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PPARy/HUWE1/miR-98 signaling in SCD-PH

Supplementary Figure S1. PH develops spontaneously in SCD mice with aging.
Right ventricular systolic pressure (RVSP) was recorded in anesthetized mice with a pressure
transducer. Each bar represents the mean RVSP in mm Hg + SE. n=3-5. Each bar represents the

mean £ SE. * p<0.05 vs. AA (age 7 weeks). + p<0.05 vs. SS (age 7 weeks), n=3-5.

Supplementary Figure S2. Hemin increases HPAEC VCAML1 expression, monocyte
adhesion, and proliferation. Whole lung homogenates were collected from littermate control
(AA) and sickle cell (SS) mice at age 15-17 weeks. In (A), lung VCAM1 mRNA or protein
levels were measured with gRT-PCR or Western blotting and expressed relative to lung mRNA
(9S mRNA) or protein (GAPDH). *p<0.05 vs AA, n=4. In (B), human pulmonary artery
endothelial cells (HPAECSs) were treated with dimethyl sulfoxide vehicle (CON) or hemin
(HEM, 5.0 pM) for 72 hours. Mean HPAEC VCAM1 mRNA and protein levels were measured
with gRT-PCR or Western blotting. Each bar represents the mean VCAML1 level + SE relative to
GAPDH expressed as fold-change vs. CON. *p<0.05 vs. CON, n=11-12. In (C-D) HPAECs in a
96-well plate were treated with vehicle (CON) or hemin (HEM, 2.5, 5.0, and 10.0 uM) for 72
hours. (C) THP1 monocytes labeled with calcein were then added (5 X 10* monocytes / well)
and incubated for 30 min. Monolayers were then washed 3 times to remove unbound monocytes,
and scanned with a plate reader to measure total fluorescence / well. Each bar represents the
mean * SE fluorescence intensity of bound monocytes expressed as % CON. n=6. *p<0.05 vs.
CON. (D) hemin-induced HPAEC proliferation measured with BrdU assays. Each bar represents

the mean + SE proliferation as fold change vs. CON. n=6. *p<0.05 vs. CON.
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Supplementary Figure S3. Screening of siRNAs of HUWEL. Human pulmonary artery
endothelial cells (HPAECs) were treated with 10 nM scrambled (SCR) or siRNA duplexes to
HUWEL1 (siHUWE-V1 which targeted exon 44-45 region on HUWEL protein coding sequence
(CDS), siHUWE-V2 which targeted exon 36-37 region on HUWE1 CDS, or siHUWE-V2 which
targeted exon 36-37 region on HUWEI1 3’ untranslated region (UTR)) for 72 hours. HUWE1

relative to GAPDH expressed as fold change vs. SCR.

Supplementary Figure S4. Loss of p65 reduces ET-1 and VCAML1 levels. In (D-G),
HPAECs were treated with scrambled (SCR) or p65 (si-p65, 10 nM) siRNAs for 6 h then
incubated for an additional 72 h. qRT-PCR was performed for p65 (A), ET-1 (B), or VCAM1
(C) mRNAs. Each bar represents mean = SE mRNA level relative to GAPDH expressed as fold-

change vs cells treated with scrambled siRNA (SCR). n=3-6, *p<0.05 vs SCR.

Supplementary Figure S5. Loss of PPARy function reduces HUWE1 and miR-98
levels. In (A-C), human pulmonary artery endothelial cells (HPAECSs) were treated with
scrambled (SCR) or siRNA duplexes (10 and 20 nM) to PPARY for 6 h then incubated for an
additional 72 h. gqRT-PCR was performed for PPARy (A), HUWEL1 (B) or miR-98 (C). Each bar
represents mean + SE relative to GAPDH or RNU6B expressed as fold-change vs cells treated

with scrambled siRNA (SCR). n=4-6, *p<0.05 vs SCR.

Supplementary Figure S6. The PPARYy ligand, RSG, attenuates increases in
VCAML1 and endothelial dysfunction in hemin-treated HPAECs. Overexpression of

mMiR-98 reduces increases in ET-1 in hemin-treated HPAECs. Human pulmonary
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artery endothelial cells (HPAECSs) were treated with hemin (HEM, 5 uM) for 72 h. During the
final 24 h of hemin exposure, selected HPAECs were treated + rosiglitazone (RSG, 10 uM). In
(A), gRT-PCR was performed for VCAML1 levels. Each bar represents the mean = SE relative to
GAPDH as indicated. *p<0.05 vs. HEM/RSG(-). n=6. In (B), THP1 monocytes labeled with
calcein were then added (5 X 10* monocytes / well) and incubated for 30 min. Monolayers were
then washed 3 times to remove unbound monocytes, and scanned with a plate reader to measure
total fluorescence / well. Each bar represents the mean + SE fluorescence intensity of bound
monocytes expressed as % CON. n=6. *p<0.05 vs. HEM/RSG(-). In (C), hemin-induced
HPAEC proliferation measured with BrdU assays. Each bar represents the mean + SE
proliferation as fold change vs. CON. n=6. *p<0.05 vs. HEM/RSG(-). In (D), HPAECs were
transfected with mimic-miR-98 (10 nM) or an equivalent amount of scrambled mimic-miR
negative control using lipofectamine RNAiMax (Qiagen). After transfection for 6 hours, media
were replaced with endothelial growth medium (EGM) containing 5% FBS. HPAECs were
treated with HEM (5 uM) and then cultured for 72 hours. Alterations in ET-1 levels were
examined using gRT-PCR. Each bar represents the mean £ SE as fold change vs. HEM/mimic

miR-98(-). n=6. *p<0.05 vs. HEM/mimic miR-98(-).
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Supplementary Fig. S1
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Supplementary Fig. S3
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Supplementary Fig. S5

1.2 -
0
.8
6
4
2

(8bueyds pjod)
99NNy / 86-d!W DIVdH

T T T T T
© @ © ¢ A
— o o o o

1.2 -

(8bueyo pjo4) YNHwW
HAdv9o / TAMNH D3VdH

0.0

(8bueyo pjod) yNHwW
HAdV9 / AdVdd D3VdH

0.0

10 20

SCR

10 20

SCR

10 20

SCR

SiPPARYy (nM)

SiPPARy (nM)

SiPPARYy (nM)



Supplementary Fig. S6
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