC activation to NFKB1. The COSMOS model suggests that MYC upregulates the 

expression of the metabolic enzyme BCAT1, potentially leading to the observed higher levels 

of glutamate, glutamine and reduced glutathione in ccRCC (marked as (2) in Figure 4). A 

strong role of MYC and glutamine metabolism in ccRCC development is known(Shroff et al, 

2015). Consistently with what was hypothesised in a recent proteogenomics ccRCC study  

(Clark et al, 2020), we were able to capture crosstalks between members of the interferon 

gamma pathway (such as JUN), YY1  and metabolic down-regulation observed in our data 

((3) in Figure 4,). COSMOS highlighted how YY1 inhibition might be connected with the  

depletion of adenine, hypoxanthine and inosine through regulation of the ADA and PNP 

metabolic enzyme (Popławski et al, 2017). The low levels of adenosine predicted by 

COSMOS might also be potentially linked to the down-regulation of AKT3 and up-regulation 

of YES1, through a cascade which involves both  ADORA2B and GNAI1, downstream of s-

Adenosyl-L-homocysteine and inhibition of KMT2A ((4) in Figure 4). Finally, COSMOS model  

shows a significant  activation of MAPK1 and SMAD4 downstream of YES1 (a member of the 

SRC family) ((5) in Figure 4).” 

We also added this paragraph to the discussion section: 

“Since the interferon gamma response pathway was the most over-represented cancer 

hallmark in the COSMOS network solution, we investigated further the relevance of the 

mechanistic hypothesis connecting members of this pathway. The network showed that the 

crosstalks between MAPK1, NFKB1, MYC, HIF1A and YY1 could explain the deregulation in 

glutamine and reduced glutathione metabolism, as well as inosine, hypoxanthine and 

adenine. These were particularly relevant as they were important interactions in ccRCC. 

MYC and glutamine metabolism appear to be an interesting therapeutic target of 

ccRCC(Shroff et al, 2015). YY1 is a known indirect inhibitor of MYC involved in cancer 

development (Austen et al, 1998). The COSMOS network showed YY1 could also potentially 

have a role in the down-regulation of the ADA and PNP metabolic enzyme activities. 

Coherently, PNP has been shown to be non-essential in ccRCC cell lines, which is expected 

from down-regulated metabolic enzymes(Gatto et al, 2015). In addition, the link shown by 

COSMOS between NFKB1 and MYC can have implications for the treatment of ccRCC, due 

to its pivotal role in arsenite (a drug used in chemotherapy) treatment of cancer(Huang et al, 

2014). Furthermore, the activation of the NFKB1-MYC link in FBW7 deficient cells seems to 

sensitise them to Sorafinib (a MEK-Raf inhibitor), a drug used in treatment of primary kidney 

cancer(Huang et al, 2014). In addition, NFKB1 and MYC are both promising ccRCC 

treatment targets(Peri et al, 2013; Bailey et al, 2017). The link shown by COSMOS between 

KMT2A and adenosine is interesting, because KMT2A mutations have been reported in a 

number of ccRCC patients (Yan et al, 2019), suggesting that this enzyme might play a 

functional role in ccRCC development. Moreover, it has been proposed, at least in vitro, that  

ccRCC cell lines with low basal levels of phospho-AKT were sensitive to treatment with an 

adenosine analog (Kearney et al, 2015). The link between YES1, MAPK1 and SMAD4 in the 

COSMOS network is especially relevant considering that YES1 is a known targetable 

oncogene (Hamanaka et al, 2019).These examples illustrate the ability of COSMOS to 

extract mechanistic hypotheses to understand and potentially improve treatment of cancer by 

integration of multiple omics data and prior knowledge.” 

https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
https://paperpile.com/c/dBJ6iI/64Tw5
https://paperpile.com/c/dBJ6iI/64Tw5
https://paperpile.com/c/dBJ6iI/p9DH
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
https://paperpile.com/c/dBJ6iI/xjmuB
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.kxke3g6rvubg
https://paperpile.com/c/dBJ6iI/64Tw5
https://paperpile.com/c/dBJ6iI/QtBqh
https://paperpile.com/c/dBJ6iI/rsDf
https://paperpile.com/c/dBJ6iI/xItPI
https://paperpile.com/c/dBJ6iI/xItPI
https://paperpile.com/c/dBJ6iI/xItPI
https://paperpile.com/c/dBJ6iI/0hSmV+hyfoT
https://paperpile.com/c/dBJ6iI/3Myt
https://paperpile.com/c/dBJ6iI/U63lu
https://paperpile.com/c/dBJ6iI/Ir2zB
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Figure 4 - COSMOS subnetwork centred on the interferon gamma response pathway.  

We extracted the main members of the interferon gamma response pathway (the most enriched 

cancer hallmark in the full COSMOS network). We also display here the metabolic enzymes that were 

hypothesised to be influenced downstream of this pathway, such as BCAT1 and PNP. 

 

Additionally, we also ran COSMOS on the ccRCC CPTAC patient cohort dataset, as detailed 

in response to comment number 3 of reviewer #3.  

 

3. The authors mentioned that the method relies on reliable sources of prior knowledge to 

construct a decent PKN. Therefore the important question is how robust the predictions are 

subject to the quality of the PKN? It may be desirable to perform a robustness analysis by, 

e.g. removing a certain fraction of the edges from the PKN and assess how much the results 

are affected.  

 

We fully agree with this remark. We performed a set of simulations to analyze the robustness 

of COSMOS networks with regards to changes in the PKN. 

 

We generated 6 alternative versions of the original PKN by randomly shuffling 2%, 10%, 20%, 

30%, 40%, and 50% of the edges. Then, we compared the edges of the resulting network 

solutions. We computed the absolute difference of the edge weights (an edge weight being 

the frequency of appearance of a given edge in the pool of solutions reported by CPLEX, 

between 0 and 100%) between the original COSMOS network solution and each shuffled 

COSMOS network solution. We first looked at the “forward” networks (signaling -> 

metabolism). The results show that when 2% of edges are shuffled, the median weight 

difference is relatively low (median = 10 %, meaning that for 50% of the edges, the weight 
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difference was 10 % or less, with 4 % of edges changing from 0 to 100 weight or vice-versa),  

and it increases when the percentage of shuffled edge increases (median = 35% for 50% of 

edge shuffled). We then looked at the “backward” networks (metabolism -> signaling). Here 

the results were much less quantitative because only one solution was returned by CPLEX 

instead of a family of solutions. Thus, the weight differences could only be estimated as 0 or 

100. Nevertheless, more than half of the edges of the backward network were common 

between the original and 2% shuffled backward COSMOS network solution. In summary, all 

resulting networks were of similar size, and largely overlapping, indicating that even for 

heavily distorted PKN (50% edges randomly shuffled), the underlying CPLEX formulation 

wasn’t perturbed. We have added the following paragraph to the results section: 

 

“To study the robustness of COSMOS to changes in the PKN, we generated a series of 

partially degraded PKN by randomly shuffling an increasing number of edges in the original 

PKN  (2, 10, 20, 30, 40, 50% of all edges shuffled completely randomly). We ran COSMOS 

with each version of the PKN. We first compared the results of the “forward” COSMOS runs 

(connecting TFs and kinases with downstream metabolites). We calculated the absolute 

difference between the edge weight of the results (see Material and Methods, Meta PKN 

contextualisation) obtained from each shuffled PKN with the result obtained from the original 

PKN. The edge weight represents the frequency of appearance (in %) of an edge across all 

the networks in the pool of network solutions. This showed that for the 2% shuffled network, 

the differences were relatively small (median of the absolute weight difference = 10), with 4 

% of edges flipped (i.e., 0 weight in shuffled network and 100 weight in original network, or 

vice-versa). As expected, the differences were higher regarding the other shuffled networks, 

with medians weight differences of 10, 14, 23, 50, 28 and 35 for the 2%, 10%, 20%, 30%, 

40% and 50% shuffled PKN, respectively (Appendix Figure S7A).  

We then compared the results of the “backward” COSMOS runs (connecting metabolites with 

downstream TFs and kinases). Here the comparison was far less quantitative because the 

optimization  reported only a single solution for all runs except in the case of the 20% 

shuffled PKN(Appendix Figure S7B). 61%, 31%, 18%, 12%, 8% and 8% of edge weight 

differences were equal to 0 for the 2%, 10%, 20%, 30%, 40% and 50% shuffled PKN, 

respectively. 

In both “forward” and “backward” runs, the network results had a relatively similar number of 

edges from the original and shuffled PKNs (min = 142, max = 342, mean = 263, sd = 63). 

The optimization thus consistently excluded a common set of edges covering the vast 

majority of the network, that  contains over 56,000 edges.” comic  
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Appendix Figure 7 

Distribution of edge weight differences between A) ‘forward’ and B) ‘backward’ results obtained from 

the original PKN and 2, 10, 20, 30, 40 and 50% shuffled PKNs. Each dot represents the absolute 

weight difference for a given edge. The diamonds represent the medians of the weight difference 

distributions. The boxes cover 25th to 75th percentiles of the distributions. 

 

4. In the metabolomic part of the PKN construction, when a metabolic enzyme X catalyzed 

the conversion of metabolite A to metabolite B, the current network structure representing 

this is "A --> X --> B". However, another equally reasonable "causal" path is "B --| X --| A" (i.e. 

the product B inhibits the enzyme X in a negative feedback via allosteric regulation; and X 

consumes the reactant A, therefore effectively represented by an inhibition edge). Both paths 

may be added to the PKN without additional prior knowledge on which actually happens.  

 

We thank the reviewer for this suggestion. Allosteric regulations are already included on 

COSMOS PKN if they are reported with high confidence in the STITCH database (these are 

general metabolite/protein inhibition, not necessarily between enzymes and their products). 

We also find that the idea of metabolic consumption inhibitory link is a good idea and we plan 

to incorporate it in follow-up studies. Such a question deserves a study of its own. The 

consumption/production balance between reactant and product could be fully modeled in the 

causal format of the prior-knowledge network in theory. However, it would also require 

thorough testing and refinement to optimize it when solving such networks with COSMOS. 

As a first step, we feel that it is already informative to model only the production of 

metabolites in the causal network. It allowed us to build a relatively intuitive problem to solve 

and interpret, as we only have to search for which up-stream regulation event may affect the 

production of given metabolites.  

 

Regarding this comment, we have added the following statement in the discussion: 

 

“Related to the importance of prior knowledge, the PKN can also depend on how we interpret 

the information we have about molecular interactions. In particular, we converted the reaction 

network of Recon3D into a causal network where metabolite reactants “activate” metabolic 

enzymes, and metabolic enzymes “activate” metabolite products. This first approximation 

assumes that metabolite abundances are only driven by their production rates. We plan to 

refine this in the future to include that metabolite abundances can change as a result of 

consumption as well.” 

 

5. In the section, 'Building the multi-omics dataset', the authors concluded that TF 

dysregulation is more pervasive than signaling, transcription, and metabolism. Firstly, it is not 

explained well how the author came to the conclusion.  

Secondly, it may help strengthen this claim by a plot of fold change (or Effect Size) for each 

gene for all the transcripts, metabolites, and phosphites.  

 

We thank the referee for raising this point, and giving us the possibility to clarify this part of 

the manuscript. We relied on the PCA plots to affirm that there is a greater variance of gene 

expression explained by the conditions difference for transcriptomics compared to 

phosphoproteomics. We agree that more evidence can and should be provided to conclude 

that the transcriptional layer was more pervasive. As advised,  we have  made a volcano plot 
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(Appendix Figure S2), which supports the fact that the fold changes observed at the RNA 

sequencing level reach larger magnitudes than the ones from the phosphoproteomic data.  

 

We replaced that sentence in the manuscript with : 

 

“Consistently with the PCA, a volcano plot overlapping the results of the differential analysis 

of each omics showed that the transcriptomics dataset led to larger differences and smaller 

p-values than phospho-proteomics and metabolomics extracted from the same samples 

(Appendix Figure S2).” 

 

 
Appendix Figure S2 

Combined volcano plot showing the magnitude (fold-change, x-axis) and significance (P 

value, inverted y-axis) of the differential analysis of RNAseq, phosphoproteomics and 

metabolomics datasets. 

 

Minor comments:  

 

1. Does the PKN contain cycles (i.e. loops) that are inconsistent within itself (i.e. contain 

inconsistent signs)? If yes, does such structures pose a problem in the computation or 

interpretation of results, and how are they handled in the method? If not, are these structures 

removed explicitly and how?  



11 

Loops are not removed explicitly from the PKN. The ILP formulation connects the lower layer 

(metabolites in the forward run, TF/kinases in the backward run) to the top layer (TF/kinases 

in the forward run, metabolites in the backward run) by searching step by step possible “sign 

coherent upstream nodes” for the current layer (starting with the lowest layer). Thus, 

negative feedback loops will be automatically discarded as they will always lead to a sign 

incoherence when climbing to the next layer. Positive feedback loops will be sign coherent 

but will not help to further reach the top layer, so they will be ignored as they just increase 

the number of edges of the solution network without contributing to the overall fit. There is an 

implementation of CARNIVAL for data with multiple time points that can recover feedback 

loops, but  we will require an appropriate multi-omics/multi-time-point dataset to test it in the 

context of COSMOS. However, loops can still be found in the final merged COSMOS 

network solution, when nodes are overlapping between “forward” and “backward” runs. To 

clarify this, we added the following part in the result section : 

“CARNIVAL finds a direct path connecting downstream measurements with upstream nodes, 

and thus the solution networks do not contain loops. Loops can however appear in the final 

merged network when nodes are overlapping between “forward” and “backward” runs.” 

2. We feel that the Methods need to be expanded to provide additional necessary details. For

example, how was the integer programming (ILP) part of the COSMOS algorithm formulized?

It may help to explicitly describe the ILP formulation of the problem. The part on the

"footprint-based" inference of transcription factor (TF)/kinase/enzyme activity also needs

further clarification -- to readers not familiar with such methods, it is not clear how this works

or what algorithm(s) is/are used for TF/kinase/enzyme.

We have further expanded the text to clarify these points. We have added the following 

paragraphs in the results section: 

“Footprint-based activity estimation(Dugourd and Saez-Rodriguez 2019) relies on the 

concept that the measured abundances of molecules (such as phosphopeptides or 

transcripts) can be used as a proxy of up-stream (direct or indirect) regulator activities 

responsible for those changes(Casado et al. 2013; Ochoa et al. 2016; Rhodes et al. 2005). In 

the case of TF activity estimation, this means that measured changes in the abundances of 

transcripts give us information about the changes of activities of the transcription factors that 

regulate their abundance. An activity estimation only depends on the changes of the 

abundances measured in its target transcripts, not its own transcript abundance. In this study, 

we used the VIPER algorithm(Alvarez et al. 2016) to estimate the activity of transcription 

factors and kinases based on transcript and phosphopeptide abundances changes, 

respectively.” 

“COSMOS uses the CARNIVAL R package to perform the network optimization via an ILP 

algorithm. In brief, we try to minimise the value of an objective function that depends on two 

main factors: 1) the mismatch between the simulated values of kinases, TFs and metabolites 

for a given causal network and the corresponding available values estimated from the 

measurements and 2) the size of the solution network. For each run, given the prior 

knowledge network and the input and measurements, a set of constraints are generated to 

define the solution space (based on the objective function) that the ILP solver (IBM CPLEX in 

https://paperpile.com/c/Fw7jRB/S1TR
https://paperpile.com/c/Fw7jRB/XFbU+cJJH+9jfC
https://paperpile.com/c/Fw7jRB/aDkk
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our study) explores to find an optimal solution(Liu et al. 2019; Melas et al. 2015). After a 

given amount of time (decided by the user), the search is stopped and the best solution at 

this point is returned by CPLEX. The solution is usually in the form of a pool of networks that 

are all equally optimal, with respect to the objective function. Thus CARNIVAL reports the 

solution as a set of edges with an associated weight that represent their frequency of 

appearance in the current network pool.” 

 

3. In Figure 4, the "Edge arrow shape" and the corresponding "Effect" legend seems to be 

wrong?  

We apologize for this error and have corrected it accordingly.  

 

 

  

https://paperpile.com/c/Fw7jRB/39xB+R6eD
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Reviewer #3:  

 

Summary  

The authors developed COSMOS, a novel Prior Knowledge Network (PKN), that uses a 

previously published tool, CARNIVAL, to generate networks using transcriptomics, 

metabolomics, and phosphoproteomics data. They applied this tool to a dataset of tumor and 

normal tissue samples from 11 ccRCC patients. Their work identifies transcription factors, 

kinases, and metabolites that are dysregulated in ccRCC and, using COSMOS/CARNIVAL, 

generate a network that suggests novel mechanistic hypotheses. The authors have 

generated a useful PKN and tool for analyzing a novel combination of omics data. However, 

the utility of COSMOS/CARNIVAL as a tool for generally combining multiple omics datasets 

is unclear. This study may contribute novel understanding of ccRCC biology, however, 

further validation of their network is necessary to validate both the hypotheses their network 

proposes and the tool itself.  

 

 

General Remarks  

1. Throughout the manuscript the authors make a clear distinction between data generated 

by COSMOS and data generated by CARNIVAL. This distinction implies that these tools are 

disparate and limits COSMOS as a tool to analyze differential expression.  

 

We apologize for this confusion. COSMOS uses the underlying ILP optimisation strategy of 

CARNIVAL, but applies it in an expanded  and more complex context than the original 

CARNIVAL paper. CARNIVAL aims at connecting TF activity estimations to potential 

upstream signaling perturbations with causal links. COSMOS aims at searching for potential 

causal links between measurements (such as metabolites) and activity estimations (such as 

TF and kinase activities, instead of known perturbations). In addition, COSMOS does so in a 

more general manner (by allowing to use footprint-based activity estimations instead of 

experimental perturbations), allowing for more types of omic as inputs. 

 

Also of note, COSMOS can use a different approach than CARNIVAL to perform the network 

optimization. 

 

To summarise, COSMOS generalises the underlying concept of CARNIVAL’s causal network 

optimisation to systematically integrate data from multiple omics layers with prior-knowledge. 

In the future, we will expand the COSMOS R package to include more prior knowledge 

resources and more causal network optimisation algorithms.  

To make the role of COSMOS clearer to readers, we now directly refer to COSMOS instead 

of CARNIVAL when talking about the final solution network generated by COSMOS. For 

example, CARNIVAL was replaced by COSMOS in the following text : 

 

“One way to estimate the performance is to check if the COSMOS mechanistic hypotheses 

correspond to correlations observed in tumor tissues (Appendix Figure S3B). Thus, on the 

one hand, a topology driven coregulation network was generated from the COSMOS 

network.”  

 

Furthermore, we have added this paragraph to make the role of CARNIVAL in the COSMOS 

method clearer: 
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“The ILP algorithm that COSMOS relies on is handled by the CARNIVAL R package. In brief, 

CARNIVAL tries to minimise the value of an objective function that depends on two main 

factors : 1) the mismatch between the simulated values of a given causal network and 

activities of selected input nodes (upstream regulators) and the corresponding available 

downstream measurements and 2) the size of the solution network. For each CARNIVAL run, 

given the prior knowledge network and the input and measurements, a set of constraints are 

generated to define the solution space (based on the objective function) that the solver (IBM 

CPLEX in our study) will explore to find an optimal solution (Liu et al, 2019a; Melas et al, 

2015). After a given amount of time (decided by the user), the search is stopped and the best 

solution at this point is returned by CPLEX. The solution is usually in the form of a pool of 

networks that are all equally optimal, with respect to the objective function. Thus CARNIVAL 

reports the solution as a set of edges with an associated weight that represent their 

frequency of appearance in the current network pool.” 

Finally, we have developed an R package for COSMOS available at: 

https://github.com/saezlab/COSMOS 

The addition of metabolomics in trans-omics research is certainly useful, but COSMOS may 

be best utilized as part of Omnipath.  

Indeed we have used COSMOS downstream from Omnipath, using  prior knowledge on 

signaling and gene-regulatory processes from Omnipath. COSMOS also uses 

complementary knowledge from other resources: Recon3D and STITCH that provide 

information on metabolic interactions and metabolite-protein interactions, respectively.  

In addition, COSMOS is an analysis method that can run with other sources of prior 

knowledge, and it also provides the user with general network manipulation tools to lighten 

the load of the optimisation procedure. Hence it is an independent and synergistic tool from 

the meta-database Omnipath. 

Furthermore, the flexibility and applicability of COSMOS to other datasets is unclear. 

In order to demonstrate the flexibility of COSMOS to other datasets, we applied it on the 

ccRCC CPTAC dataset of Clark 2019 (as detailed in following answers) and to another 

breast cancer multi-omics dataset with transcriptomics and fluxomics. 

The following paragraph was added the result section: 

“We also compared the results we obtained from our samples with results obtained using 

another independent ccRCC dataset. We obtained the transcriptomics and 

phosphoproteomics dataset of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

ccRCC patient cohort(Clark et al, 2020). Following the same approach as with our patient 

samples, we performed the differential analysis between tumor and healthy tissue for both 

omics datasets and estimated TFs and kinase/phosphatase activities. Then, we ran 

COSMOS to find mechanistic hypotheses explaining the connections between deregulated 

transcription factors and kinases/phosphatases. The resulting COSMOS network was 

coherent with the results shown in the original publication, and also provided additional 

https://paperpile.com/c/dBJ6iI/tvvdI+g5sj6
https://paperpile.com/c/dBJ6iI/tvvdI+g5sj6
https://paperpile.com/c/dBJ6iI/p9DH
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information on the crosstalks between deregulated kinases and transcription factors. In 

particular, COSMOS captured the signaling crosstalks between EGF, VEGF, AKT, MAPK, 

MTOR, NFKB and MYC (Appendix Table 4). Finally we compared which biological processes 

were captured in the COSMOS network generated from the data of our patient samples and 

the COSMOS network generated from the CPTAC ccRCC patient cohort. As shown in 

Appendix Figure S5, the top over-represented pathways were very consistent between the 

two studies. Notably, PI3K-AKT-MTOR signaling and G2M checkpoint(Clark et al, 2020), 

TNFA signaling via NFKB(Al-Lamki et al, 2010), interferon gamma response(Thapa et al, 

2013), WNT beta catenin signaling(Xu et al, 2016), and IL6 JAK STAT3 signaling pathway 

were all significantly over-represented ( p-value < 0.02). 

 

Finally, we applied COSMOS to a public breast cancer dataset including transcriptomics and 

fluxomics measurements(Katzir et al, 2019) to connect signaling directly with metabolic flux 

estimation, instead of metabolite abundance measurements as done in the previous cases. 

We performed a differential analysis of transcript abundance and flux values between tumour 

cells cultured with and without glutamine. We then looked for mechanistic hypotheses 

connecting TF activity deregulations and changes in flux values. Coherently with the original 

study, almost all metabolites of the TCA cycle, glycolysis and pentose phosphate pathway 

were predicted to be down-regulated by COSMOS (Appendix Figure S8). Interestingly, 

COSMOS finds HIF1A as a master regulator of glycolysis through his effect on HK1/2, 

GAPDH, GCK, ENO1 and LDHA transcription. This is consistent with the known role of 

HIF1A in breast cancer (Masoud & Li, 2015; Zhang et al, 2015; Singh et al, 2017; Samanta 

et al, 2014). The down-regulation of MYC is also in line with the decreased activity of HK2 

and LDHA and GLS1 enzymes which are important in aerobic glycolysis and glutamine 

catabolism(Dong et al, 2020).” 

 

The following paragraph was added to the discussion section: 

 

“We then applied COSMOS on two additional public datasets. The CPTAC ccRCC dataset 

with transcriptomics and phosphoproteomics showed that COSMOS could capture crosstalk 

in signaling pathways that were coherent with the findings of the original study. A breast 

cancer cell line dataset showed that COSMOS could also be used to find potential signaling 

mechanisms regulating reaction flux changes. In both cases, COSMOS hypotheses were 

overall coherent with the original study and additionally yielded mechanistic hypotheses of 

regulatory events.” 

 

https://paperpile.com/c/dBJ6iI/p9DH
https://paperpile.com/c/dBJ6iI/Uegy
https://paperpile.com/c/dBJ6iI/6HHp
https://paperpile.com/c/dBJ6iI/6HHp
https://paperpile.com/c/dBJ6iI/iKs2
https://paperpile.com/c/dBJ6iI/FZfD
https://paperpile.com/c/dBJ6iI/UKgI+JOgW+U4mQ+cJLl
https://paperpile.com/c/dBJ6iI/UKgI+JOgW+U4mQ+cJLl
https://paperpile.com/c/dBJ6iI/Qf2G
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Appendix Figure 5 

Comparison of  over-representation analysis performed with msigDB HALLMARK pathways between 

COSMOS networks generated from A) our patient samples and B) the CPTAC ccRCC patient cohort. 

Overall, a very similar set of pathways was significantly over-represented in both cases, notably PI3K-

AKT-MTOR signaling, TNFA signaling via NFKB, interferon gamma response, WNT beta catenin 

signaling, G2M checkpoint and IL6 JAK STAT3 signaling. 
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Appendix Figure S8 

COSMOS solution network connecting metabolic fluxes and TF activity deregulations observed in a 

breast cancer cell line cultured with and without glutamine(Katzir et al. 2019). 

2. Extensive prior work with ccRCC has highlighted the importance of changes in the TCA

cycle in ccRCC tumors. It is discouraging that COSMOS network did not capture this. The

authors note support for their hypotheses on a gene by gene basis but this work would

benefit from comparison of their network to pathways identified in other trans-omic studies of

ccRCC (citations below). Furthermore, the authors do not provide any biological evidence

https://paperpile.com/c/Fw7jRB/Iwtt
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supporting the validity of mechanistic hypotheses generated by their network. This evidence 

would demonstrate the utility of COSMOS and would build upon previous trans-omics studies 

related to ccRCC.  

 

This is an interesting point, which led us to further investigate deregulation of canonical 

pathways. It is widely accepted that  TCA cycle and oxidative phosphorylation are targeted 

and deregulated in ccRCC (Hakimi et al. 2016). To understand why we didn’t capture this 

alteration, we first sought whether evidence of TCA deregulation could be found at the level 

of individual omics datasets. Therefore, we first ran a pathway enrichment analysis on 

transcriptomics, phosphoproteomics  and metabolomics data sets separately. This separated 

analysis showed that the oxidative phosphorylation hallmark pathway (OPHP) was actually 

significantly suppressed in our tumor cohort with respect to both phospho-proteomics and 

transcriptomics datasets, consistently with other studies. However,  we could detect only a 

few significant depleted metabolites linked to OPHP (p-values < 0.05), namely succinate, 

isovaleryl carnitine and O-propionylcarnitine (malate, aconitate, citrate or fumarate were not 

significant with respect to our threshold). As a result, OPHP was only marginally enriched in 

the group of  depleted metabolites in ccRCC tumours. This apparent discrepancy with the 

literature and the proteomics datasets is likely due to the resolution of our metabolomics 

dataset. Indeed the number of metabolites detected with LC-MS depends  on several factors, 

including the type of chromatography column used, the ionisation of the molecules and their 

relative abundance. Finally, disruption and extraction of the tissue might represent another 

source of variability compared to different studies. Nevertheless, we believe that this 

potential technical limitation does not affect the overall validity of our data and model, since 

we were able to capture other metabolic pathways and signalling cascades associated with 

ccRCC.    

 

Focusing on the metabolites linked to OPHP we detected, we can use COSMOS to generate 

mechanistic hypotheses relative to their regulation. For instance,COSMOS network actually 

shows that the down-regulation of these three metabolites is linked to upstream signaling 

events such as the deregulation of JUN, MAPK8/9 and RXRA (Reviewer figure 1, (1)) and 

inhibition of CREBBP and hydrogen peroxide (Reviewer figure 1, (2)). According to the 

model, the changes in these metabolites are mediated by alterations  in the  transcriptional 

regulation of metabolic enzymes. Thus, we checked if ACAA1 CPT1A and P4HA2 (i.e. the 

metabolic enzymes regulated by transcription factors leading to changes in the succinate, 

isovaleryl carnitine and O-propionylcarnitine abundances) transcript abundance are coherent 

with the model predictions. ACAA1 and CPT1A are regulated by the RXRA TF (Reviewer 

figure 1, (3,4)), while P4HA2 is regulated by the TP53 TF (Reviewer figure 1, (2)). ACAA1 

transcript abundance is strongly  down-regulated (limma t-value = -8.8) while CPT1A 

transcript abundance is marginally down-regulated (limma t-value = -1.8), supporting the  

COSMOS crosstalk hypothesis between MAPK, RXRA, CPT1A, ACAA1, propanoylcarnitine 

and isovaleryl carnitine (Reviewer figure 1, (1,3,4)). On the contrary, P4H2A transcript 

abundance is significantly up-regulated (limma t-value = 2.9), disproving a direct TP53-

P4HA2-succinate regulation (Reviewer figure 1, (2)).   

https://paperpile.com/c/Fw7jRB/xhLm
https://paperpile.com/c/Fw7jRB/xhLm
https://paperpile.com/c/Fw7jRB/xhLm
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Reviewer figure 1 

COSMOS mechanistic hypotheses to explain the measured depletion of oxidative 

phosphorylation related metabolites. 

Finally, we would like to highlight that COSMOS manages to capture many relevant 

crosstalks of interest in ccRCC and among those, the interferon gamma response pathway. 

We chose to focus on this pathway in our manuscript because it was the most significantly 

overrepresented one in our COSMOS network solution. We detail this in our answer to the 

second comment of reviewer #1 (page 9-11). 

3. The authors recognized the importance of validating the COSMOS network. However,

their validation seems circular in that they use information that was excluded from their final

network, but was considered as input for the network. This is an important problem that

needs to be addressed.

We apologize if the consistency analysis wasn’t explained clearly enough. First we would like 

to make it clear that this consistency analysis only aimed at exploring the agreement 

between information yielded by the integration of omics data with prior-knowledge and the 

original omics data itself. We know further validated COSMOS results by cross-checking 

them with independent studies (as detailed in our answer to the second comment of reviewer 

#1 (page 9-11)).  



20 

Regarding the consistency analysis, none of the information that is used were considered as 

inputs for COSMOS, as explained below. We originally did two consistency analyses.  

 

In the first one, transcript abundance changes that are used to assess the coherence of 

COSMOS predictions are targets of TF that were not used as input for COSMOS. Only 

transcripts that are direct targets of COSMOS TFs inputs could have been considered as 

indirect inputs, and accordingly they were explicitly excluded from this consistency analysis 

method. In the new version of the COSMOS method, we are actually directly using the 

transcriptomics data to correct the output of the first CARNIVAL run. We decided to do it 

because this information was better used directly to correct COSMOS solutions. Thus, this 

part of the consistency analysis was removed.  

 

To explain this, we added the following paragraph in the method section: 

“Correction: 

We use the transcriptomics data differential gene expression analysis results to directly 

remove any edge that leads to an incoherence between a TF activity and it’s target transcript 

abundance change (which is a wrongly predicted incoherent transcriptional regulation event). 

This is done once before running CARNIVAL, using TF activities predicted with DoRothEA. 

Then, we do a pre-run of CARNIVAL (TFs/kinases/phosphatases -> metabolites) to generate 

a first solution network. We can subsequently use TF activities predicted by CARNIVAL to 

filter out any wrongly predicted transcriptional regulation event from the meta PKN (Appendix 

Figure 3A).” 

 

For the second consistency analysis, COSMOS de facto ignores any potential correlations 

between its inputs. It only uses the actual possible activity flows of the PKN to connect inputs 

together. This means that the coregulation network that can be derived from the COSMOS 

network relies on measurements and footprint-based activities that are considered 

independently from each other. They are connected together using only the interactions 

available in the PKN. Thus, the correlation between the measurements is not considered by 

COSMOS at any moment when building the network solution. Hence, we wanted to confirm 

that the topological information that COSMOS considered was consistent with correlations 

that can be derived from the single sample level TF and kinase activities, which do not use 

any of the topological prior knowledge that COSMOS relies on.  

 

To test the consistency of the network we propose a 5-fold validation method where the 

authors divide their input node data into 5 groups and withhold one group and generate the 

network with the remainder. A true positive rate could be calculated by examining a pair of 

nodes that the network predicts would interact and determining whether the observed effect 

directions are consistent with what the network predicts. Similarly, a true negative can be 

calculated by examining cases where the network correctly does not place a connection 

between a pair of nodes in the withheld group.  

 

To perform a cross-validation is a very valid suggestion for a predictive model, but, COSMOS 

aims at integrating measured data with prior-knowledge in a consistent and systematic 

manner, not to explicitly predict the outcome of new experiments. It provides the users with a 

set of coherent mechanistic hypotheses to explain changes observed in a given omics layer 

with upstream regulators from other omics layers. 
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In that sense, COSMOS would fall in the category of descriptive (or ‘unsupervised’) models, 

rather than predictive (‘supervised’)  models. In the latter case, one predicts an output, and 

hence a cross-validation analysis as the reviewer suggests would be very valuable, to 

estimate the performance of models to make predictions out of their training set. However, 

there is no model training involved in the case of COSMOS, simply contextualisation of a 

generic PKN to a given set of inputs. This is done by finding which of the upstream nodes 

used as input can potentially explain downstream measurements in the most parsimonious 

manner. 

To clarify this point we have added to the Discussion: 

“Thus, we developed COSMOS to scale this type of reasoning up to the entire PKN with all 

significantly deregulated protein activities and metabolites. We relied on an ILP optimisation 

through the CARNIVAL R package(Liu et al, 2019b) to contextualise this PKN with our data. 

We refined the optimization procedure to handle this very large PKN, and built an R package 

to facilitate others to use it with their own data. Given a set of deregulated TFs, 

kinases/phosphatases or metabolites, COSMOS provides the users with a set of coherent 

mechanistic hypotheses to explain changes observed in a given omics layer with upstream 

regulators from other omics layers. Thus, its aim is to integrate measured data with prior-

knowledge in a consistent and systematic manner, not to explicitly predict the outcome of 

new experiments.” 

In addition, validation could be performed by using an independent dataset. A dataset was 

published in Clark et al. Cell 2019 (full citation above) with transcriptomic and 

phosphoproteomic data for 110 ccRCC patients, though this study does not include 

metabolomics, it would be interesting to see the network your tool develops using their 

dataset and may emphasize the value of metabolomics in ccRCC.  

We agree that it is an interesting idea to try COSMOS on the CPTAC CCRCC dataset  of 

Clark et al. 2019. We analyzed this data with COSMOS. Specifically, we tried to connect the 

kinase/phosphatase layer with the transcription factor layer, since both transcriptomics and 

phosphoproteomics were available, but not metabolomics. The results we obtained with this 

dataset were very coherent with the results reported in the publication and the results 

obtained from our patient samples. This is summarized in the following paragraph that we 

have added to the manuscript :  

“We also compared the results we obtained from our samples with results obtained using 

another independent ccRCC dataset. We obtained the transcriptomics and 

phosphoproteomics dataset of the CPTAC ccRCC patient cohort. Following the same 

approach as with our patient samples, we performed the differential analysis between tumor 

and healthy tissue for both omics datasets and estimated TFs and kinase/phosphatase 

activities. Then, we ran COSMOS to find mechanistic hypotheses explaining the connections 

between deregulated transcription factors and kinases/phosphatases. The resulting 

COSMOS network was coherent with the results shown in the original publication, and also 

provided additional information on the crosstalks between deregulated kinases and 

transcription factors. In particular, COSMOS captured the signaling crosstalks between EGF, 

VEGF, AKT, MAPK, MTOR, NFKB and MYC (Appendix Table 4). Finally we compared which 

https://paperpile.com/c/dBJ6iI/gs47a
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biological processes were captured in the COSMOS network generated from the data of our 

patient samples and the COSMOS network generated from the CPTAC ccRCC patient 

cohort. As shown in Appendix Figure S5, the top over-represented pathways were very 

consistent between the two studies. Notably, PI3K-AKT-MTOR signaling and G2M 

checkpoint(Clark et al, 2020), TNFA signaling via NFKB(Al-Lamki et al, 2010), interferon 

gamma response(Thapa et al, 2013), WNT beta catenin signaling(Xu et al, 2016), and IL6 

JAK STAT3 signaling pathway were all significantly over-represented ( p-value < 0.02)” 

 

4. This manuscript would benefit from additional transparency in the methods and by 

supplying additional information as supplementary tables, see minor remarks.  

 

Minor Remarks:  

1. Methods  

- Explain number of technical replicates for each data type and how they were processed in 

batches/blinded. We suggest a table explaining which samples were used for which data 

type, how many technical or biological replicates for each sample and a diagram of the 

processing pipeline. The phosphoproteomics section is well detailed, however, the TMT 

labelling information was confusing as it was not clear how many replicates of which samples 

were being used.  

We agree and we have added this information to the Appendix Table 1 and added the 

Appendix Figure S9. 

 

We also added the following paragraph in the method section : 

“We included a total of 22 samples from 11 renal cancer patients (6 men, age 65.0+/-14.31, 

5 women, age 65.2+/-9.257(mean+/-SD)) for transcriptomics. Phosphoproteomics was also 

measured in a subset of 18 samples from 9 of these patients (6 men, age 65+/-14.31; 3 

women, age 63.33+/-11.06(mean+/-SD)), and metabolomics was also measured in 16 

samples from 8 out of these 9 patient (5 men, age 62+/-13.23; 3 women, age 63.33+/-

9.89(mean+/-SD), Appendix Figure S9, Appendix table 1).” 

 

- The account for ProteomeXchange did not work.  

We are sorry to hear that the reviewer had problems with the account, and we have ensured 

that it worked. You can access it by going to 

http://proteomecentral.proteomexchange.org/cgi/GetDataset, use the keyword PXD018218 

and follow the instructions for reviewers (credentials are Username: 

reviewer81921@ebi.ac.uk, Password: Kidney2020 ). The PRIDE database can be down 

from time to time, if you see the “500 Internal Server Error”, please try again at another time. 

 

-Given the paired data structure of your dataset, did you implement a paired analysis in 

LIMMA?  

 

Our tumor and healthy samples are indeed coming from the same patient. Due to this, it 

could appear natural to analyse them with a paired t-test or a mixed effect linear model.  

However, we made a PCA of our samples, and we didn’t observe any noticeable patient 

effect for the metabolomics and phosphoproteomics data, while there was only a minor one 

apparent in the transcriptomics data (Appendix Figure 1). Importantly, we do not have actual 

pairs of metabolomics and phosphoproteomics measurements for many patients, due to 

missing values inherent to mass-spectrometry technology.  Because of these reasons, we 

https://paperpile.com/c/dBJ6iI/p9DH
https://paperpile.com/c/dBJ6iI/Uegy
https://paperpile.com/c/dBJ6iI/6HHp
https://paperpile.com/c/dBJ6iI/iKs2
http://proteomecentral.proteomexchange.org/cgi/GetDataset


23 

originally settled for an unpaired differential analysis of our healthy and tumor sample. While 

patient specific effects may reduce our statistical power, we reasoned that it is preferable to 

the risk of including a poorly characterised patient specific effect in LIMMA’s linear model. 

 

Triggered by the reviewer’s comment, we compared the result of our LIMMA analysis with 

the same analysis regressing out the patient specific effect with a linear model (effectively 

emulating a paired analysis). As expected, the results of both analyses are very similar 

(Reviewer figure 2). Yet, for many phosphosite and metabolites, the regression parameter 

corresponding to the patient specific effect is poorly estimated, due to the missing values of 

mass spectrometry data. For example, this is apparent in the case of quinolinic acid, where 

only one patient actually had a pair of measurements between healthy and tumor tissue. 

Coherently, the differences observed between the two analysis strategies are more 

pronounced in this case. Overall, the differences between the results of both analyses are 

mild. 

 

With all this in mind, we conclude that it is not clear if a paired analysis is really suited to our 

study, and in any case we would expect very similar results.  
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Reviewer figure 2 

Comparison of LIMMA analysis performed in an unpaired fashion and emulating a mixed linear effect 

model (paired analysis). 

-In 4.5 the authors comment that they chose cutoffs for their omics data such the input data

was a "comfortable size". Is this in reference to computational time, interpretation of the

network?

The activity scores are enrichment scores that are z-transformed with an empirical null

distribution. Thus, an absolute value of 1.7 would correspond to a p-value of 0.05. We also

chose 0.05 as the p-value cutoff for the deregulated metabolites. The 0.05 value is a

commonly used yet admittedly relatively arbitrary choice. In the absence of better evidence

as to which threshold to choose, it seemed an appropriate decision - but as we elaborate

below, we acknowledge its impact should be explored, and we have now done so.

To make this clearer, the following paragraph was modified in the method section: 

“CARNIVAL needs a set of starting and end nodes to look for paths in between. TFs, kinases 

and phosphatases absolute normalised enrichment scores greater than 1.7 standard 

deviation were considered deregulated. Coherently, metabolites with uncorrected p-values 

smaller than 0.05 were considered deregulated. We give more information on the rational to 

choose an appropriate threshold in the Appendix note 1. This yielded a set of 98 TFs, 25 

kinases/phosphatase and 41 metabolites to be used as input and measurements for 

COSMOS.” 

How sensitive is the network to changes in these cutoffs? 

We agree that the choice of cutoff can have an important impact on the resulting COSMOS 

network. In order to make it clearer how sensitive COSMOS can be to this cutoff, we detail its 

impact in a new Appendix note 1: 

“The COSMOS network solution aims at connecting a downstream layer (the measurements) 

with upstream regulators (the inputs). The choice of the cutoff will determine which inputs 

and measurements will be connected together by COSMOS. Thus, if more (or less) inputs 

and measurements are provided, the network solution will contain additional (or fewer) edges 

to connect them.  

Knowing that, the choice of the threshold has to be decided with respect to (i) which are the 

TFs, kinases, phosphatase and metabolites that a user wishes to potentially connect 

together, (ii) how confident the user is that the TFs, kinases, phosphatase and metabolites 

are actually deregulated. 

To illustrate this and show how the COSMOS network may change with respect to cutoff 

changes, we made three additional runs of COSMOS (connecting downstream metabolites 

with upstream TFs and kinases, that is the “forward” run). We chose:  

(1) a very loose cutoff (p-value < 0.5 and absolute activity score > 0.6 sd, essentially

including everything),
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(2) a cutoff reducing the number of upstream TFs and kinases used as upstream input while 

keeping the same measurements as the original COSMOS run (p-value < 0.05 and absolute 

activity score > 2.4 sd)  

(3) a very stringent cutoff for both inputs and measurements (p-value < 0.001 and absolute 

activity score > 5.2 sd).  

 

As expected, the loose threshold yielded the largest network (200 edges) while the most 

stringent one yielded the smallest (50 edges) compared the 162 edges of the original 

network. The second case yielded 108 edges. We compared the latter with the original 

network (in the same manner as for the network shuffling analysis, see Material and Methods, 

Meta PKN contextualisation for explanation on the edge weight) and found that the solutions 

were relatively similar, with a median absolute weight difference of 25%. 

 

To conclude, the cutoff choice depends on the situation, and there will be - like is customary 

in such type of analysis - a tradeoff between coverage and reliability.  

 

 

-In describing the Meta PKN contextualization the authors say that, "there were no 

incoherences in the predicted activity signs between the common part of the two resulting 

networks, they were simply merged together, resulting in a combined network of 250 unique 

edges". Further elaboration on how the networks are combined is necessary. Is this process 

automated or manual? What factors are considered during this merging process?  

 

The two networks (“forward” and “backward”) are merged by joining the interactions from 

both instances and dropping duplicate ones. Essentially, we are taking the union of the two 

sets of nodes and edges. The only factor that is effectively considered is whether or not there 

are common nodes between the two networks that have inconsistent signs.  If  there are 

common nodes between the two networks that have inconsistent signs, we include both 

predictions in the final merged network to denote the unknown variable concerning the actual 

sign of the node. This is in any case a rare event. In the result generated by the newer 

version of COSMOS, this was the case for the ARNT TF that was predicted with two different 

signs between the forward and backward run. 

 

We modified the text accordingly in the method section to make this clearer :  

 

“There was a single incoherence in the predicted sign of ARNT2 transcription factor (-1 in 

forward run, 1 in backward run) between the common part of the two resulting networks. We 

made the union of the two networks, resulting in a combined network of 449 unique edges, 

while preserving the incoherent sign of ARNT2 in the corresponding node attributes of the 

network (Appendix Table 5).” 

 

2. Results  

-Missing Supplemental Tables - Supp Table 1 should also outline which samples were used 

for which analyses as they change for each data type  

We have added this information in Appendix Figure S1 (see Reviewer figure 3). 

https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.y0nucc1n6q1
https://docs.google.com/document/d/10AT_NsZFSI4r75USqXBGaYG6I2hNLmScIukJ7r5G3E0/edit#heading=h.y0nucc1n6q1
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Reviewer figure 3 

Extra information indicating which patient had which type of data generated. 

-Provide supplemental table(s) with data on the 11 phosphosites and 21 metabolites used in

the network model. How many unique proteins are represented in the 11 phosphosites? Can

the authors account for discrepancies in their expression and phosphosite data compared to

previous trans-omics research on ccRCC?

We apologize for this misunderstanding but  all phosphosites were used for kinase activity

estimations, not just the 11 ones that are individually statistically significant. In order to avoid

such potential misunderstanding, we modified the following section of the results accordingly:

“Each omics dataset was independently submitted to differential (tumor vs healthy tissue) 

analysis using LIMMA(Ritchie et al, 2015). Consistently with the PCA, a volcano plot 

overlapping the results of the differential analysis of each omics showed that the 

transcriptomics dataset led to larger differences and smaller p-values than phospho-

proteomics and metabolomics extracted from the same samples (Appendix Figure 2). This is 

further apparent by the number of hits under a given FDR threshold. We obtained 6,699 

transcripts and 21 metabolites significantly regulated with False Discovery Rate (FDR) < 0.05. 

While only 11 phosphosites were found under 0.05 FDR, 447 phosphosites had an FDR < 

0.2. This result confirmed that tumor samples displayed molecular deregulations spanning 

across signaling, transcription, and metabolism. Then, the differential statistics for all tested 

(not just the ones under the FDR threshold) transcripts, phospho-peptides and metabolites 

were then used for further downstream analysis, as explained below.” 

https://paperpile.com/c/dBJ6iI/esO2I


27 

We have also added the following paragraph in the hope that our explanations on how an 

enrichment analysis is performed made this clearer too:  

 

“Footprint-based activity estimation relies on the concept that measured omics abundances 

(such as phosphopeptides or transcripts) can be used as a proxy of up-stream (direct or 

indirect) regulator activities  that are responsible for those changes(Casado et al, 2013; 

Ochoa et al, 2016; Rhodes et al, 2005). In the case of TF activity estimation, this translates 

into the fact that measured changes in the abundances of given transcripts give us 

information about the changes of activities of the transcription factors that regulates such 

abundances(Dugourd and Saez-Rodriguez 2019). This means that an activity estimation only 

depends on the changes of the abundances measured in its target transcripts, not its own 

transcript abundance. In this study, we use the VIPER algorithm(Alvarez et al. 2016) to 

estimate the activity of transcription factors and kinases based on transcript and 

phosphopeptide abundances changes, respectively.” 

 

-Authors should address the fact that their network is largely based on transcript level data, 

can they highlight examples where the phosphosite and/or metabolite data were critical in 

identifying a novel hypothesis?  

We apologise that the manuscript wasn’t clear enough regarding this point: 98 TF, 25 

kinases/phosphatase and 41 metabolites are used as input to generate the solution network. 

The TF and kinase/phosphatases are estimated from the entire transcriptomics and 

phosphoproteomics data set, as explained above. While there are more TFs than kinases 

and metabolites, their number doesn’t appear overwhelming. 

Finally, every hypothesis we generate in the paper links kinases, TFs and metabolites, hence 

using all available omic data.  

 

 

-Are the transcription factors you detect as dysfunctional tissue specific? It would be 

interesting to know if you are picking up on some kidney-specific gene regulation.  

We looked if COSMOS was able to capture mechanisms related to the HNF transcription 

factor family, which regulates kidney specific transcriptional programs. The TF activity 

estimation highlighted a downregulation of HNF4A and HNF1B. While they were both used 

as input for the COSMOS network generation, the algorithm only included HNF4A in the final 

optimal COSMOS network solution. Interestingly, COSMOS predicts that PRKAA1 is 

inhibiting HNF4A activity. 

 

-Provide citations for the following statement: "For instance, hypoxia, inflammation and 

oncogenic markers were up-regulated in tumors compared to healthy tissues".  

We now provide citations for this statement: hypoxia (Schödel et al. 2016), inflammation 

(Zeng et al. 2014), oncogenic markers (Clark et al. 2020). This is now apparent in the text : 

 

“For instance,  hypoxia (HIF1A), inflammation (STAT2) and oncogenic (MYC, Cyclin 

Dependent Kinase 2 and 7 (CDK2/7)) markers were up-regulated in tumors compared to 

healthy tissues (Figure 2) (Schödel et al, 2016; Zeng et al, 2014; Clark et al, 2020)” 

 

-The authors use reference 23 to support the statement: "...among suppressed TFs we 

identified, HNF4A has been previously associated with ccRCC". This is accurate, however, 

https://paperpile.com/c/Fw7jRB/6V8b
https://paperpile.com/c/Fw7jRB/w1BT
https://paperpile.com/c/Fw7jRB/Lu0p
https://paperpile.com/c/dBJ6iI/gVaf+fayR+p9DH
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the authors neglect to mention reference 23 reported that HNF4a is frequently reduced in 

renal cell carcinoma whereas Figure 2A suggests it is increased in data presented here. 

Thank you for noticing this discrepancy. With the updated TF activities that were estimated 

with the dorothea package (a revised version of the regulons available in the omnipath web-

service we used before), HNF4a is down-regulated. A few TFs such as this one and also 

TP53 where incorrectly signed when predicted using prior knowledge from the omnipath 

web-service. 

-Figure 2A: The x-axis labels should be lined up more directly with the bars to facilitate

interpretation. Further, it would be valuable to group the proteins by class, i.e. cluster the TF,

the kinases, and the phosphatases.

We thank the reviewer for this suggestion. We updated the figure to increase the readability).

-Figure 2C: The right panel shows a single blue dot in the top 10 targets, yet the left panel

does not have a blue dot.

We apologise for this source of confusion. This is because we only colored the genes that

are above the threshold line (which is mainly for visualization purposes) in the left panel. To

make this figure clearer, we synchronised the colors of the dots in the volcano plot with the

ones of the top 10 targets (Figure 2).

Figure 2 - Differentially regulated transcription factor, kinase and phosphatase activities 

cancer vs.healthy tissue 

A) Bar plot displaying the Normalised Enrichment Score (NES, proxy of activity change) of the 25 up

or down regulated TF and top 25 up or down regulated kinase and phosphatases activities between 

kidney tumor and adjacent healthy tissue. B) Right panel shows the 10 most changing RNA 

abundances of the STAT2 regulated transcripts. Left panel shows the change of abundances of all 

STAT2 regulated transcripts that were used to estimate its activity change. X axis represents log fold 

change of regulated transcripts multiplied by the sign of regulation (-1 for inhibition and 1 for activation 
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of transcription). Y axis represents the significance of the log fold change (-log10 of p-value). C) Right 

panel shows the 10 most changing phospho-peptide abundances of the CDK7 regulated phospho-

peptides. Left panel shows the change of abundances of all CDK7 regulated phospho-peptides that 

were used to estimate its activity change. 

 

-Figure 4: Recommend black edges for visibility. Also, counter-intuitive that negative 

regulation/inhibition uses a pointed arrow while positive regulation/activation uses a flat arrow. 

Examination of the colors in the network and the arrows suggest that perhaps your legend is 

backwards for the Arrow Shape Effect?  

 

Indeed, this was an error. The new network figure has fixed this. We have also changed the 

figure colours to use black edges only (Figure 4). 

 

-Figure 4: For a kinase, can you make the distinction between increased activity as 

measured by differential expression as opposed to increased activity as measured by 

phosphosite enrichment? Similarly, does a transcription factor have increased activity 

because expression levels of the transcription factor itself are increased or because the 

targets of the transcription factor are increased?  

 

In both cases, the activity estimation of a TF and kinase depends only on the abundance 

changes observed in it’s target transcript and phosphosites, respectively. The abundance 

changes measured in the transcript of phosphosite of a given transcript/kinase does not 

influence it’s activity estimation in any way. 

As mentioned in our response to a previous comment (page 33), we  now explain the 

concept of footprint based activity estimation more explicitly in the manuscript text by adding  

the following paragraph: 

 

“Footprint-based activity estimation relies on the concept that measured omics abundances 

(such as phosphopeptides or transcripts) can be used as a proxy of up-stream (direct or 

indirect) regulator activities  that are responsible for those changes(Casado et al, 2013; 

Ochoa et al, 2016; Rhodes et al, 2005). In the case of TF activity estimation, this translates 

into the fact that measured changes in the abundances of given transcripts give us 

information about the changes of activities of the transcription factors that regulates such 

abundances(Dugourd and Saez-Rodriguez 2019). This means that an activity estimation only 

depends on the changes of the abundances measured in its target transcripts, not its own 

transcript abundance. In this study, we use the VIPER algorithm(Alvarez et al. 2016) to 

estimate the activity of transcription factors and kinases based on transcript and 

phosphopeptide abundances changes, respectively.” 

  

3. Discussion:  

"It also predicted a depletion of adenine and consequently the down-regulation of PDPK1 

activity through CXCR4." Adenine appears to be an input node in Figure 4A, so the decrease 

is observed not predicted?  

 

We apologize for the confusion, we have written  adenine but meant  adenosine in the text. 

We have corrected this error.  
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Careful discussion of what is actually observed as opposed to what the model predicts is 

necessary.  

For clarity we changed the network figures, the legend indicates that measured nodes (used 

as input and measurements in COSMOS) are marked with a star. Furthermore, we have 

made this distinction clear in the new paragraph that we wrote in our response to the second 

comment of Reviewer #1. For example we know describe COSMOS results as such :  

“The COSMOS model suggests that MYC upregulates the expression of the metabolic 

enzyme BCAT1...” 

4. General:

-By specifically referencing either COSMOS or CARNIVAL the authors imply that they are

separate tools. It would be more useful if CARNIVAL were integrated into COSMOS for utility

and also in the manuscript as switching between the two names throughout the manuscript is

challenging.

We apologize for any confusion about the names. We addressed this point in our answer to 

your first general comment. As you suggest, CARNIVAL was replaced by COSMOS in the 

text whenever it was possible. In the newer parts, we also ensured that we referred to 

COSMOS more consistently. An example of such changes is given in our response to your 

first comment. 

Additionally, it is unclear the output of COSMOS/CARNIVAL will be for future users.  

The output of COSMOS is a set of two networks, ‘forward’ and ‘backward’, connecting two 

sets of input and measurement in both directions. We also provide tools to combine these 

two networks into one and to visualise subparts of the network easily. Thus, we made it a 

distinct R package to make it easier for users to know which to use in which context for non-

familiar users. 

It would be valuable to provide documentation on using the tool as part of the manuscript 

review.  

We have now made COSMOS available as an R-package, with a complete explanation and 

tutorial at: https://github.com/saezlab/COSMOS  

-Throughout the manuscript authors refer to transcription factor and kinase activity as

measured by transcript expression. Activity is a poor word choice as it specifically refers to

catalytic activity. The phosphosite data demonstrates an enrichment of a particular substrate

phosphorylation event, not necessarily increased general kinase activity. Similarly, increased

expression of genes targeted by a particular transcription factor does not mean that this

particular transcription factor has increased activity - transcription factors do not have

catalytic activity.

We acknowledge that the term of activity overlaps with its original meaning in the context of

enzymatic activity from chemistry. At the same time, this is a commonly used term in the field

of footprint analysis such as TF enrichment or Kinase enrichment analysis. Regarding

phosphosites in particular, the ground assumption of kinase enrichment analysis is that the

enrichment of the substrates’ phosphorylation of a given kinase can be used as a proxy of

https://github.com/saezlab/COSMOS
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the activity change of that kinase. We agree that this terminology, while broadly used,  isn’t 

perfect and  we acknowledge this in the result section: 

 

“By the term “activity”, we refer to a quantifiable proxy of the function of a protein, estimated 

based on the footprint left by said activity. This definition can apply, but is not limited to, an 

enzyme’s catalytic activity.” 

 

 

-Throughout the manuscript gene names are not italicized.  

We have modified the text accordingly. 

 

 

-Throughout the manuscript numbers in the thousands do not have commas. ex. 32586 

instead of 32,586  

We have formatted the numbers accordingly. 

 

-Throughout the manuscript there are inconsistencies in how tool names are reported. ex. 

limma vs. LIMMA, Omnipath vs. OmniPath, DOROTHEA vs. DoRothEA 

We have modified the text accordingly. 
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REFEREE REPORTS  

---------------------------------------------------------------------------- 

Reviewer #1: 

We thank the authors for addressing our comment s and concerns. We believe that now 
the manuscript is suitable for publicat ion.

18th Dec 20202nd Authors' Response to Reviewers

21st Dec 20202nd Revision - Editorial Decision

Thank you again for sending us your revised manuscript. We are now satisfied 
with the modifications made and I am pleased to inform you that your paper has 
been accepted for publication. 

The authors have made all requested editorial  changes.
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Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any methods used to assess it.

Is there an estimate of variation within each group of data?
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A- Figures
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This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. These guidelines are 
consistent with the Principles and Guidelines for Reporting Preclinical Research issued by the NIH in 2014. Please follow the journal’s 
authorship guidelines in preparing your manuscript.  

PLEASE NOTE THAT THIS CHECKLIST WILL BE PUBLISHED ALONGSIDE YOUR PAPER
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B- Statistics and general methods

the assay(s) and method(s) used to carry out the reported observations and measurements 
an explicit mention of the biological and chemical entity(ies) that are being measured.
an explicit mention of the biological and chemical entity(ies) that are altered/varied/perturbed in a controlled manner.

a statement of how many times the experiment shown was independently replicated in the laboratory.

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

In the pink boxes below, please ensure that the answers to the following questions are reported in the manuscript itself. 
Every question should be answered. If the question is not relevant to your research, please write NA (non applicable).  
We encourage you to include a specific subsection in the methods section for statistics, reagents, animal models and 
human subjects.  

definitions of statistical methods and measures:

a description of the sample collection allowing the reader to understand whether the samples represent technical or 
biological replicates (including how many animals, litters, cultures, etc.).

The data shown in figures should satisfy the following conditions:

Source Data should be included to report the data underlying graphs. Please follow the guidelines set out in the author ship 
guidelines on Data Presentation.

Please fill out these boxes ê (Do not worry if you cannot see all your text once you press return)

a specification of the experimental system investigated (eg cell line, species name).

11 patients were included in this analysis to generate transcriptomics data, of wich 9 and 8 were 
used to gerate respectivelly phosphoproteomics and metabolomics. The 11 patients are all 
patients from a larger cohort of patient that had ccRCC. Healthy and tissue samples were clearly 
discriminated when visualised with a PCA, thus it was decided that no additional patient were 
required for this analysis.

graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should 
not be shown for technical replicates.
if n< 5, the individual data points from each experiment should be plotted and any statistical test employed should be 
justified

the exact sample size (n) for each experimental group/condition, given as a number, not a range;

Each figure caption should contain the following information, for each panel where they are relevant:

2. Captions

No animal studies.

The only inclusion criteria was a clinically diagnosed clear cell Renal Cell Carcinoma in the patient.

No treatment is applied in this study.

Manuscript Number: MSB-20-9730

Yes. We used LIMMA for our statstical anaylsis, a widelly used method to perform differential 
anylsis of omic datasets.

The data meets the assumptions. We used standard omic data generation methods and visual 
inspection of the counts/intensities (mean/sd plot, PCA) showed that the data was of properlly 
distributed for further analysis.

No, this is not relevant in the context of omic data differential analysis.

No treatment is applied in this study.

No.

Blinding was not relevant in this study as we were trying to find differences between two clearly a-
priori defined groups, that is healthy and tumour samples.

1. Data

the data were obtained and processed according to the field’s best practice and are presented to reflect the results of the 
experiments in an accurate and unbiased manner.
figure panels include only data points, measurements or observations that can be compared to each other in a scientifically 
meaningful way.



Is the variance similar between the groups that are being statistically compared?

6. To show that antibodies were profiled for use in the system under study (assay and species), provide a citation, catalog 
number and/or clone number, supplementary information or reference to an antibody validation profile. e.g., 
Antibodypedia (see link list at top right), 1DegreeBio (see link list at top right).

7. Identify the source of cell lines and report if they were recently authenticated (e.g., by STR profiling) and tested for 
mycoplasma contamination.

* for all hyperlinks, please see the table at the top right of the document

8. Report species, strain, gender, age of animals and genetic modification status where applicable. Please detail housing 
and husbandry conditions and the source of animals.

9. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the 
committee(s) approving the experiments.

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (PLoS Biol. 8(6), e1000412, 2010) to ensure 
that other relevant aspects of animal studies are adequately reported. See author guidelines, under ‘Reporting 
Guidelines’. See also: NIH (see link list at top right) and MRC (see link list at top right) recommendations.  Please confirm 
compliance.

11. Identify the committee(s) approving the study protocol.

12. Include a statement confirming that informed consent was obtained from all subjects and that the experiments 
conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human 
Services Belmont Report.

13. For publication of patient photos, include a statement confirming that consent to publish was obtained.

14. Report any restrictions on the availability (and/or on the use) of human data or samples.

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right)  
and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under 
‘Reporting Guidelines’. Please confirm you have submitted this list.

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at 
top right). See author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

18: Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data 
generated in this study and deposited in a public database (e.g. RNA-Seq data: Gene Expression Omnibus GSE39462, 
Proteomics data: PRIDE PXD000208 etc.) Please refer to our author guidelines for ‘Data Deposition’.

Data deposition in a public repository is mandatory for: 
a. Protein, DNA and RNA sequences 
b. Macromolecular structures 
c. Crystallographic data for small molecules 
d. Functional genomics data 
e. Proteomics and molecular interactions

18. Continued.

19. Deposition is strongly recommended for any datasets that are central and integral to the study; please consider the 
journal’s data policy. If no structured public repository exists for a given data type, we encourage the provision of 
datasets in the manuscript as a Supplementary Document (see author guidelines under ‘Expanded View’ or in 
unstructured repositories such as Dryad (see link list at top right) or Figshare (see link list at top right).
20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while 
respecting ethical obligations to the patients and relevant medical and legal issues. If practically possible and compatible 
with the individual consent agreement used in the study, such data should be deposited in one of the major public access-
controlled repositories such as dbGAP (see link list at top right) or EGA (see link list at top right).
21. Computational models that are central and integral to a study should be shared without restrictions and provided in a 
machine-readable form.  The relevant accession numbers or links should be provided. When possible, standardized 
format (SBML, CellML) should be used instead of scripts (e.g. MATLAB). Authors are strongly encouraged to follow the 
MIRIAM guidelines (see link list at top right) and deposit their model in a public database such as Biomodels (see link list 
at top right) or JWS Online (see link list at top right). If computer source code is provided with the paper, it should be 
deposited in a public repository or included in supplementary information.

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top 
right) and list of select agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, 
provide a statement only if it could.

C- Reagents

D- Animal Models

E- Human Subjects

This is expected from such omic datasets. When processing the data, nothing seemed to indicate 
that it may not be the case.

N/A

N/A

N/A

G- Dual use research of concern

F- Data Accessibility

Ethics Commitee of the University Clinic RWTH Aachen, study number (EK-016/17)

Informed consent was obtained from all patients and the experiments conformed with the 
prinicples of the Declaration of Helsinki & Belmont Report. 

N/A

The meta PKN used in this study is available via the COSMOS R package 
(https://github.com/saezlab/COSMOS)

N/A

N/A

N/A

N/A

N/A

Code availability
All code used in this study is available at : https://github.com/saezlab/COSMOS_MSB
The COSMOS R package is available at : https://github.com/saezlab/COSMOS
Data availability
The COSMOS R package is available at : https://github.com/saezlab/COSMOS

Processed data used in this study is available at : 
https://github.com/saezlab/COSMOS_MSB/tree/master/data

RNAseq counts are available: 
https://github.com/saezlab/COSMOS_MSB/blob/main/data/RNA_transcriptomic_raw.csv

Phosphoproteomics raw data is available via ProteomeXchange with identifier PXD018218 : 
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD018218

Metabolomic data is available at : 
https://github.com/saezlab/COSMOS_MSB/tree/main/data/original_metab_data

Data was deposited.

This was done as such.

Networks were provided in SIF format as supplementary data.
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