ChemSusChem

Supporting Information

Titanium Niobium Oxide Ti₂Nb₁₀O₂₉/Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries

Öznil Budak, Pattarachai Srimuk, Mesut Aslan, Hwirim Shim, Lars Borchardt, and Volker Presser*© 2020 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Fig. S1. (A-B) Scanning electron micrographs of (A) CB, and (B) OLC. Fitted Raman spectra of (C) CB, and (D) OLC.

Fig. S2. (A-B) Thermograms of (A) TNO-CB-CO₂, and (B) TNO-OLC-CO₂ synthesis following the synthesis protocol of hybrid materials. The corresponding mass spectra of TGA-MS measurements of (C) TNO-CB-CO₂, and (D) TNO-OLC-CO₂ synthesis.

Fig. S3. (A-B) Scanning electron micrographs of (A) TNO-CB-Air, and (B) TNO-OLC-Air.

Fig. S4. (A) Rate handling performance of the hybrid and non-hybrid materials in the potential window of 1.0-2.5 V vs. Li/Li⁺. (B) Cyclic stability performance of the hybrid and non-hybrid materials in the potential window of 1.0-2.5 V vs. Li/Li⁺.

Fig. S5. Kinetic analysis of (A) TNO-CB-CO₂, (B) TNO-OLC-CO₂, (C) TNO-CB-Air, and (D) TNO-OLC-Air calculated from cyclic voltammograms at the different scan rates for the potential window of 1.0-2.5 V vs. Li/Li⁺.

Fig. S6. Kinetic analysis of (A) TNO-CB-CO₂, (B) TNO-OLC-CO₂, (C) TNO-CB-Air, and (D) TNO-OLC-Air calculated from cyclic voltammograms at the different scan rates for the potential window of 0.05-2.5 V vs. Li/Li⁺.

Fig. S7. (A-C) Analysis of the TNO-CB-CO₂ electrode: (A) Scanning electron micrographs, and (B-C) elemental mapping by EDX. (D-F) Analysis of the TNO-OLC-CO₂ electrode: (D) Scanning electron micrographs, and (E-F) elemental mapping by EDX.

Fig. S8. Nyquist plot of hybrid and non-hybrid materials. The inset displays the equivalent circuit used for fitting of the electrochemical impedance spectra.

Fig. S9. X-ray diffraction patterns of (A) TNO-CB-Air, and (B) TNO-OLC-Air electrodes at the different lithiated/delithiated states (denoted as "Li" and "Deli").

Fig. S10. (A) X-ray diffractogram of LiMn₂O₄ (LMO) with the reported Bragg positions from PDF 70-3120. (B) Rate handling performance of LMO.

Fig. S11. Structural illustrations of the crystal lattice of (A) titanium niobium carbide (Ti,Nb)C, and (B) Ti₂Nb₁₀O₂₉.

 Table S1.
 Rietveld refinement results of TNC-CB and TNC-OLC.

Sample	Phase	Space group	Lattice parameter (Å)	Volume (ų)	Domain size (nm)	Amount (mass%)	R _{wp} (%)
TNC-CB	(Ti,Nb)C	Fm3m	a = 4.43(4)	87.09(4)	19.7(4)	98	2.2
	WC	P6m2	a = 2.90(3) c = 2.85(3)	20.82(3)	>200	2	2.3
TNC-OLC	(Ti,Nb)C	Fm3m	a = 4.43(4)	88.12(4)	15.3(4)	98	2.5
	WC	P6m2	a = 2.90(6) c = 2.85(6)	20.76(6)	>200	2	2.5

Table S2. Le Bail analysis results of the analysis of X-ray diffraction patterns of TNO-CB-CO₂, TNO-OLC-CO₂, TNO-CB-Air, and TNO-OLC-Air.

Sample	Phase	Space group	Lattice parameter (Å)	Interaxial angle (°)	Volume (ų)	Domain size (nm)	R _{wp} (%)
TNO-CB-CO ₂	$Ti_2Nb_{10}O_{29}$	A12/m1	a = 15.64 b = 3.82 c = 20.52	β = 113.4	1124.1	55	3.4
TNO-OLC-CO ₂	$Ti_2Nb_{10}O_{29}$	A12/m1	a = 15.62 b = 3.81 c = 20.52	β = 113.4	1122.4	63	3.7
TNO-CB-Air	$Ti_2Nb_{10}O_{29}$	A12/m1	a = 15.71 b = 3.85 c = 20.61	β = 113.4	1145.3	56	3.5
TNO-OLC-Air	Ti ₂ Nb ₁₀ O ₂₉	A12/m1	a = 15.71 b = 3.85 c = 20.62	β = 113.4	1146.0	88	3.6

Table S3. Electrochemical performance comparison of titanium niobium oxides (TiNb₂O₇, and Ti₂Nb₁₀O₂₉). CNTs: carbon nanotubes. CF: carbon fiber. rGO: reduced graphene oxide. CNFs: carbon nanofibers. CC: carbon cloth. DEC: diethylene carbonate. DMC: dimethyl carbonate. EC: ethylene carbonate. EMC: ethyl methyl carbonate. PC: propylene carbonate. MSR: Mechanically-induced self-sustaining reaction.

Materials	Synthesis	Capacity at a low rate (mAh/g, A/g)	Capacity at a high rate (mAh/g, A/g)	Voltage range (V vs. Li/Li ⁺)	Capacity retention (%, cycle number)	Electrolyte	Reference
TiNb ₂ O ₇ /graphene hybrid	Solvothermal method	300, 0.03	150, 1.5	1.0-3.0	67, 300	1 M LiPF ₆ in EC:DMC	[1]
Nano-TiNb ₂ O ₇ /CNTs	Direct hydrolysis method	300, 0.03	150, 4.5	0.8-3.0	97, 100	1 M LiPF ₆ in EC:DMC:DEC	[2]
TiNb ₂ O ₇ /C nanoporous microspheres	Spray-drying method	393, 0.1	120, 3.6	1.0-2.6	75, 300	1 M LiPF_6 in EC:DEC	[3]
CF/TiNb ₂ O ₇	Solvothermal method	250, 0.25	175, 1.75	1.0-2.5	88, 1000	1 M LiPF ₆ in EC:DMC	[4]
rGO-TiNb ₂ O ₇ microsphere	Solvothermal method	225, 0.23	25, 2.5	1.0-3.0	61, 500	1 M LiPF ₆ in EC:EMC	[5]
$Ti_2Nb_{10}O_{29}/C$ composite	Solid-state reaction	296, 0.25	150, 4.5	1.0-2.5	87, 100	1 M LiPF ₆ in EC:DMC	[6]
$Ti_2Nb_{10}O_{29}/rGO$	Solid-state reaction, ball-milling	250, 0.03	100, 1	1.0-2.5	77, 50	1 M LiPF ₆ in EC:DMC	[7]
$Ti_2Nb_{10}O_{29}$ /carbon onion nanohybrid	Sol-gel method	290, 0.01	169, 2	1.0-2.8	76, 800	1 M LiPF ₆ in EC:DMC	[8]
$Ti_2Nb_{10}O_{29}$ /carbon hybrid fiber	Electrospinning	260, 0.025	180, 5	0.8-3.0	60, 500	1 M LiPF ₆ in EC:DMC	[9]
$Ti_2Nb_{10}O_{29}/C$ microsphere	Solvothermal method	276, 0.27	215, 6.4	1.0-2.5	89, 200	1 M LiPF ₆ in EC:EMC:DEC	[10]
CNFs/Ti ₂ Nb ₁₀ O ₂₉ /CC	Electrophoretic deposition, solvothermal method	300, 0.03	200, 12	1.0-2.5	80, 1000	1 M LiPF ₆ in EC:DEC	[11]
TNO-CB-CO ₂	MSR, CO ₂ oxidation	272, 0.01	157, 1	1.0-2.5	82, 500	1 M LiPF ₆ in EC:DMC	This work
•	,	304, 0.01	155, 1	0.05-2.5	70, 500	•	
TNO-OLC-CO ₂	MSR, CO_2 oxidation	253, 0.01 350, 0.01	151, 1 144, 1	1.0-2.5 0.05-2.5	76, 500 67, 500	1 M LiPF ₆ in EC:DMC	This work

Table S4. Results of the R₁, and R₂ obtained by fitting the data from Fig. S8.

Material	R1 (Ω)	R₂(Ω)
TNO-CB-CO ₂	16.2	168.8
TNO-OLC-CO ₂	12.7	138.7
TNO-CB-Air	28.2	234.4
TNO-OLC-Air	7.3	184.4

References

[1] A. G. Ashish, P. Arunkumar, B. Babu, P. Manikandan, S. Sarang, M. M. Shaijumon, *Electrochim. Acta* **2015**, *176*, 285-292.

[2] C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, Z. Guo, *Electrochim. Acta* **2018**, *260*, 65-72.

[3] G. Zhu, Q. Li, Y. Zhao, R. Che, ACS Appl. Mater. Interfaces 2017, 9, 41258-41264.

[4] S. Shen, S. Deng, Y. Zhong, J. Wu, X. Wang, X. Xia, J. Tu, *Chin. Chem. Lett.* **2017**, *28*, 2219-2222.

[5] H. Noh, W. Choi, J. Electrochem. Soc. 2016, 163, A1042-A1049.

[6] G. Liu, B. Jin, R. Zhang, K. Bao, H. Xie, J. Guo, M. Wei, Q. Jiang, *Int. J. Hydrogen Energy* **2016**, *41*, 14807-14812.

[7] W. L. Wang, B.-Y. Oh, J.-Y. Park, H. Ki, J. Jang, G.-Y. Lee, H.-B. Gu, M.-H. Ham, *J. Power Sources* **2015**, *300*, 272-278.

[8] H. Shim, E. Lim, S. Fleischmann, A. Quade, A. Tolosa, V. Presser, *Sustainable Energy Fuels* **2019**, *3*, 1776-1789.

[9] A. Tolosa, S. Fleischmann, I. Grobelsek, A. Quade, E. Lim, V. Presser, *ChemSusChem* **2018**, *11*, 159-170.

[10] X. Liu, H. Wang, S. Zhang, G. Liu, H. Xie, J. Ma, Electrochim. Acta 2018, 292, 759-768.

[11] Y. Tang, S. Deng, S. Shi, L. Wu, G. Wang, G. Pan, S. Lin, X. Xia, *Electrochim. Acta* **2020**, *332*, 135433.