Chemistry–A European Journal

Supporting Information

Cationic Functionalisation by Phosphenium Ion Insertion

Christoph Riesinger, Luis Dütsch, Gábor Balázs, Michael Bodensteiner, and Manfred Scheer^{*[a]}

Table of Contents

Table of Contents	2
Experimental Procedures	3
General Considerations	3
Synthesis:	3
[Cp ^{'''} Ni(η ³ -P ₄ Ph ₂)][OTf] (2a[OTf])	3
$[Cp^{\prime\prime}Ni(\eta^{3}-P_{4}Ph_{2})][SbF_{6}]$ (2a[SbF_{6}])	4
[Cp´´´Ni(η³-P₄Ph₂)][TEF] (2a[TEF])	4
[Cp´´´Ni(η³-P₄Ph₂)][BAr ^ɛ] (2a[BAr ^ɛ])	4
[Cp´´´Ni(η³-P₄Ph₂)][GaCl₄] (2a[GaCl₄])	5
[Cp´´´Ni(η³-P₄Mes₂)][GaCl₄] (2b[GaCl₄])	5
[Cp´´´Ni(η³-P₄Mes₂)][TEF] (2b[TEF])	5
[Cp´´´Ni(η³-P₄Cy₂)][GaCl₄] (2c[GaCl₄])	6
[Cp´´´Ni(η³-P₄Cy₂)][TEF] (2c[TEF])	6
[Cp´´´Ni(η³-P₄biphen)][GaCl₄] (2d[GaCl₄])	6
[Cp´´´Ni(η^3 -P $_4$ biphen)][TEF] (2d[TEF])	7
[Cp´´´Ni(η³-P₄Me₂)][TEF] (2e[TEF])	7
[Cp´´´Ni(η³-P₄PhCl)][TEF] (2f[TEF])	8
[Cp´´´Ni(η³-P₄ ^t BuCl)][TEF] (2g[TEF])	8
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ Br ₃)][TEF] (3α[TEF])	8
$[(Cp''Ni)_2(\mu;\eta^3:\eta^1:\eta^1-P_4 biphenCl)][GaCl_4] (3b[GaCl_4]).$	9
[(Cp´´´Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P₄biphenCl)][GaCl₄] (3b[GaCl₄])	9
[(Cp´´´Ni) ₂ (μ; η ³ :η ¹ :P₄biphenCl)][GaCl₄] (3b[GaCl₄]) [(Cp´´´Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl₄] (4)	9
[(Cp ^{'''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{'''} Ni) ₂ (μ; η ³ - η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions	9
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{···} Ni) ₂ (μ; η ³ - η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations	9
[(Cp ^{''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{''} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information	9
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ ·P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{···} Ni) ₂ (μ; η ³ - η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1	9
[(Cp ^{''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{'''} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf]	9
[(Cp ^{''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{''} Ni) ₂ (μ; η ³ - η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[SbF ₆]	9
[(Cp ^{''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{''} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[SbF ₆] 2a[TEF]	9
[(Cp ^{''} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{''} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2c[GaCl ₄] (o-DFB) _{0.5}	9
[(Cp´´´Ni) ₂ (μ; η ³ :η ¹ :η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp´´´Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[TEF] 2d[GaCl ₄] - (o-DFB) _{0.5}	9
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{···} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2a[TEF] 2d[GaCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (n-hex) _{0.4}	9
[(Cp ^{··} Ni) ₂ (μ; η ³ :η ¹ :η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{··} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2c[GaCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (n-hex) _{0.4} 2e[TEF] 2e[TEF]	9
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ ·P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{···} Ni) ₂ (μ; η ³ ·η ² ·P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2a[SbF ₆] 2a[GCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (n-hex) _{0.4} 2e[TEF] 2f _{endo} [TEF] 3a[TEF]	9
[(Cp```Ni) ₂ (µ; η ³ : η ¹ : η ¹ ·P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp```Ni) ₂ (µ; η ³ ·η ³ ·P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2a[SbF ₆] 2a[GaCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (n-hex) _{0.4} 2e[TEF] 3a[TEF] 3a[TEF]	
[(Cp ^{···} Ni) ₂ (μ; η ³ : η ¹ : η ¹ -P ₄ biphenCl)][GaCl ₄] (3b[GaCl ₄]) [(Cp ^{···} Ni) ₂ (μ; η ³ -η ³ -P ₃)][GaCl ₄] (4) Tested reactions and conditions NMR spectroscopic investigations X-ray crystallographic information 1 2a[OTf] 2a[OTf] 2a[SbF ₆] 2a[SbF ₆] 2a[SbF ₆] 2a[TEF] 2c[GaCl ₄] (o-DFB) _{0.5} 2d[GaCl ₄] (n-hex) _{0.4} 2e[TEF] 3a[TEF] 3b[GaCl ₄]	9 10 10 10 15 17 17 17 18 18 19 20 20 20 20 21 20 20 21 20 20 21 22 23 24 22 23

SUPPORTING INFORMATION

[CpNi(η ³ -P ₄ Me ₂)]* (I2):	26
[CpNi(η³-P₄Me₂)]* (TS2):	26
[CpNi(η³-P₄Me₂)]* (P2):	27
[Cp´´´Ni(η³-P₄PhCl)]+ (2f _{endo}):	
[Cp´´´Ni(η³-P₄ClPh)]+ (2f _{exo}):	29
[Cp´´´Ni(η³-P₄¹BuCl)]* (2g _{endo}):	31
$[Cp^{\prime\prime}Ni(\eta^3-P_4Cl^tBu)]^*$ (2g _{exo}):	32
[(Cp ^{···} Ni) ₂ (μ; η ³ :η ¹ :η ¹ -P ₄ Br ₃)] ⁺ (3α):	
[(Cp´´´Ni)₂(μ; η³:η¹-P₄biphenC)]* (3b):	
Selected canonical molecular orbitals of 3a	
References	

Experimental Procedures

General Considerations

All manipulations were carried out using standard Schlenk techniques at a Stock apparatus with N₂ as an inert gas or in a glove box with Ar atmosphere. All glassware was dried with a heat gun (600 °C) for at least 30 min prior to use. *o*-DFB was distilled from P₂O₅, CD₂Cl₂ was distilled from CaH₂ and other solvents were directly taken from an MB SPS-800 solvent purification system and degassed at room temperature. Solution ¹H (400.130 MHz), ¹⁹F (376.498 MHz) and ³¹P (161.976 MHz) NMR spectra were recorded at an Avance400 (Bruker) spectrometer using (H₃C)₄Si (¹H), CFCl₃ (¹⁹F) or 85% phosphoric acid (³¹P), respectively, as external standards. Chemical shifts (δ) are provided in parts per million (ppm) and coupling constants (*J*) are reported in Hertz (Hz). Chemical shifts and coupling constants for all ³¹P{¹H} and ³¹P NMR spectra were derived from spectral simulation. The following abbreviations are used: s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets of doublets, t = triplet, br = broad and m = multiplet. ESI mass spectra were recorded at the internal mass spectrometry department using a ThermoQuest Finnigan TSQ 7000 mass spectrometer and peak assignment was performed using the Molecular weight calculator 6.50.^{[11} Elemental analysis of the products was conducted by the elemental analysis department at the University of Regensburg using an Elementar Vario EL. The starting materials [Cp^{'''}Ni(η³- P₃)] (1),^{[21} TI[TEF]^[3], [(Et₃Si)₂(µ-H)][BAr^F]^[4], (2,2'-biphen)PCl^[5] and 'BuPCl₂^[6] were synthesized following literature procedures. All other chemicals were purchased from commercial vendors. GaCl₃ was sublimed and all purchased halogenophosphanes were distilled before use.

Synthesis:

[Cp"'Ni(η³-P₄Ph₂)][OTf] (**2a**[OTf])

A colourless solution of Ph₂PCI (0.1 mmol, 22 mg, 17.9 μ L, 1 eq.) in 1 mL of toluene was added to an orange solution of 1 (0.1 mmol, 38 mg, 1 eq.) and TI[OTf] (0.1 mmol, 35 mg, 1 eq.) in 5 mL of *o*-DFB at room temperature. Immediate precipitation of small amounts of white solid occurred and a colour change to dark red could be observed upon stirring for 24 h. The mixture was then filtered through glass fibre filter paper and upon addition of 50 mL of *n*-hexane a dark red oil was precipitated. This oil was washed three times with 10 mL of *n*-hexane, each, and dried under reduced pressure (10⁻³ mbar). Dissolving the residue in *o*-DFB and layering with *n*-hexane (ratio of 1:8) yielded [Cp^{···}Ni(η^3 -P₄Ph₂)][OTf] (**2a**[OTf]) after five days at room temperature as small red plates suitable for single crystal X-ray analysis.

Yield:	45 mg (0.063 mmol, 63%)
Elemental analysis:	calc. (%) for [Cp ^{'''} Ni(η ³ -P ₄ Ph ₂)][OTf] (C ₃₀ H ₄₁ O ₃ F ₃ P ₄ SNi): C: 50.09 H: 5.47
	found (%): C: 50.01 H: 5.32
ESI(+) MS (o-DFB):	m/z (%) = 569.1 (100%) [Cp ^{'''} Ni(η^3 -P ₄ Ph ₂)] ⁺

NMR (CD₂Cl₂, 298 K):

¹H: *d*/ppm = 1.21 (s, 9 H, C(CH₃)₃), 1.31 (s, 18 H, C(CH₃)₃), 5.92 (s, 2 H, C₅H₂^{*i*}Bu₃), 7.54–7.86 (br, 10 H, Ph)

³¹P{¹H}: (AMM'X spin system) δ 'ppm = 12.4 (ddd, ¹*J*_{PX-PMPM'} = 270.3 Hz, ²*J*_{PX-PA} = 14.2 Hz, 1 P, P^X), 57.8 (ddd, ¹*J*_{PMPM'-PX} = 270.3 Hz, ¹*J*_{PMPM'-PA} = 288.1 Hz, 2 P, P^{MM'}), 73.8 (ddd, ¹*J*_{PA-PMPM'} = 288.1 Hz, ²*J*_{PA-PX} = 14.2 Hz, 1 P, P^A)

³¹P: (AMM'X spin system) δ/ppm = 12.4 (t, ¹*J*_{PX-PMPM'} = 270.3 Hz, 1 P, P^X), 57.8 (ddd, ¹*J*_{PMPM'-PX} = 270.3 Hz, ¹*J*_{PMPM'-PA} = 288.1 Hz, 2 P, P^{WM'}), 73.8 (ddd, ¹*J*_{PA-PMPM'} = 288.1 Hz, ²*J*_{PA-PX} = 14.2 Hz, 1 P, P^A) ¹⁹F{¹H}: δ/ppm = -78.75 (s, [OTf]⁻)

$[Cp'''Ni(\eta^3 - P_4Ph_2)][SbF_6] ($ **2a** $[SbF_6])$

A colourless solution of Ph_2PCI (0.1 mmol, 22 mg, 17.9 µL, 1 eq.) in 1 mL of toluene was added to an orange solution of $[Cp^{\prime\prime}Ni(\eta^3 - P_3)]$ (0.1 mmol, 38 mg, 1 eq.) and Ag[SbF₆] (0.1 mmol, 34 mg, 1 eq.) in 5 mL of *o*-DFB at room temperature. Immediate precipitation of small amounts of white solid and a colour change to red could be observed. After stirring for 24 h at room temperature the mixture was filtered through glass fibre filter paper and upon addition of 50 mL of *n*-hexane, a dark red solid precipitated. The precipitate was washed three times with 10 mL of *n*-hexane, each, and dried under reduced pressure (10⁻³ mbar). Recrystallisation from *o*-DFB/*n*-hexane (1:8) at room temperature yielded [Cp^{\color}Ni(η^3 -P₄Ph₂)][SbF₆] (2a[SbF₆]) as red platelets, suitable for X-ray analysis after one week.

Yield:	27 mg (0.037 mmol, 37%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄Ph₂)][SbF ₆] (C₂9H₄1F ₆ P₄NiSb): C: 43.22 H: 4.88 found (%): C: 43.55 H: 4.62
ESI(+) MS (o-DFB):	m/z (%) = 569.1 (100%) [Cp ^{···} Ni(η^3 -P ₄ Ph ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: ∂/ppm = 1.21 (s, 9 H, C(CH ₃) ₃), 1.31 (s, 18 H, C(CH ₃) ₃), 5.92 (s, 2 H, C ₅ H ₂ ^{<i>i</i>} Bu ₃), 7.54–7.86 (br, 10 H, Ph)
	³¹ P{ ¹ H}: (AMM'X spin system) δ /ppm = 12.4 (ddd, ¹ J _{PX-PM/PM} = 270.3 Hz, ² J _{PX-PA} = 14.2 Hz, 1 P, P ^X), 57.8 (ddd, ¹ J _{PM/PM} -PX = 270.3 Hz, ¹ J _{PM/PM} -PA = 288.1 Hz, 2 P, P ^{M/M}), 73.8 (ddd, ¹ J _{PA-PM/PM} = 288.1 Hz, ² J _{PA-PX} = 14.2 Hz, 1 P, P ^A)
	³¹ P : (AMM'X spin system) \mathscr{A} ppm = 12.4 (t, ¹ $J_{PX-PM/PM'}$ = 270.3 Hz, 1 P, P ^X), 57.8 (ddd, ¹ $J_{PM/PM'-PX}$ = 270.3 Hz, ¹ $J_{PM/PM'-PA}$ = 288.1 Hz, 2 P, P ^{MM'}), 73.8 (ddd, ¹ $J_{PA-PM/PM'}$ = 288.1 Hz, ² J_{PA-PX} = 14.2 Hz, 1 P, P ^A) ¹⁹ F { ¹ H }: \mathscr{A} ppm = -122.7 (br, [SbF ₆] ⁻)

[Cp^{''}Ni(η³-P₄Ph₂)][TEF] (**2a**[TEF])

A colourless solution of Ph₂PCI (0.1 mmol, 22 mg, 17.9 μ L, 1 eq.) in 1 mL of toluene was added to an orange solution of 1 (0.1 mmol, 38 mg, 1 eq.) and TI[TEF] (0.1 mmol, 117 mg, 1 eq., [TEF]⁻ = [Al(OC(CF₃)₃)₄]⁻) in 5 mL of *o*-DFB at room temperature. Immediate precipitation of small amounts of white solid and a slow colour change to red could be observed. After stirring for 24 h at room temperature the mixture was filtered through glass fibre filter paper and the solvent was removed *in vacuo*. The oily red residue was washed three times with 10 mL of *n*-hexane, each, and dried under reduced pressure (10⁻³ mbar). Dark red crystals of [Cp^{···}Ni(η³-P₄Ph₂)][TEF] (**2a**[TEF]), suitable for X-ray analysis could be obtained by slowly evaporating CH₂Cl₂ from a concentrated solution. Performing the same reaction with Ag[TEF] instead of TI[TEF] results in diminished yields.

Yield:	80 mg (0.052 mmol, 52%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄Ph₂)][TEF] (C₄₅H₄₁O₄F₃₀AIP₄Ni): C: 35.16 H: 2.56 found (%): C: 35.17 H: 2.53
ESI(+) MS (o-DFB):	m/z (%) = 569.1 (100%) [Cp ² Ni(η^3 -P ₄ Ph ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: δ ppm = 1.21 (s, 9 H, C(CH ₃) ₃), 1.31 (s, 18 H, C(CH ₃) ₃), 5.92 (s, 2 H, C ₅ H ₂ /Bu ₃), 7.54–7.86 (br, 10 H, Ph)
	³¹ P { ¹ H }: (AMM'X spin system) δ/ppm = 12.4 (ddd, ¹ <i>J</i> _{PX-PM/PM'} = 270.3 Hz, ² <i>J</i> _{PX-PA} = 14.2 Hz, 1 P, P ^X), 57.8 (ddd, ¹ <i>J</i> _{PM/PM'-PX} = 270.3 Hz, ¹ <i>J</i> _{PM/PM'-PA} = 288.1 Hz, 2 P, P ^{MM'}), 73.8 (ddd, ¹ <i>J</i> _{PA-PM/PM'} = 288.1 Hz, ² <i>J</i> _{PA-PX} = 14.2 Hz, 1 P, P ^A)
	³¹ P : (AMM'X spin system) \mathscr{A} ppm = 12.4 (t, ¹ $J_{PX-PM/PM'}$ = 270.3 Hz, 1 P, P ^X), 57.8 (ddd, ¹ $J_{PM/PM'-PX}$ = 270.3 Hz, ¹ $J_{PM/PM'-PA}$ = 288.1 Hz, 2 P, P ^{MM'}), 73.8 (ddd, ¹ $J_{PA-PM/PM'}$ = 288.1 Hz, ² J_{PA-PX} = 14.2 Hz, 1 P, P ^A) ¹⁹ F { ¹ H }: \mathscr{A} ppm = -75.62 (s, [TEF] ⁻)

$[Cp'''Ni(\eta^3-P_4Ph_2)][BAr^F]$ (**2a** $[BAr^F]$)

A colourless solution of $[(Et_3Si)_2(\mu-H)][BAr^F]$ (0.1 mmol, 91 mg, 1 eq., $[BAr^F]^- = [B(C_6F_5)_4]^-)$ in 3 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Ph₂PCI (0.1 mmol, 22 mg, 17.9 μ L, 1 eq.) in 4 mL of *o*-DFB at room temperature. Immediate colour change to red could be observed. After stirring for 6 h at room temperature the solvent was removed *in vacuo*. The oily red residue was washed three times with 10 mL of *n*-hexane, each, and dried under reduced pressure (10⁻³ mbar) leading to solidification. [Cp´´Ni(η³-P₄Ph₂)][BAr^F] (**2a**[BAr^F]) was isolated as an orange to red powder. All attempts to obtain (**2a**[BAr^F]) as a single crystallin material failed.

Yield:	45 mg (0.037 mmol, 37%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η ³ -P ₄ Ph ₂)][BAr ^F]·(C ₆ H ₄ F ₂) _{1.5} (C ₆₂ H ₄₇ BF ₂₃ P ₄ Ni): C: 51.98 H: 3.18
	found (%): C: 52.35 H: 2.87 (Signals for $C_6H_4F_2$ are also found in the ¹ H NMR of the isolated product)
ESI(+) MS (o-DFB):	<i>m</i> / <i>z</i> (%) = 569.1 (100%) [Cp ^{···} Ni(η ³ -P₄Ph ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: ∂/ppm = 1.21 (s, 9 H, C(CH ₃) ₃), 1.31 (s, 18 H, C(CH ₃) ₃), 5.92 (s, 2 H, C ₅ H ₂ /Bu ₃), 7.54–7.86 (br, 10 H,
	Ph)
	³¹ P{ ¹ H}: (AMM'X spin system) δ/ppm = 12.4 (ddd, ¹ J _{PX-PMPM'} = 270.3 Hz, ² J _{PX-PA} = 14.2 Hz, 1 P, P ^X), 57.8
	(ddd, ¹ <i>J</i> _{PM/PM⁻PX} = 270.3 Hz, ¹ <i>J</i> _{PM/PM⁻PA} = 288.1 Hz, 2 P, P ^{MM⁻}), 73.8 (ddd, ¹ <i>J</i> _{PA-PM/PM⁻} = 288.1 Hz, ² <i>J</i> _{PA-PX} =
	14.2 Hz, 1 P, PA)
	³¹ P : (AMM'X spin system) δ/ppm = 12.4 (t, ¹ J _{PX-PMPM'} = 270.3 Hz, 1 P, P ^X), 57.8 (ddd, ¹ J _{PMPM'-PX} = 270.3
	Hz, ¹ J _{PMPM'.PA} = 288.1 Hz, 2 P, P ^{MM'}), 73.8 (ddd, ¹ J _{PA-PMPM'} = 288.1 Hz, ² J _{PA-PX} = 14.2 Hz, 1 P, P ^A)
	¹⁹ F{ ¹ H}: ∂/ppm = −167.4 (t, 2 F, [BAr ^F] ⁻), −163.6 (t, 1 F, [BAr ^F] ⁻), −133.0 (br, 2 F, [BAr ^F] ⁻)

$[Cp''Ni(\eta^3-P_4Ph_2)][GaCl_4]$ (**2a**[GaCl_4])

A colourless solution of GaCl₃ (0.1 mmol, 18 mg, 1 eq.) in 4 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Ph₂PCl (0.1 mmol, 22 mg, 17.9 μ L, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to dark red occurred. After stirring for 4 h at room temperature the solvent was removed *in vacuo* and the oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10^{-3} mbar) lead to solidification and dark red crystals of [Cp^{···}Ni(η^{3} -P₄Ph₂)][GaCl₄] (**2a**[GaCl₄]), suitable for X-ray analysis could be obtained by recrystallisation from *o*-DFB/*n*-hexane (1:6) at room temperature after seven days.

Yield:	55 mg (0.071 mmol, 71%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄Ph₂)][GaCl₄] (C₂₀H₄₁P₄Cl₄NiGa): C: 44.56 H: 5.03
-	found (%): C: 44.49 H: 5.11
ESI(+) MS (<i>o</i> -DFB):	m/z (%) = 569.1 (100%) [Cp ^{···} Ni(η ³ -P ₄ Ph ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: δ/ppm = 1.21 (s, 9 H, C(CH ₃) ₃), 1.31 (s, 18 H, C(CH ₃) ₃), 5.92 (s, 2 H, C ₅ H ₂ /Bu ₃), 7.54–7.86 (br, 10 H,
	Ph)
	³¹ P{ ¹ H}: (AMM'X spin system) δ/ppm = 12.4 (ddd, ¹ J _{PX-PM/PM'} = 270.3 Hz, ² J _{PX-PA} = 14.2 Hz, 1 P, P ^X), 57.8
	(ddd, ¹ <i>J</i> _{PM/PM'-PX} = 270.3 Hz, ¹ <i>J</i> _{PM/PM'-PA} = 288.1 Hz, 2 P, P ^{M/M}), 73.8 (ddd, ¹ <i>J</i> _{PA-PM/PM'} = 288.1 Hz, ² <i>J</i> _{PA-PX} =
	14.2 Hz, 1 P, P ^A)
	³¹ P : (AMM'X spin system) δ/ppm = 12.4 (t, ¹ J _{PX-PM/PM'} = 270.3 Hz, 1 P, P ^X), 57.8 (ddd, ¹ J _{PM/PM'-PX} = 270.3
	Hz, ¹ <i>J</i> _{PMPM'-PA} = 288.1 Hz, 2 P, P ^{MM'}), 73.8 (ddd, ¹ <i>J</i> _{PA-PM/PM'} = 288.1 Hz, ² <i>J</i> _{PA-PX} = 14.2 Hz, 1 P, P ^A)

[Cp´´´Ni(η³-P4Mes₂)][GaCl4] (**2b**[GaCl4])

A colourless solution of GaCl₃ (0.1 mmol, 18 mg, 1 eq.) in 4 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Mes₂PCl (0.1 mmol, 30 mg, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to red occurred. After stirring for 6 h at room temperature the solvent was removed *in vacuo* and the oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10^{-3} mbar) lead to solidification of the product [Cp^{···}Ni(η^3 -P4Mes₂)][GaCl₄] (**2b**[GaCl₄]), which was isolated as a red powder. All attempts to recrystallise the product ended in the formation of red oil at the bottom of the flask.

Yield:	46 mg (0.053 mmol, 53%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄Mes₂)][GaCl₄] (C ₃₅ H ₅₁ P₄Cl₄NiGa): C: 48.72 H: 5.96
	found (%): C: 48.29 H: 5.79
ESI(+) MS (o-DFB):	m/z (%) = 653.2 (100%) [Cp ^{···} Ni(η^3 -P ₄ Mes ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: <i>δ</i> ppm = 1.14 (s, 9 H, C(CH ₃) ₃), 1.29 (s, 18 H, C(CH ₃) ₃), 2.32 (s, 6 H, Me), 2.64 (s, 6 H, Me), 2.73 (s, 6
	H, Me) 5.92 (d, ${}^{4}J$ = 1.4 Hz, 2 H, C ₅ H ₂ /Bu ₃), 6.98 (d, ${}^{4}J$ = 4.2 Hz, 2 H, Mes), 7.01 (d, ${}^{4}J$ = 4.6 Hz, 2 H, Mes)
	³¹ P{ ¹ H}: (AA'MX spin system) ϑ ppm = -3.1 (t, ¹ J _{PX-PA/PA'} = 267.7 Hz, 1 P, P ^X), 45.6 (t, ¹ J _{PM-PA/PA} = 294.8 Hz,
	1 P, P ^M), 103.7 (dd, ¹ J _{PA/PA[·]-PX} = 267.7 Hz, ¹ J _{PA/PA[·]-PM} = 294.8 Hz, 2 P, P ^{A/A[·]})
	³¹ P{ ¹ H}: (AA'MX spin system) ϑ ppm = -3.1 (t, ¹ J _{PX-PA/PA} = 267.7 Hz, 1 P, P ^X), 45.6 (t, ¹ J _{PM-PA/PA} = 294.8 Hz,
	1 P, P ^M), 103.7 (dd, ¹ J _{PA/PA[·]-PX} = 267.7 Hz, ¹ J _{PA/PA[·]-PM} = 294.8 Hz, 2 P, P ^{A/A[·]})

[Cp^{''}Ni(η³-P₄Mes₂)][TEF] (**2b**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq., $[TEF]^- = [Al(OC(CF_3)_3)_4]^-)$ in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Mes₂PCI (0.1 mmol, 30 mg, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to red occurred and formation of white solid could be observed. After stirring for 24 h at room temperature, the mixture was filtered, and the solvent removed *in vacuo*. The oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced

pressure (10 ⁻³ mbar) lead	to solidification of the product [Cp ^{$((n)$} Ni(η^3 -P ₄ Mes ₂)][TEF] (2b [TEF]), which was isolated as a red powder. All
attempts to recrystallise the	e product ended in the formation of red oil at the bottom of the flask.
Yield:	75 mg (0.046 mmol, 46%)
Elemental analysis:	calc. (%) for [Cp΄΄΄Νi(η³-P₄Mes₂)][TEF] (C₅1H₅1O₄F₃6AlP₄Ni): C: 37.77 H: 3.17
-	found (%): C: 38.05 H: 3.08
ESI(+) MS (<i>o</i> -DFB):	<i>m</i> / <i>z</i> (%) = 653.2 (100%) [Cp ^{···} Ni(η ³ -P ₄ Mes ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: δ/ppm = 1.14 (s, 9 H, C(CH ₃) ₃), 1.29 (s, 18 H, C(CH ₃) ₃), 2.32 (s, 6 H, Me), 2.64 (s, 6 H, Me), 2.73 (s, 6
	H, Me) 5.92 (d, ${}^{4}J$ = 1.4 Hz, 2 H, C ₅ H ₂ /Bu ₃), 6.98 (d, ${}^{4}J$ = 4.2 Hz, 2 H, Mes), 7.01 (d, ${}^{4}J$ = 4.6 Hz, 2 H, Mes)
	³¹ P{ ¹ H}: (AA'MX spin system) & ppm = -3.1 (t, ¹ J _{PX-PA/PA} = 267.7 Hz, 1 P, P ^X), 45.6 (t, ¹ J _{PM-PA/PA} = 294.8 Hz,
	1 P, P ^M), 103.7 (dd, ¹ J _{PA/PA -PX} = 267.7 Hz, ¹ J _{PA/PA -PM} = 294.8 Hz, 2 P, P ^{A/A})
	³¹ P{ ¹ H}:(AA'MX spin system) δ/ppm = -3.1 (t, ¹ <i>J</i> _{PX-PA/PA} = 267.7 Hz, 1 P, P ^X), 45.6 (t, ¹ <i>J</i> _{PM-PA/PA} = 294.8 Hz,
	1 P, P ^M), 103.7 (dd, ¹ J _{PA/PA -PX} = 267.7 Hz, ¹ J _{PA/PA -PM} = 294.8 Hz, 2 P, P ^{A/A})
	¹⁹ F{ ¹ H}: ∂/ppm = - 75.62 (s, [TEF] ⁻)

[Cp^{''}Ni(η³-P₄Cy₂)][GaCl₄] (**2c**[GaCl₄])

A colourless solution of GaCl₃ (0.1 mmol, 18 mg, 1 eq.) in 4 mL of o-DFB was added to an orange solution of 1 (0.1 mmol, 38 mg, 1 eq.) and Cy₂PCI (0.1 mmol, 23 mg, 22 μL, 1 eq.) in 3 mL of α-DFB at room temperature. A rapid colour change to red occurred. After stirring for 6 h at room temperature the solvent was removed in vacuo and the oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10^{-3} mbar) lead to solidification of the product [Cp^{···}Ni(η^3 -P₄Cy₂)][GaCl₄] (**2c**[GaCl₄]), which was then recrystallised from *o*-DFB/*n*-hexane (1:8) at – 30 °C to give dark red crystals of X-ray analysis quality after two weeks. Yield: 47 mg (0.059 mmol, 59%) Elemental analysis: calc. (%) for [Cp'''Ni(η³-P₄Cy₂)][GaCl₄]·(C₆H₄F₂)_{0.2} (C_{30.2}H_{51.8}P₄Cl₄NiGa): C: 44.42 H: 6.39 found (%): C: 44.38 H: 6.12 m/z (%) = 581.2 (100%) [Cp^{''}Ni(η^3 -P₄Cy₂)]⁺ ESI(+) MS (o-DFB): NMR (CD₂Cl₂, 298 K): 1H: ∂/ppm = 1.26 – 2.56 (several broad multiplets, 22 H, Cy), 1.29 (s, 9 H, C(CH₃)₃), 1.45 (s, 18 H, C(CH₃)₃), 5.92 (d, ${}^{4}J$ = 1.4 Hz, 2 H, C₅H₂^tBu₃) ³¹P{¹H}: (AMXX' spin system) ∂ ppm = 35.0 (m, ¹J_{PX:PM} = 270.9 Hz, ¹J_{PX'-PM} = 261.8 Hz, ¹J_{PX:PA} = 286.6 Hz, ¹J_{PX'-PA} = 296.7 Hz, ²J_{PX-PX'} = 22.7 Hz, 2 P, P^{X/X'}), 48.5 (ddd, ¹J_{PM-PX} = 270.9 Hz, ¹J_{PM-PX'} = 261.8 Hz, ²J_{PM-PA} = 286.6 Hz, ¹J_{PX'-PA} = 296.7 Hz, ²J_{PX-PX'} = 22.7 Hz, 2 P, P^{X/X'}), 48.5 (ddd, ¹J_{PM-PX} = 270.9 Hz, ¹J_{PM-PX'} = 261.8 Hz, ²J_{PM-PA} = 286.6 Hz, ¹J_{PX'-PA} = 296.7 Hz, ²J_{PX-PX'} = 22.7 Hz, 2 P, P^{X/X'}), 48.5 (ddd, ¹J_{PM-PX} = 270.9 Hz, ¹J_{PM-PX'} = 261.8 Hz, ²J_{PM-PA} = 286.6 Hz, ¹J_{PX'-PA} = 296.7 Hz, ²J_{PX-PX'} = 22.7 Hz, 2 P, P^{X/X'}), 48.5 (ddd, ¹J_{PM-PX} = 270.9 Hz, ¹J_{PX'-PA} = 261.8 Hz, ²J_{PM-PA} = 286.6 Hz, ¹J_{PX'-PA} = 286.6 Hz, ¹J = 12.3 Hz, 1 P, P^M), 84.3 (ddd, ¹*J*_{PA-PX} = 286.6 Hz, ¹*J*_{PA-PX} = 296.7 Hz, ²*J*_{PA-PM} = 12.3 Hz, 1 P, P^A) ³¹**P**: (AMXX' spin system) δ /ppm = 35.0 (m, ¹*J*_{PX-PM} = 270.9 Hz, ¹*J*_{PX'-PM} = 261.8 Hz, ¹*J*_{PX-PM} = 286.6 Hz, ¹*J*_{PX'-PA} = 296.7 Hz, ²*J*_{PX-PX'} = 22.7 Hz, 2 P, P^{X/X'}), 48.5 (m, 1 P, P^M), 84.3 (ddd, ¹*J*_{PA-PX} = 286.6 Hz, ¹*J*_{PA-PX'}) = 296.7 Hz, ${}^{2}J_{PA-PM}$ = 12.3 Hz, 1 P, P^A)

$[Cp'''Ni(\eta^{3}-P_{4}Cy_{2})][TEF]$ (**2c**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Cy₂PCI (0.1 mmol, 23 mg, 22 μ L, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to red occurred and formation of white solid could be observed. After stirring for 24 h at room temperature, the mixture was filtered, and the solvent removed *in vacuo*. The oily red residue was dissolved in 3 mL of CH₂Cl₂, precipitated with 30 mL of *n*-hexane and washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10⁻³ mbar) lead to solidification of the product [Cp^{···}Ni(η^3 -P₄Cy₂)][TEF] (**2c**[TEF]), which was isolated as an orange to red powder. All attempts to recrystallise the product ended in the formation of red oil at the bottom of the flask.

Yield:	88 mg (0.057 mmol, 57%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄Cy₂)][TEF] (C₄₅H₅₁O₄F₄₅AlP₄Ni): C: 35.16 H: 2.56
	found (%): C: 35.04 H: 3.06
ESI(+) MS (CH ₂ Cl ₂):	m/z (%) = 581.2 (100%) [Cp ^{···} Ni(η^3 -P ₄ Cy ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: ∂/ppm = 1.26 – 2.56 (several broad multiplets, 22 H, Cy), 1.29 (s, 9 H, C(CH ₃) ₃), 1.45 (s, 18 H, C(CH ₃) ₃),
	$5.92 (d, {}^{4}J = 1.4 Hz, 2 H, C_{5}H_{2}'Bu_{3})$
	³¹ P { ¹ H }: (AMXX' spin system) δ /ppm = 35.0 (m, ¹ J _{PX-PM} = 270.9 Hz, ¹ J _{PX'-PM} = 261.8 Hz, ¹ J _{PX-PA} = 286.6 Hz,
	${}^{1}J_{PX}-PA = 296.7 \text{ Hz}, {}^{2}J_{PX}-PX' = 22.7 \text{ Hz}, 2 \text{ P}, \text{ P}^{X/X'}, 48.5 \text{ (dd, } {}^{1}J_{PM}-PX = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{1}J_{PM}-PX' = 261.8 \text{ Hz}, {}^{2}J_{PM}-PA = 270.9 \text{ Hz}, {}^{2}J_{PM}-PA$
	= 12.3 Hz, 1 P, P ^M), 84.3 (ddd, ¹ <i>J</i> _{PA-PX} = 286.6 Hz, ¹ <i>J</i> _{PA-PX} = 296.7 Hz, ² <i>J</i> _{PA-PM} = 12.3 Hz, 1 P, P ^A)
	³¹ P : (AMXX' spin system) ∂ /ppm = 35.0 (m, ¹ <i>J</i> _{PX-PM} = 270.9 Hz, ¹ <i>J</i> _{PX'-PM} = 261.8 Hz, ¹ <i>J</i> _{PX'-PM} = 286.6 Hz,
	${}^{1}J_{PX}-PA = 296.7 Hz$, ${}^{2}J_{PX-PX} = 22.7 Hz$, 2 P, $P^{X/X}$), 48.5 (m, 1 P, P ^M), 84.3 (ddd, ${}^{1}J_{PA-PX} = 286.6 Hz$, ${}^{1}J_{PA-PX}$
	= 296.7 Hz, ² <i>J</i> _{PA-PM} = 12.3 Hz, 1 P, P ^A)
	¹⁹ F{ ¹ H}: ∂/ppm = −75.62 (s, [TEF] [−])

$[Cp''Ni(\eta^3-P_4biphen)][GaCl_4]$ (2d[GaCl_4])

A colourless solution of $GaCl_3$ (0.1 mmol, 18 mg, 1 eq.) in 4 mL of CH_2Cl_2 was added to an orange solution of 1 (0.1 mmol, 38 mg, 1 eq.) and biphenPCI (0.1 mmol, 22 mg, 1 eq.) in 3 mL of CH_2Cl_2 at room temperature. Rapid colour change to dark red occurred. After

stirring the solution for 1.5 h, it was constrained to a total of 4 mL, layered with 20 mL of *n*-hexane, and stored at – 30 °C. After one week, formation of red microcrystalline [Cp^{''}Ni(η^3 -P₄biphen)][GaCl₄] (**2d**[GaCl₄]) could be observed. Recrystallisation from CH₂Cl₂/n-hexane (1:5) at –30 °C yielded light red crystals of X-ray quality after two weeks.

Yield:	55 mg (0.07 mmol, 70 %)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄biphen)][GaCl₄]·(C ₆ H ₁₄) _{0.6} (C _{32.6} H _{45.4} P₄Cl₄NiGa): C: 47.09 H: 5.50
	found (%): C: 47.56 H: 5.11
ESI(+) MS (o-DFB):	<i>m</i> / <i>z</i> (%) = 567.1 (100%) [Cp ^{···} Ni(η ³ -P ₄ biphen)] ⁺ , 895.2 (8%) [(Cp ^{···} Ni) ₂ (μ;η ³ :η ¹ :η ¹ -P ₄ biphenCl)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: <i>∛</i> ppm = 1.36 (s, 9 H, C(CH ₃) ₃), 1.52 (s, 18 H, C(CH ₃) ₃), 6.25 (d, ⁴ J _{H-H} = 1.5 Hz, 2 H, C ₅ H ₂ ^t Bu ₃), 7.72
	(m, 2 H, biphen), 7.83 (m, 2 H, biphen), 7.96 (m, 2 H, biphen), 8.28 (m, 2 H, biphen)
	³¹ P{ ¹ H}: (AA'MX spin system) ∂ ppm = 17.1 (m, ¹ J _{PX-PA} = 292.8 Hz, ¹ J _{PX-PA} = 274.2 Hz, ² J _{PX-PM} = 24.8 Hz,
	1 P, P ^X), 63.8 (m, ¹ <i>J</i> _{PM-PA} = 277.2 Hz, ¹ <i>J</i> _{PM-PA} = 282.5 Hz, ² <i>J</i> _{PM-PX} = 24.8 Hz, 1 P, P ^M), 70.0 (m, ¹ <i>J</i> _{PA-PX} =
	292.8 Hz, ¹ <i>J</i> _{PA'-PX} = 274.2 Hz, ¹ <i>J</i> _{PA-PM} = 277.2 Hz, ¹ <i>J</i> _{PA'-PM} = 282.5 Hz, 2 P, P ^{A/A'})
	³¹ P: (AA'MX spin system) & ppm = 17.1 (t, ¹ J _{PX-PA/A} = 282.4 Hz, 1 P, P ^X), 63.8 (m, ¹ J _{PM-PA} = 277.2 Hz, ¹ J _{PM} .
	PA ⁻ = , ² <i>J</i> _{PM-PX} = 24.8 Hz, 1 P, P ^M), 70.0 (m, ¹ <i>J</i> _{PA-PX} = 292.8 Hz, ¹ <i>J</i> _{PA-PX} = 274.2 Hz, ¹ <i>J</i> _{PA-PM} = 277.2 Hz, ¹ <i>J</i> _{PA} .
	$_{PM} = 282.5 \text{ Hz}, 2 \text{ P}, \text{P}^{A/A'})$

[Cp^{'''}Ni(η³-P₄biphen)][TEF] (**2d**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and biphenPCI (0.1 mmol, 22 mg, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to dark red occurred and formation of white solid could be observed. After stirring for 24 h at room temperature, the mixture was filtered, and the solvent removed *in vacuo*. The dark red residue was washed three times with 10 mL of *n*-hexane, each, and then dried under reduced pressure (10^{-3} mbar) to yield [Cp^{···}Ni(η^3 -P₄biphen)][TEF] (**2d**[TEF]) as an orange to red powder.

Yield:	84 mg (0.055 mmol, 55%)
Elemental analysis:	calc. (%) for [Cp´´´Ni(η³-P₄biphen)][TEF] (C₄₅H₃ ₇ O₄F₃ ₆ AlP₄Ni): C: 35.20 H: 2.43
	found (%): C: 35.02 H: 2.47
ESI(+) MS (CH ₂ Cl ₂):	<i>m/z</i> (%) = 567.1 (100%) [Cp΄΄΄Ni(η³-P₄biphen)]⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: δ/ppm = 1.36 (s, 9 H, C(CH ₃) ₃), 1.52 (s, 18 H, C(CH ₃) ₃), 6.25 (d, ⁴ J _{H+H} = 1.5 Hz, 2 H, C ₅ H ₂ /Bu ₃), 7.72
	(m, 2 H, biphen), 7.83 (m, 2 H, biphen), 7.96 (m, 2 H, biphen), 8.28 (m, 2 H, biphen)
	³¹ P{ ¹ H}: (AA'MX spin system) δ /ppm = 17.1 (m, ¹ <i>J</i> _{PX-PA} = 292.8 Hz, ¹ <i>J</i> _{PX-PA} = 274.2 Hz, ² <i>J</i> _{PX-PM} = 24.8 Hz,
	1 P, P ^X), 63.8 (m, ¹ J _{PM-PA} = 277.2 Hz, ¹ J _{PM-PA} = 282.5 Hz, ² J _{PM-PX} = 24.8 Hz, 1 P, P ^M), 70.0 (m, ¹ J _{PA-PX} =
	292.8 Hz, ¹ J _{PA⁻PX} = 274.2 Hz, ¹ J _{PA-PM} = 277.2 Hz, ¹ J _{PA⁻PM} = 282.5 Hz, 2 P, P ^{A/A'})
	³¹ P : (AA'MX spin system) δ/ppm = 17.1 (t, ¹ J _{PX-PA/A} ⁻ = 282.4 Hz, 1 P, P ^X), 63.8 (m, ¹ J _{PM-PA} = 277.2 Hz, ¹ J _{PM} .
	PA ⁻ = , ² J _{PM-PX} = 24.8 Hz, 1 P, P ^M), 70.0 (m, ¹ J _{PA-PX} = 292.8 Hz, ¹ J _{PA-PX} = 274.2 Hz, ¹ J _{PA-PM} = 277.2 Hz, ¹ J _{PA} .
	$_{PM} = 282.5 \text{ Hz}, 2 \text{ P}, \text{P}^{A/A})$
	¹⁹ F{ ¹ H}: <i>ð</i> ppm = −75.54 (s, [TEF] [−])

[Cp^{''}Ni(η³-P₄Me₂)][TEF] (**2e**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and Me₂PCI (0.1 mmol, 10 mg, 10 μ L, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to red occurred and formation of white solid could be observed. After stirring for 24 h at room temperature, the mixture was filtered, and the solvent removed *in vacuo*. The oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10^{-3} mbar) lead to solidification. Recrystallisation from *o*-DFB/*n*-hexane (1:10) at 4 °C gave [Cp^{···}Ni(η^3 -P₄Me₂)][TEF] (**2e**[TEF]) as a single crystalline material after 10 days.

Yield:	73 mg (0.052 mmol, 52%)
Elemental analysis:	calc. (%) for [Cp΄΄΄Νί(η³-Ρ₄Μe₂)][TEF] (C₃5H₃5O4F₃6AlP₄Ni): C: 29.74 H: 2.50
	found (%): C: 29.95 H: 2.42
ESI(+) MS (CH ₂ Cl ₂):	<i>m/z</i> (%) = 445.1 (100%) [Cp ^{···} Ni(η ³ -P ₄ Me ₂)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: 𝔅/ppm = 1.30 (s, 9 H, C(CH ₃) ₃), 1.44 (s, 18 H, C(CH ₃) ₃), 2.01 (d, ² J _{HP} = 12.2 Hz, 3 H, Me), 2.30 (d, ² J _{HP}
	= 12.4 Hz, 3 H, Me), 5.96 (s, 2 H, C₅H₂′Bu₃)
	³¹ P{ ¹ H}: (AMM'X spin system) δ/ppm = 14.7 (ddd, ¹ J _{PX-PM} = 257.1 Hz, ¹ J _{PX-PM} = 255.4 Hz, ² J _{PX-PA} = 18.6
	Hz, 1 P, P ^X), 64.0 (m, ¹ J _{PM-PX} = 257.1 Hz, ¹ J _{PM-PX} = 255.4 Hz, ¹ J _{PM-PA} = 295.4 Hz, ¹ J _{PM-PA} = 279.5 Hz, 2 P,
	P ^{MM'}), 83.5 (ddd, ¹ J _{PA-PM} = 295.4 Hz, ¹ J _{PA-PM} = 279.5 Hz, ² J _{PA-PX} = 18.6 Hz, 1 P, P ^A)
	³¹ P : (AMM'X spin system) δ /ppm = 14.7 (m, 1 P, P ^X), 64.0 (m, ¹ J _{PM-PX} = 257.1 Hz, ¹ J _{PM-PX} = 255.4 Hz, ¹ J _{PM-}
	$_{PA} = 295.4 \text{ Hz}, {}^{1}J_{PM'-PA} = 279.5 \text{ Hz}, 2 \text{ P}, \text{P}^{\text{WM'}}$, 83.5 (ddd, ${}^{1}J_{PA-PM} = 295.4 \text{ Hz}, {}^{1}J_{PA-PM'} = 279.5 \text{ Hz}, {}^{2}J_{PA-PX} = 279.5 \text{ Hz},$
	18.6 Hz, 1 P, P ^A)
	¹⁹ F{ ¹ H}: ∂/ppm = — 75.60 (s, [TEF] [−])

$[Cp'''Ni(\eta^3-P_4PhCl)][TEF]$ (**2f**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and PhPCI₂ (0.1 mmol, 18 mg, 14 μ L, 1 eq.) in 3 mL of *o*-DFB at room temperature. A rapid colour change to dark red occurred and formation of white solid could be observed. After stirring for 20 h at room temperature, the mixture was filtered, and the solvent removed *in vacuo*. The oily red residue was washed three times with 10 mL of *n*-hexane, each. Drying under reduced pressure (10⁻³ mbar) lead to formation of [Cp^{···}Ni(η^3 -P₄ClPh)][TEF] (**2f**[TEF]) as a brownish red solid. NMR spectroscopy studies revealed that **2f**[TEF] is formed in two isomeric forms, endo-Ph and exo-Ph, respectively. According to the ¹H and ³¹P NMR spectrum the two isomers are formed in a ratio of 1:7. Crystals of the *endo*-Ph isomer of **2f**[TEF] could be obtained in X-ray analysis quality, by recrystallisation from *o*-DFB/*n*-hexane (1:6) at 4 °C for two weeks.

Elemental analysis: ca	93 mg (0.06 mmol, 60%) calc. (%) for [Cp´´´Ni(η³-P₄Me₂)][TEF]·(C ₆ H₄F₂) _{0.6} (C₄₂.6H₃6.4O₄F₃7.₂AlP₄Ni): C: 32.72 H: 2.35 ound (%): C: 32.89 H: 2.52 (Signals for C ₆ H₄F₂ are also found in the ¹ H NMR of the isolated product)
ESI(+) MS (o-DFB): m/ NMR (CD ₂ Cl ₂ , 298 K): ¹ H (2 = ³¹] 36 (2 ¹ J ¹ J ¹ J ¹ J H2 ³¹] H2 ³¹] (1 (1 (1) ¹ J (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	black (76), 0, 02, 03, 02, 05, 05, 02, 05, 02, 05, 02, 03, 02, 05, 04, 02, 04, 05, 05, 04, 04, 05, 05, 05, 05, 05, 05, 05, 05, 05, 05

$[Cp^{\prime\prime}Ni(\eta^{3}-P_{4}^{t}BuCl)][TEF]$ (**2g**[TEF])

A colourless solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 2 mL of *o*-DFB was added to an orange solution of **1** (0.1 mmol, 38 mg, 1 eq.) and 'BuPCl₂ (0.1 mmol, 16 mg, 1 eq.) in 3 mL of *o*-DFB at room temperature. Precipitation of white solid and a colour change to red could be observed within one hour. Stirring for 20 h lead to darkening of the mixture. The solution was then filtered of the white solid, and the solvent removed *in vacuo*. The dark red to brown precipitate was washed three times with 10 mL of *n*-hexane, each. After drying under vacuum (10^{-3} mbar) [Cp^{···}Ni(η^3 -P₄Cl'Bu)][TEF] (**2g**[TEF]) could be isolated as a brown powder.

Yield: Elemental analysis:	74 mg (0.05 mmol, 50%) calc. (%) for [Cp΄΄΄Νi(η³-P₄′BuCl)][TEF]·(C ₆ H₄F ₂) _{0.4} (C _{39.4} H _{39.6} O₄F _{36.8} AlP₄ClNi): C: 31.11 H: 2.63
Elemental analysis.	found (%): C: 31.01 H: 2.50 (Signals for $C_6H_4F_2$ are also found in the ¹ H NMR of the isolated product)
ESI(+) MS (o-DFB):	<i>m/z</i> (%) = 507.1 (100%) [Cp´´´Ni(η³-P₄'BuCl)]⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: ∂/ppm = 1.32 (s, 9 H, C(CH ₃) ₃), 1.46 (s, 18 H, C(CH ₃) ₃), 1.47 (d, ³ J _{PH} = 22.0 Hz, 9 H, ^{<i>t</i>} Bu), 6.01 (s, 2 H, C ₅ H ₂ /Bu ₃)
	³¹ P{ ¹ H}: δ/ppm = 57.1 (ddd, ¹ J _{PX-PM} = 288.6 Hz, ¹ J _{PX-PM} = 270.0 Hz, ² J _{PX-PA} = 41.9 Hz, 1 P, P ^X), 85.9
	(ddd, ¹ J _{PM-PA} = 357.9 Hz, ¹ J _{PM'-PA} = 324.8 Hz, ¹ J _{PM-PX} = 288.6 Hz, ¹ J _{PM'-PX} = 270.0 Hz, 2 P, P ^{MM'}), 107.2
	(ddd, ¹ <i>J</i> _{PA-PM} = 357.9 Hz, ¹ <i>J</i> _{PA-PM} = 324.8 Hz, ² <i>J</i> _{PA-PX} = 41.9 Hz, 1 P, P ^A)
	³¹ P : δ/ppm = 57.1 (ddd, ${}^{1}J_{PX-PM}$ = 288.6 Hz, ${}^{1}J_{PX-PM'}$ = 270.0 Hz, ${}^{2}J_{PX-PA}$ = 41.9 Hz, 1 P, P ^X), 85.9 (ddd,
	¹ J _{PM-PA} = 357.9 Hz, ¹ J _{PM-PA} = 324.8 Hz, ¹ J _{PM-PX} = 288.6 Hz, ¹ J _{PM'-PX} = 270.0 Hz, 2 P, P ^{MM'}), 107.2 (br, 1 P,
	P ^A)
	¹⁹ F{ ¹ H}: ∂/ppm = —75.60 (s, [TEF] [_])

$[(Cp''Ni)_2(\mu;\eta^3:\eta^1:\eta^1-P_4Br_3)][TEF]$ (**3a**[TEF])

Addition of a solution of TI[TEF] (0.1 mmol, 117 mg, 1 eq.) in 3 mL of CH_2CI_2 to a solution of 1 (0.1 mmol, 38 mg, 1 eq.) and PBr₃ (0.1 mmol, 27 mg, 10 μ L, 1 eq.) in 4 mL of CH_2CI_2 at – 80 °C lead to an immediate colour change to dark red and the precipitation of white solid. ³¹P NMR spectra (*o*-DFB/tol-*d*⁶ capillary, r. t., Figure SI 7) taken 1 h after the addition revealed the initial formation of

 $[Cp^{(n)}]_{P_4Br_2}[TEF]$ (**2h**[TEF]) besides P₄ and the final product $[(Cp^{(n)}]_{\mu;\eta^3;\eta^1:\eta^1:P_4Br_3}][TEF]$ (**3a**[TEF]). Attempts to isolate the intermediate **2h**[TEF] by filtration of the cold (-80 °C) solution and washing three times with cold *n*-hexane (10 mL each, -80 °C) failed. Isolated batches of (**2h**[TEF]) always carried impurities of the final product **3a**[TEF]. The latter was obtained, by letting the reaction mixture warm to room temperature overnight and stirring for three more days. The now dark brown mixture was filtered, and the solvent removed *in vacuo*. The brown precipitate was washed with 10 mL of *n*-hexane, each, and then dried under reduced pressure (10⁻³ mbar). Recrystallisation from CH₂Cl₂/*n*-hexane (1:6) at room temperature for six days yielded large blackish red crystals of **3a**[TEF] in X-ray quality. These crystals were washed with toluene, dried under reduced pressure and then isolated. Conducting the reaction in *o*-DFB, but only cooling to -30 °C yielded similar results.

Yield:	92 mg (0.048 mmol, 90% based on 1)
Elemental analysis:	calc. (%) for [(Cp ^{$(''$} Ni) ₂ ($\mu;\eta^3:\eta^1:\eta^1-P_4Br_3$)][TEF]·(TIBr) _{0.5} (C ₅₀ H ₅₈ O ₄ F ₃₆ AIP ₄ Ni ₂ Br _{3.5} TI _{0.5}): C: 29.24 H: 2.85 found (%): C: 29.16 H: 2.56 (even after several filtration steps, TIBr precipitates after layering <i>o</i> -DFB solutions of the product and covers the surface of the crystals)
ESI(+) MS (o-DFB):	m/z (%) = 332.2 (100) [Cp ^{···} Ni(H ₃ CCN)] ⁺ , 373.2 (20) [Cp ^{···} Ni(H ₃ CCN) ₂] ⁺ , 947.0 (5) [(Cp ^{···} Ni) ₂ (μ ; η ³ : η ¹ : η ¹ - P ₄ Br ₃)] ⁺ ; Acetonitrile molecules are from the purging solution of the diffractometer.
NMR (CD ₂ Cl ₂ , 298 K):	¹ H : \mathscr{A} ppm = 1.25 (s, 9 H, C(CH ₃) ₃), 1.41 (s, 9 H, C(CH ₃) ₃), 1.42 (s, 9 H, C(CH ₃) ₃), 1.46 (s, 18 H,
	C(CH ₃) ₃), 1.48 (s, 9 H, C(CH ₃) ₃), 4.91 (m, 1 H, C ₅ H ₂ 'Bu ₃), 5.35 (m, 1 H, C ₅ H ₂ 'Bu ₃), 5.43 (s, 1 H, C ₅ H ₂ 'Bu ₃), 5.91 (s, 1 H, C ₅ H ₂ 'Bu ₃)
	$^{31}P{^{1}H}$: (AMNX spin system) ∂ ppm = -1.1 (t (br), $^{1}J_{PX-PN}$ = 347.0 Hz, $^{1}J_{PX-PM}$ = 379.2 Hz, 1 P, P ^X), 128.0
	$(td, {}^{1}_{JP2-PA} = 353.1 \text{ Hz}, {}^{1}_{JPN-PX} = 347.0 \text{ Hz}, {}^{2}_{JPN-PM} = 71.3 \text{ Hz}, 1 \text{ P}, \text{P}^{\text{N}}), 134.2 (ddd, {}^{1}_{JPM-PX} = 379.2 \text{ Hz},$
	$^{2}J_{PM-PA} = 281.7 \text{ Hz}, ^{2}J_{PM-PN} = 71.3 \text{ Hz}, 1 \text{ P}, \text{P}^{\text{M}}$), 182.0 (dd, $^{1}J_{PA-PN} = 353.1, ^{2}J_{PA-PM} = 281.7 \text{ Hz}, 1 \text{ P}, \text{P}^{\text{A}}$)
	$^{31}P{^{1}H}$: (AMNX spin system) ∂ ppm = -1.1 (t (br), $^{1}J_{PX-PN} = 347.0 \text{ Hz}, ^{1}J_{PX-PM} = 379.2 \text{ Hz}, 1 \text{ P}, PX$), 128.0
	$(td, {}^{1}J_{P2-PA} = 353.1 \text{ Hz}, {}^{1}J_{PN-PX} = 347.0 \text{ Hz}, {}^{2}J_{PN-PM} = 71.3 \text{ Hz}, 1 \text{ P}, \text{P}^{\text{N}}), 134.2 (ddd, {}^{1}J_{PM-PX} = 379.2 \text{ Hz},$
	² J _{PM-PA} = 281.7 Hz, ² J _{PM-PN} = 71.3 Hz, 1 P, P ^M), 182.0 (dd, ¹ J _{PA-PN} = 353.1, ² J _{PA-PM} = 281.7 Hz, 1 P, P ^A)
	¹⁹ F{ ¹ H}: ∂/ppm = -75.50 (s, [TEF] [−])

$[(Cp ```Ni)_2(\mu;\eta^3:\eta^1:\eta^1-P_4biphenCl)][GaCl_4] (\textbf{3b}[GaCl_4])$

Following the same synthetic protocol as for ($2d[GaCl_4]$) but performing the reaction in *o*-DFB and stirring for 20 h again leads to a dark red solution of ($2d[GaCl_4]$, by NMR spectroscopy). When this solution was concentrated to 4 mL, layered with *n*-hexane (6:1), and then stored at room temperature for two weeks [($Cp^{\prime\prime}Ni$)₂(μ ; η^3 : η^1 : η^1 -P₄biphenCl)][GaCl_4] (3b[GaCl_4]) crystallised as light brown plates of X-ray quality. Alternatively, 2d[GaCl_4] can be stirred in *o*-DFB solution (4 mL) for two weeks. When the resulting solution is layered with *n*-hexane, crystals of 3b[GaCl_4] can be obtained in similar yield. Decanting off the solvent followed by washing steps (3 x 10 mL *n*-hexane) and drying under reduced pressure (10^{-3} mbar) gives pure 3b[GaCl_4].

Yield:	41 mg (0.037 mmol, 74% based on 1)
Elemental analysis:	calc. (%) for [(Cp´´´Ni) ₂ (μ;η ³ :η ¹ :η ¹ -P ₄ biphenCl)][GaCl ₄] (C ₄₆ H ₆₆ P ₄ Cl ₅ NiGa): C: 49.90 H: 6.01
	found (%): C: 50.02 H: 5.94
ESI(+) MS (<i>o</i> -DFB):	<i>m</i> / <i>z</i> (%) = 895.2 (100) [(Cp΄΄΄Ni) ₂ (μ;η ³ :η ¹ :η ¹ -P₄biphenCl)] ⁺
NMR (CD ₂ Cl ₂ , 298 K):	¹ H: ∂/ppm = 0.89 (s, 9 H, C(CH ₃) ₃), 1.11 (s, 9 H, C(CH ₃) ₃), 1.25 (s, 9 H, C(CH ₃) ₃), 1.38 (s, 9 H, C(CH ₃) ₃),
	1.40 (s, 9 H, C(CH ₃) ₃), 1.42 (s, 9 H, C(CH ₃) ₃), 4.69 (s, 1 H, C ₅ H ₂ ^{<i>i</i>} Bu ₃), 5.20 (s, 1 H, C ₅ H ₂ ^{<i>i</i>} Bu ₃), 5.54 (s, 1
	H, C ₅ H ₂ 'Bu ₃), 5.60 (s, 1 H, C ₅ H ₂ 'Bu ₃), 7.53 (m, 2 H, biphen), 7.61 – 7.80 (m (br), 4 H, biphen), 8.00 (m, 2
	H, biphen)
	³¹ P { ¹ H }: δ /ppm = - 31.9 (br, 1 P), 80.6 (br, 1 P), 84.1 (dd, ¹ J _{PP} = 246.9, ² J _{PP} = 112.1 Hz, 1 P), 146.6 (ddd,
	${}^{1}J_{PP} = 392.2 \text{ Hz}, {}^{2}J_{PP} = 112.1 \text{ Hz}, {}^{2}J_{PP} = 69 \text{ Hz}, 1 \text{ P})$
	³¹ P: <i>Appm</i> = 84.1 (br, 1 P), 146.6 (m, 1 P); other signals are not observed due to significant line broadening

$[(Cp''Ni)_2(\mu;\eta^3-\eta^3-P_3)][GaCl_4](4)$

A colourless solution of GaCl₃ (36 mg, 0.2 mmol, 1 eq.) in *o*-DFB (4 mL) was added to a bright orange solution of **1** (78 mg, 0.2 mmol, 1 eq.) in *o*-DFB (4 mL), which resulted in an immediate colour change to a dark greenish brown. This solution was stirred for 1 h and then 40 mL of *n*-pentane were added to precipitate a dark brown oil. The slightly yellowish solvent mixture was decanted, the oil washed three times with 10 mL of toluene and another three times with 10 mL of *n*-pentane, each and then dissolved in 3 mL of o-DFB again. This solution was layered with 25 mL of *n*-pentane and stored for four weeks at room temperature, affording dark greenish brown crystals of [(Cp⁽ⁿ⁾Ni)₂(μ ; η^3 - η^3 -P₃)][GaCl₄] (**4**) in X-ray analysis quality.

Yield:	72 mg (0.074 mmol, 74% based on 1)
Elemental analysis:	calc. (%) for [(Cp´´´Ni) ₂ (µ;η ³ :η ³ -P ₃)][GaCl ₄]·(GaCl ₃) _{0.5} (C ₃₄ H ₅₈ P ₃ Cl _{5.5} Ni ₂ Ga _{1.5}): C: 41.81 H: 5.99
	found (%): C: 42.17 H: 5.82
ESI(+) MS (o-DFB):	m/z (%) = 675.2 (80) [(Cp ^{···} Ni) ₂ (μ ; η ³ : η ³ -P ₃)] ⁺ , below 300 (several peaks that could not be assigned to
	certain molecular fragments)
NMR (CD ₂ Cl ₂ , 298 K):	¹ H : δ /ppm = 1.02 (s, 18 H, C(CH ₃) ₃), 1.36 (s, 36 H, C(CH ₃) ₃), 4.66 (s, 2 H, C ₅ H ₂ 'Bu ₃)
	³¹ P { ¹ H }: δ/ppm = 139.5 (s)
	³¹ P : δ/ppm = 139.5 (s)

Tested reactions and conditions

Attempts to employ 'Bu₂PCI or (Et₂N)₂PCI under identical conditions (o-DFB, TI[TEF] equimolar) as for the synthesis of **2a-2e**[TEF] failed as no observable colour change or precipitation of a white solid occurred. ³¹P NMR spectra of the reaction mixtures revealed unreacted halogenophosphanes and **1** at $\delta = -168.8$ ppm. Using two equivalents of Ph₂PCI (0.2 mmol, 44 mg, 35.8 µL, 2 eq.) and TI[TEF] (0.2 mmol, 234 mg, 2 eq.) with only one equivalent of **1** (0.1 mmol, 38 mg, 1 eq.) under identical conditions did not lead to the anticipated second insertion of [Ph₂P]⁺ into **2a**⁺. This reaction rather yielded **2a**[TEF] in similar yields to the reported procedure (*vide supra*) accompanied by [Ph₂CIPPPh₂][TEF], identified by ³¹P NMR spectra of the reaction solutions. When **1** (0.1 mmol, 38 mg, 1 eq.) is reacted with dihalogenophosphanes RPCl₂ (R = Ph, 'Bu; 0.1 mmol) in the presence of two equivalents of TI[TEF] (0.2 mmol, 234 mg, 2 eq.) the second chloride atom is not abstracted and the reaction outcome are the products **2f**[TEF] and **2g**[TEF]. Excess of TI[TEF] crystallises from the reaction mixtures upon layering with *n*-hexane and cooling to -30 °C.

NMR spectroscopic investigations

Assignment of the signals in the ³¹P NMR spectra (CD₂Cl₂, r. t.) of the compounds **2a-g** is simplified by the broadening of the signal of the former phosphenium ion (P1) compared to the ³¹P{¹H} NMR spectrum. The other signals can then be assigned by following the ¹J_{PP} couplings around the P₄ ring. For simplification, the ³¹P{¹H} and ³¹P NMR spectra of **2a-e** and **2f/g** are compared in Figure SI1 and Figure SI2, respectively. The signals are labelled according to Figure SI1b.

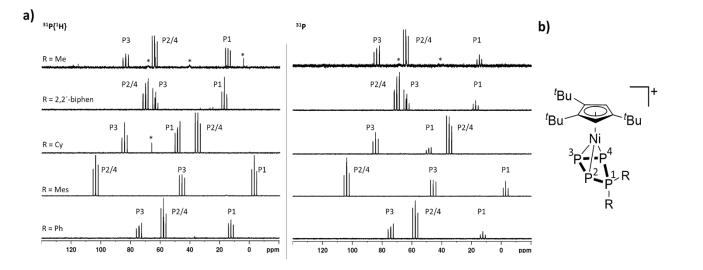


Figure SI 1: ³¹P and ³¹P{¹H} NMR spectra of **2f-2g**[TEF] in CD₂Cl₂ recorded at 298 K with signal assignment corresponding to Figure SI 1b); The endo/exo labelling for **2f** refers to the position of the Ph ring on the P_4 ring.

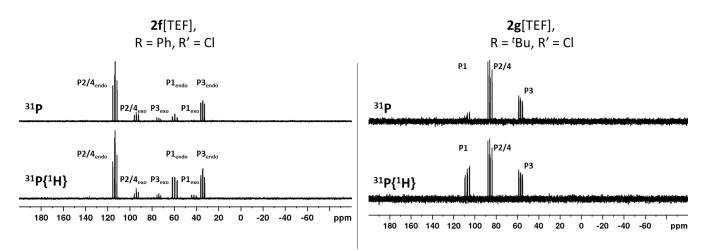


Figure SI 2: a) ³¹P{¹H} (left) and ³¹P NMR spectra (right) of **2a-2e**[TEF] in CD₂Cl₂ recorded at 298 K; signal assignment is done according to the structure shown in b) to illustrate the variation of the sequence of the signals with the corresponding P atoms.

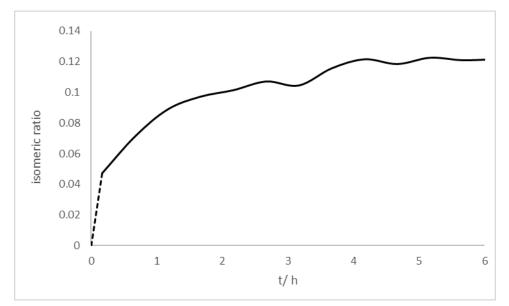


Figure SI 3: Plot of the isomeric ratio $2f_{endo}$: $2f_{endo}$: $2f_{endo}$: $2f_{endo}$: $2f_{endo}$: TEF] in CD_2Cl_2 obtained from ³¹P NMR spectra recorded every 30 min for 6 h; The final ratio after 6 h is 8:1, which is very close to that observed for spectra of precipitated **2f** (7:1).

As both isomers of **2f** are formed during the reaction of **1** with Ph_2PCI and TI[TEF], the question arises if they exist in equilibrium or if the observed isomeric ratio of 7:1 (**2f**_{endo}:**2f**_{exo}) is due to kinetic factors during the reaction. Thus, crystals of **2f**_{endo}[TEF] were subjected to ³¹P NMR spectroscopic measurements to gather information about the formation of both isomers of **2f**. Crystals of **2f**_{endo}[TEF] were dissolved in 0.8 mL of CD_2CI_2 and ³¹P NMR spectra of this sample were recorded every 30 min for 6 h. The plot of the isomeric ratio during this time (Figure SI 3) shows that the initially present endo isomer slowly interconverts to the exo isomer until an isomeric ratio of 7:1 (**2f**_{endo}:**2f**_{exo}) is approached after 6 h. This clearly supports the assumption that both isomers exist in equilibrium (in solution) and their formation is not based on kinetic factors during the initial synthesis of **2f**.

The room temperature ³¹P and ³¹P{¹H} NMR spectra of **3a** in CD_2CI_2 are identical and express an AMNX spin system. An expected similar spectrum is not observed for **3b** in CD_2CI_2 , which is probably caused by a dynamic effect involving rotation of the $Cp^{\prime\prime\prime}$ ligands. Thus, the complete set of four resonances in the spectrum of **3b** is only observed at very high scan numbers (6144), but two of them are significantly broadened (Figure SI 4).

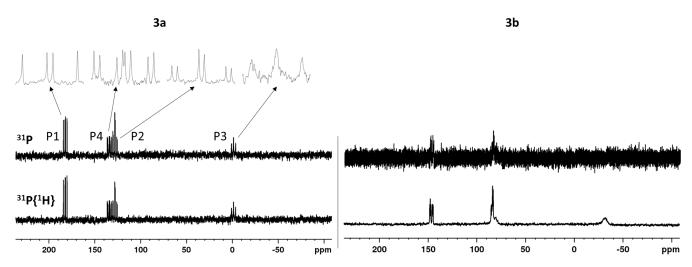


Figure SI 4: ³¹P (top) and ³¹P{¹H} (bottom) NMR spectra of **3a** and **3b** in CD₂Cl₂ recorded at 298 K with zoomed in signals for the spectra of **3a**; The ³¹P{¹H} NMR spectrum of **3b** was recorded with 6144 scans to be able to see the full set of four signals, which is not visible for the ³¹P NMR spectrum (512 scans).

Only when the solution is cooled to -80 °C sharp signals can be observed. However, at this temperature two sets of signals are found in the ³¹P{¹H} NMR spectrum (Figure SI 5), thus indicating the presence of two isomeric forms of **3b**_{1/2}. We attribute these isomers to differently rotated Cp^{'''} ligands at both Ni centres. As the number of scans needed for recording this spectrum was still very high (8192), the corresponding ³¹P spectrum could not be recorded and signal assignment was conducted as for **3a** (most downfield shifted signal

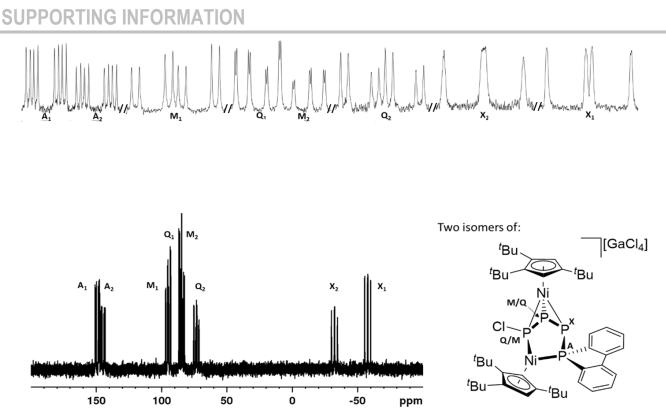


Figure SI 5: ³¹P{¹H} NMR spectrum of **3b** in CD₂Cl₂ recorded at 193 K with 8192 scans (bottom), zoomed in signal with assignment (top) and structure of **3b** with assigned P atoms (right); Isomerism in the cation **3b** is most probably caused by hindered rotation of the Cp^{···} ligands at this temperature; Spectral parameters: **3b**₁: δ /ppm = 149.1 (ddd, ¹J_{PA-PX} = 397.1 Hz, ²J_{PA-PQ} = 108.2 Hz, ²J_{PA-PM} = 57.3 Hz, 1 P, P^A), 94.8 (ddd, ¹J_{PM-PX} = 346.9 Hz, ¹J_{PM-PQ} = 247.2 Hz, ²J_{PM-PA} = 57.3 Hz, 1 P, P^A), 85.7 (ddd, ¹J_{PQ-PM} = 247.2 Hz, ²J_{PQ-PA} = 108.2 Hz, ²J_{PQ-PA} = 11.7 Hz, 1 P, P^Q), -57.8 (ddd, ¹J_{PX-PA} = 397.13 Hz, ¹J_{PX-PM} = 346.9 Hz, ²J_{PX-PQ} = 11.7 Hz, 1 P, P^X); **3b**₂: δ /ppm = 144.7 (ddd, ¹J_{PA-PX} = 391.2 Hz, ²J_{PA-PM} = 113.2 Hz, ²J_{PA-PQ} = 60.6 Hz, 1 P, P^A), 83.4 (ddd, ¹J_{PM-PQ} = 246.2 Hz, ²J_{PM-PA} = 113.2, ²J_{PM-PA} = 113.2, ²J_{PM-PA} = 11.7 Hz, 1 P, P^M), 73.4 (ddd, ¹J_{PQ-PX} = 360.4 Hz, ¹J_{PQ-PM} = 246.2 Hz, ²J_{PQ-PA} = 60.6 Hz, 1 P, P^Q), -32.4 (ddd, ¹J_{PX-PA} = 391.2 Hz, ²J_{PX-PQ} = 360.4 Hz, ²J_{PX-PM} = 11.7 Hz, 1 P, P^X).

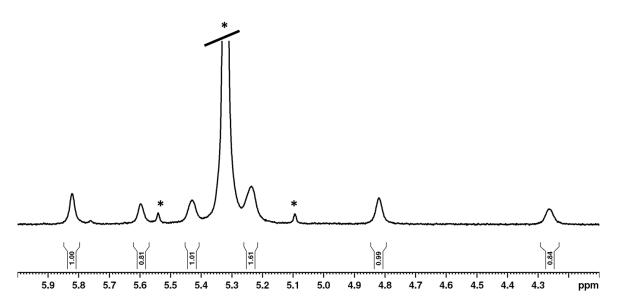


Figure SI 6: ¹H NMR spectrum of **3b** in CD₂Cl₂ recorded at 193 K showing two sets of signals for the C_5H_2 ^IBu₃ protons, thus indicating the presence of two isomers of **3b**_{1/2} in a ratio of 1.25:1; One of the expected signals is probably overlapped by the large solvent signal caused by residual CH₂Cl₂ (*).

should be that of P^A due to the similarity with the starting material (2,2'-biphen)PCI). However, the corresponding ¹H NMR shows signals in accordance with two isomers of **3b** being present. While the respective signals of the 'Bu and the biphen moieties overlap and thus avoid further interpretation, the region for the C_5H_2 'Bu₃ protons is well resolved and allows for integration (Figure SI 6), which affords an isomeric ratio of 1:1.25.

The allylic distortion of the P₃ middle deck in **4** leads to inequivalent P atoms and thus its ³¹P NMR spectrum should show multiple (two) signals. Similar behaviour is found for the isoelectronic complex [(Cp^{···}Co)(Cp^{···}Ni)(μ , η^3 -P₃)].^[7] However, in the room temperature ³¹P

SUPPORTING INFORMATION

NMR spectrum of **4** in CD₂Cl₂ only one sharp singlet is found, located at δ = 139.5 ppm, which hints towards a dynamic process of the P₃ middle deck in solution. A ³¹P{¹H} VT NMR study of **4** in CD₂Cl₂ (Figure SI 7) revealed that this dynamic behaviour is retained even at temperatures as low as 193 K. The only noticeable change in these spectra is the slight shift of the singlet upon cooling of the sample.

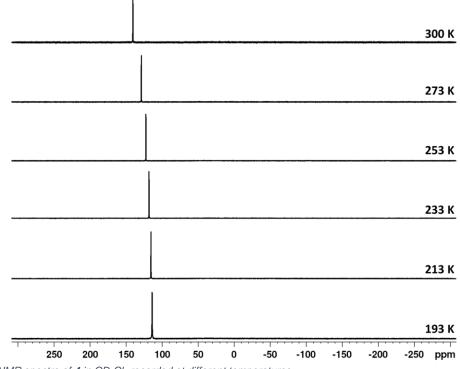


Figure SI 7: ³¹P{¹H} NMR spectra of 4 in CD₂Cl₂ recorded at different temperatures.

To get insight into the formation of the dinuclear products **3** an NMR study was carried out to elucidate possible intermediates. Thus, PBr₃ (10 μ L, 0.1 mmol, 1 eq.) was added to a freshly prepared solution of **1** (38 mg, 0.1 mmol, 1 eq.) and TI[TEF] (117 mg, 0.1 mmol, 1 eq.) in 1 mL of *o*-DFB. A capillary with toluene-d⁸ and PPh₃ (standard) was added, the NMR tube closed and then shaken. Immediately

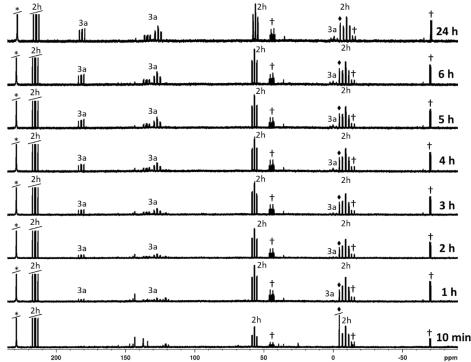


Figure SI 8: ${}^{31}P{^{1}H}$ NMR spectra of a reaction solution containing 0.1 mmol of **1**, PBr₃ and TI[TEF] in o-DFB with a capillary containing tol-d⁸ and PPh₃ (•); Spectra were measured hour-wise and additionally another spectrum was measured 24 h after addition of PBr₃; Signals are assigned to the corresponding species **2h**, **3a**, **†** (unidentified side product) and * (residual PBr₃).

the solution turned dark brown and the sample was subjected to the first measurement (10 min). Afterwards, ${}^{31}P{}^{1}H{}$ NMR spectra of the solution were recorded every hour and a final one was collected 24 h after the reaction was started (Figure SI 8). In the first spectrum the immediate formation of **2h** can be seen, alongside the complete consumption of the starting material **1**. After one hour the formation of **3a** is visible in the spectra and a third species (†) also appears but so far eludes structural assignment.

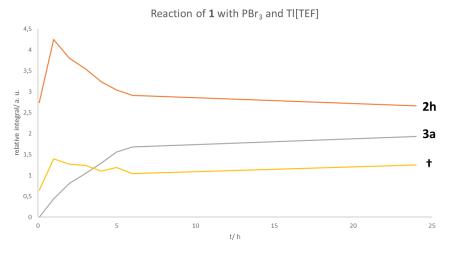


Figure SI 9: Relative signal intensities of 2h, 3a and \dagger compared to the standard PPh₃ over the course of 24 h; The flattening of the plot is probably caused by the absence of mixing in between the measurements.

While the intensity of the signals corresponding to 2h slowly decrease, the ones for 3a increase and that of + stays the same (Figure SI 9). This data may suggest that 2h is an intermediate during the reaction of 1 with "[Br₂P][TEF]" which finally affords 3a. Further insight into this reaction could however not be obtained as the precipitation of TICI and the elongated reaction times (three days with stirring) caused severe problems during NMR spectroscopic investigations. Thus, the plot in figure SI 7 can only be seen having qualitative character.

In one more attempt to get an understanding of this reaction we recorded ${}^{31}P{}^{1}H$ NMR spectra of reaction solutions (*o*-DFB, C₆D₆ capillary) with a very broad ppm range (Figure SI 10). Thus, we were able to find P₄ as one of the by-products of the reaction yielding **3a**. Accordingly, a reaction mechanism involving the initial formation of **2h** followed by its fragmentation into P₄ and a {Cp^{''}Ni} containing species and the formation of **3a** from this species and another equivalent of **2h** seems to be plausible. However, this complicated reaction pathway involving several species eludes further study so far.

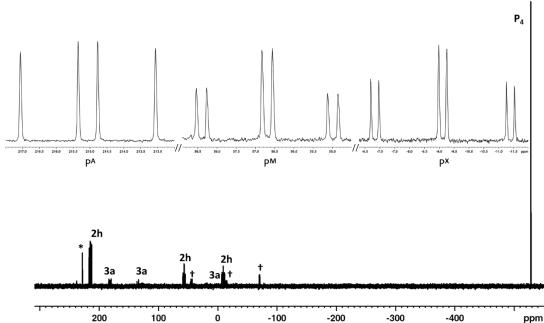


Figure SI 10: Bottom: ³¹P{¹H} NMR spectrum of the reaction mixture (0.1 mmol **1**, PBr₃ and TI[TEF]) in o-DFB (C₆D₆ capillary) recorded at 298 K with a broad ppm range; The singlet at $\delta = -528.3$ ppm clearly shows the formation of P₄ during the reaction; Top: Zoomed in signals assigned to **2h**, which shows a typical A₂MX spectrum; Spectral parameters: δ /ppm = 215.1 (dd, ¹J_{PA-PX} = 370.6 Hz, ¹J_{PA-PM} = 277.5 Hz, 2P, P^A), 56.7 (td, ¹J_{PM-PA} = 277.5 Hz, ²J_{PM-PX} = 44.1 Hz, 1P, P^M), -9.1 (td, ¹J_{PX-PA} = 370.6 Hz, ²J_{PX-PM} = 44.1 Hz, 1P, P^X).

X-ray crystallographic information

The crystallographic data for all synthesised compounds was collected on either an Xcalibur Gemini (Agilent technologies, AT) with an Atlas^{S2} detector using Mo–K_{α} (**2a**[SbF₆], **2a**[GaCl₄], **2a**[TEF], **2g**[TEF], **3a**[TEF]) radiation (sealed tube), on a SuperNova diffractometer (AT) with a Titan^{S2} detector using Cu–K_{β} radiation (**2a**[OTf], **2c**[GaCl₄], **2e**[TEF], **3b**[GaCl₄], **4**[GaCl₄]), obtained by using customised optics, or on another SuperNova diffractometer (AT) with a Titan^{S2} detector using a standard Cu–K_{α} (**2d**[GaCl₄]) sealed tube microfocus source. Data reduction and absorption correction were performed with the CrysAlisPro software package.^[8] Structure solution and refinement was conducted in Olex2 (1.3-alpha)^[9] with ShelXT^[10] (solution) and ShelXL-2014^[11] (least squares refinement (F²)) or olex2.refine (Gauss-Newton).^[9] All non-H atoms were refined with anisotropic displacement parameters and H atoms were treated as riding models with isotropic displacement parameters and fixed C–H bond lengths (sp³: 0.96 (CH₃), 0.97 (CH₂); sp²: 0.93 (CH)). Residual electron density arising from disordered solvent molecules was treated with the integrated solvent mask procedure of Olex2 (1.3 alpha) and visualisation of the crystal structures was done with this program as well.^[9]

CCDC-2015036 (1), CCDC-2015037 (2a[OTf]), CCDC-2015038 (2a[SbF₆]), CCDC-2015039 (2a[TEF]), CCDC-2015040 (2a[GaCl₄]), CCDC-2015041 (2c[GaCl₄] oDFB), CCDC-2015042 (2d[GaCl₄]), CCDC-2015043 (2e[TEF]), CCDC-2015044 (2fendo[GaCl₄]), CCDC-2015045 (3a[TEF]), CCDC-2015046 (3b[GaCl₄]) and CCDC-2015047 (4[GaCl₄] oDFB), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/contents/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; e-mail: deposit@ccdc.com.ac.uk).

Table SI 1: X-ray crystallographic data on all crystallographically characterised compounds.

Compound	1 ^[12]	2a [OTf]	2a [SbF ₆]
Empirical formula	C ₁₇ H ₂₉ NiP ₃	C ₃₀ H ₃₉ F ₃ NiO ₃ P ₄ S	C ₂₉ H ₃₉ F ₆ NiP ₄ Sb
Formula weight	385.02	719.26	805.94
Temperature/K	123.00(10)	122.98(17)	293(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	P21/n
a/Å	19.2653(9)	10.49870(10)	10.6938(2)
b/Å	14.6055(3)	26.0828(2)	25.2128(4)
c/Å	9.2674(4)	12.95300(10)	13.2668(2)
α/°	90	90	90
β/°	133.487(8)	109.4820(10)	110.963(2)
γ/°	90	90	90
Volume/Å ³	1891.9(2)	3343.91(5)	3340.25(10)
Z	4	4	4
ρ _{calc} g/cm ³	1.352	1.429	1.603
µ/mm ⁻¹	7.840	5.520	1.616
F(000)	816.0	1496.0	1624.0
Crystal size/mm ³	0.352 × 0.245 × 0.151	0.383 × 0.293 × 0.111	0.402 × 0.224 × 0.165
Radiation	Cu Kβ (λ = 1.39222)	Cu Kβ (λ = 1.39222)	Mo Kα (λ = 0.71073)
2O range for data collection/°	7.906 to 149.05	6.12 to 148.27	6.582 to 64.626
Index ranges	-26 ≤ h ≤ 22, -12 ≤ k ≤ 20, -11 ≤ l ≤ 12	-13 ≤ h ≤ 14, -35 ≤ k ≤ 30, -17 ≤ l ≤ 16	-15 ≤ h ≤ 15, -34 ≤ k ≤ 37, -19 ≤ l ≤
6			19
Reflections collected	10908	28827	31775
Independent reflections	5090 [$R_{int} = 0.0372$, $R_{sigma} = 0.0466$]	9012 [$R_{int} = 0.0409, R_{sigma} = 0.0359$]	$10913 [R_{int} = 0.0322, R_{sigma} = 0.0417]$
Data/restraints/parameters	5090/0/199	9012/63/420	10913/0/379
Goodness-of-fit on F ²	1.017	1.044	1.061
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0345$, $wR_2 = 0.0864$	$R_1 = 0.0380, wR_2 = 0.1046$	$R_1 = 0.0343, wR_2 = 0.0702$
Final R indexes [all data]	$R_1 = 0.0386, wR_2 = 0.0906$	$R_1 = 0.0396, wR_2 = 0.1064$	$R_1 = 0.0501, wR_2 = 0.0773$
Largest diff. peak/hole / e Å-3	0.65/-0.49	0.54/-0.73	0.87/-1.15

2a[TEF]	2a[GaCl4]	2c [GaCl ₄]·(<i>o</i> -DFB) _{0.5}
C ₉₀ H ₇₈ Al ₂ F ₇₂ Ni ₂ O ₈ P ₈	C ₂₉ H ₃₉ Cl ₄ GaNiP ₄	C ₆₄ H ₁₀₆ Cl ₈ F ₂ Ga ₂ Ni ₂ P ₈
3074.66	781.71	1701.70
122.7(4)	293(2)	123.00(12)
monoclinic	monoclinic	monoclinic
P2 ₁ /n	P2 ₁ /n	P21/n
20.99150(10)	10.3088(18)	10.30213(12)
22.23550(10)	37.3289(11)	16.4498(2)
25.32560(10)	17.239(3)	23.1565(3)
90 `	90 `	90
96.6970(10)	149.06(5)	95.0842(12)
90 ` ´	90 `´	90 ` ´
11740.23(9)	3411(2)	3908.84(9)
4	4	2
1.740	1.522	1.446

SUPPORTING INFORMATION

3.115 6128.0 $\begin{array}{c} 0.322 \times 0.208 \times 0.175 \\ \text{Cu K}\alpha \ (\lambda = 1.54184) \\ 7.028 \ \text{to} \ 147.352 \end{array}$ $-24 \le h \le 26, -27 \le k \le 27, -23 \le l \le 31$ 101791 23503 [R_{int} = 0.0302, R_{sigma} = 0.0226] 23503/655/2095 $\begin{array}{c} 1.019 \\ R_1 = 0.0351, \ wR_2 = 0.0873 \\ R_1 = 0.0382, \ wR_2 = 0.0900 \end{array}$ 0.62/-0.41

1.00/-0.58

1.862 1600.0 0.681 × 0.324 × 0.126 Mo Kα (λ = 0.71073) 7.028 to 64.43 $-14 \le h \le 15, -30 \le k \le 53, -24 \le l \le 18$ 18408 10619 [R_{int} = 0.0384, R_{sigma} = 0.0815] 10619/0/361 $\begin{array}{c} 1.076 \\ R_1 = 0.0514, \ wR_2 = 0.0861 \\ R_1 = 0.0744, \ wR_2 = 0.0965 \\ 0.88/\text{-}0.66 \end{array}$

6.657 1764.0 $\begin{array}{c} 0.339 \times 0.205 \times 0.082 \\ \text{Cu} \ \text{K}\beta \ (\lambda = 1.39222) \\ 5.958 \ \text{to} \ 139.876 \end{array}$ $-13 \le h \le 13, -21 \le k \le 18, -30 \le l \le 30$ 27605 9585 [R_{int} = 0.0304, R_{sigma} = 0.0298] 9585/36/458 $\begin{array}{c} 30303,307430\\ 1.028\\ R_1=0.0309,\ wR_2=0.0824\\ R_1=0.0336,\ wR_2=0.0845\\ 0.57/\text{-}0.51\end{array}$

0.92/-0.63

2d [GaCl₄]·(<i>n</i> -hex) _{0.4}	2e[TEF]	2f _{endo} [TEF]
$C_{157}CI_{20}Ga_5H_{213}Ni_5P_{20}$	C140H140Al4F144Ni4O16P16	C ₃₉ H ₃₄ AICIF ₃₆ NiO ₄ P ₄
4070.81	5652.79	1495.68
122.9(3)	123.01(10)	293(2)
monoclinic	triclinic	monoclinic
P21/n	P-1	P2 ₁ /n
23.5978(3)	19.4947(11)	15.4562(5)
26.0263(3)	24.9584(14)	12.8245(4)
31.9826(3)	25.7834(14)	28.0794(11)
90	64.002(6)	90
107.3890(10)	73.289(5)	96.820(3)
90	71.681(5)	90
18744.8(4)	10538.0(12)	5526.5(3)
4	2	4
1.442	1.781	1.798
5.898	4.384	0.693
8360.0	5616.0	2968.0
0.272 × 0.077 × 0.057	0.242 × 0.23 × 0.179	0.702 × 0.659 × 0.368
Cu Kα (λ = 1.54184)	Cu Kβ (λ = 1.39222)	Mo Kα (λ = 0.71073)
6.792 to 148.454	4.752 to 150.572	6.568 to 64.97
$29 \le h \le 29, -23 \le k \le 32, -29 \le l \le 39$	$-21 \le h \le 27, -33 \le k \le 34, -35 \le l \le 34$	-19 ≤ h ≤ 22, -18 ≤ k ≤ 19, -42 ≤ l ≤ 40
104837	110292	53485
$36561 [R_{int} = 0.0598, R_{sigma} = 0.0597]$	$56269 [R_{int} = 0.0648, R_{sigma} = 0.0843]$	$18349 [R_{int} = 0.0236, R_{sigma} = 0.0300]$
36561/288/1975	56269/4534/4740	18349/1072/1457
1.022	1.029	1.038
$R_1 = 0.0543, wR_2 = 0.1327$	$R_1 = 0.0714$, $wR_2 = 0.1818$	$R_1 = 0.0778$, $wR_2 = 0.2092$
$P_{1} = 0.0720 \text{ w}P_{2} = 0.1427$		
$R_1 = 0.0739$, $wR_2 = 0.1437$	$R_1 = 0.1111, wR_2 = 0.2293$	$R_1 = 0.0958, WR_2 = 0.2252$
R ₁ = 0.0739, wR ₂ = 0.1437 0.92/-0.73	$R_1 = 0.1111, WR_2 = 0.2293$ 0.99/-0.91	R ₁ = 0.0958, WR ₂ = 0.2252 1.85/-1.30
0.92/-0.73	0.99/-0.91	1.85/-1.30
0.92/-0.73 3a[TEF]	0.99/-0.91 3b [GaCl ₄]	1.85/-1.30 4[GaCl₄]•(o-DFB) _{0.33} •(<i>n</i> -pent) _{0.33}
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AIBr ₃ F ₃₆ Ni ₂ O ₄ P ₄	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄	1.85/-1.30 4[GaCl₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AIBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97	0.99/-0.91 3b[GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25	1.85/-1.30 4 [GaCl₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2)	0.99/-0.91 3b [GaCl4] C46H66Cl5GaNi2P4 1107.25 122.99(13)	1.85/-1.30 4[GaCl ₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2)
0.92/-0.73 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic <i>P</i> I	0.99/-0.91 3b [GaCl4] C46H66Cl5GaNi2P4 1107.25 122.99(13)	1.85/-1.30 4 [GaCl ₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3
0.92/-0.73 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic	1.85/-1.30 4 [GaCl ₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic <i>P</i> I	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic P-1	1.85/-1.30 4 [GaCl ₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic <i>P</i> I 10.5753(4)	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic P-1 10.4773(5)	1.85/-1.30 4[GaCl ₄]-(<i>o</i> -DFB) _{0.33} -(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8)
0.92/-0.73 3a [TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic <i>P</i> I 10.5753(4) 17.8782(7)	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic P-1 10.4773(5) 14.5388(8)	1.85/-1.30 4[GaCl ₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8)
$0.92/-0.73$ 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic $P\bar{1}$ 10.5753(4) 17.8782(7) 20.7325(8) 108.035(3)	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline \\ \textbf{3b[GaCl_4]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \end{array}$	1.85/-1.30 4[GaCl ₄]·(o-DFB) _{0.33} ·(n-pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 17.8833(5)
$0.92/-0.73$ 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic $P\bar{1}$ 10.5753(4) 17.8782(7) 20.7325(8) 108.035(3) 103.509(3)	0.99/-0.91 3b [GaCl ₄] C ₄₆ H ₆₆ Cl ₅ GaNi ₂ P ₄ 1107.25 122.99(13) triclinic P-1 10.4773(5) 14.5388(8) 18.7053(11) 105.393(5) 105.799(5)	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ GasH ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 17.8833(5) 90 90
$0.92/-0.73$ $3a[TEF]$ $C_{50}H_{58}AlB_{13}F_{36}Ni_2O_4P_4$ 1914.97 $293(2)$ $triclinic$ $P\bar{1}$ $10.5753(4)$ $17.8782(7)$ $20.7325(8)$ $108.035(3)$ $103.509(3)$ $101.557(3)$	0.99/-0.91 3b [GaCl4] C46H66Cl5GANi2P4 1107.25 122.99(13) triclinic P-1 10.4773(5) 14.5388(8) 18.7053(11) 105.393(5) 105.799(5) 97.951(5)	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120
$0.92/-0.73$ 3a[TEF] C50H58AlBr3F36Ni2O4P4 1914.97 293(2) triclinic $P\bar{1}$ 10.5753(4) 17.8782(7) 20.7325(8) 108.035(3) 103.509(3) 101.557(3) 3462.9(2)	0.99/-0.91	1.85/-1.30 4[GaCl ₄]·(<i>o</i> -DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120 60182(2)
$\begin{array}{c} 0.92'\text{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50} H_{58} AlB_{73} F_{36} Ni_2 O_4 P_4 \\ & 1914.97 \\ & 293(2) \\ & triclinic \\ & P\overline{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ & 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ & 3462.9(2) \\ & 2 \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline \\ & \textbf{3b[GaCl_a]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \end{array}$	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(n-pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120 60182(2) 18
$\begin{array}{c} 0.92'\text{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50}\textbf{H}_{58}\textbf{A} \textbf{B}r_{3}\textbf{F}_{36}\textbf{N} \textbf{2}\textbf{O}4\textbf{P}_{4} \\ & 1914.97 \\ 293(2) \\ triclinic \\ P\bar{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ 3462.9(2) \\ 2 \\ 1.837 \\ \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline \\ & \textbf{3b[GaCl_a]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ & 1107.25 \\ 122.99(13) \\ & \text{triclinic} \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \end{array}$	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120 60182(2) 18 1.417
$\begin{array}{c} 0.92'\text{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline C_{50}H_{58}AlBr_{3}F_{36}Ni_2O_4P_4 \\ 1914.97 \\ 293(2) \\ triclinic \\ \hline P\bar{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ 3462.9(2) \\ 2 \\ 1.837 \\ 2.518 \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_4]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \end{array}$	1.85/-1.30 4[GaCl₄]·(o-DFB) _{0.33} ·(<i>n</i> -pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ GasH ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120 60182(2) 18 1.417 5.121
$0.92/-0.73$ 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic $P\bar{1}$ 10.5753(4) 17.8782(7) 20.7325(8) 108.035(3) 103.509(3) 101.557(3) 3462.9(2) 2 1.837 2.518 1896	0.99/-0.91	1.85/-1.30 4[GaCl ₄]·(o-DFB) _{0.33} ·(n-pent) _{0.33} C ₁₁₃ Cl ₁₂ F ₂ Ga ₃ H ₁₉₀ Ni ₆ P ₉ 2852.19 293(2) trigonal R-3 62.3366(8) 62.3366(8) 17.8833(5) 90 90 120 60182(2) 18 1.417 5.121 26748.0
$0.92'-0.73$ 3a[TEF] C ₅₀ H ₅₈ AlBr ₃ F ₃₆ Ni ₂ O ₄ P ₄ 1914.97 293(2) triclinic $P\overline{1}$ 10.5753(4) 17.8782(7) 20.7325(8) 108.035(3) 103.509(3) 101.557(3) 3462.9(2) 2 1.837 2.518 1896 0.328 × 0.177 × 0.141	$0.99/-0.91$ $3b[GaCl_4]$ $C_{46}H_{66}Cl_5GaNi_2P_4$ 1107.25 $122.99(13)$ $triclinic$ $P-1$ $10.4773(5)$ $14.5388(8)$ $18.7053(11)$ $105.393(5)$ $105.799(5)$ $97.951(5)$ $2574.3(3)$ 2 1.428 7.587 1148.0 $0.3 \times 0.2 \times 0.1$ (estimated	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_2Ga_{3}H_{19}\text{ONi}_6P_9\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times 0.351\times 0.292\\ \end{array}$
$\begin{array}{c} 0.92 / 0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50} H_{58} A B_{73} F_{36} N_{12} O_4 P_4 \\ & 1914.97 \\ 293(2) \\ triclinic \\ P\overline{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ 3462.9(2) \\ 2 \\ 1.837 \\ 2.518 \\ 1896 \\ 0.328 \times 0.177 \times 0.141 \\ Mo \ \ Ka \ (\lambda = 0.71073) \end{array}$	0.99/-0.91	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_2Ga_3H_{190}Ni_6P_9\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 205748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha~(\lambda=1.54184)\\ \end{array}$
$\begin{array}{c} 0.92/\text{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50}\textbf{H}_{58}\textbf{A} \textbf{B}_{73}\textbf{F}_{36}\textbf{N}_{12}\textbf{O}_{4}\textbf{P}_{4} \\ & 1914.97 \\ 293(2) \\ triclinic \\ & P\bar{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ 3462.9(2) \\ 2 \\ 1.837 \\ 2.518 \\ 1896 \\ 0.328 \times 0.177 \times 0.141 \\ Mo \ K\alpha \ (\lambda = 0.71073) \\ 6.538 \ to \ 64.868 \\ \end{array}$	$0.99/-0.91$ $3b[GaCl_{a}]$ $C_{46}H_{66}Cl_{5}GaNi_{2}P_{4}$ 1107.25 $122.99(13)$ triclinic $P-1$ $10.4773(5)$ $14.5388(8)$ $18.7053(11)$ $105.393(5)$ $105.799(5)$ $97.951(5)$ $2574.3(3)$ 2 1.428 7.587 1148.0 $0.3 \times 0.2 \times 0.1$ (estimated Cu K β ($\lambda = 1.39222$) 4.676 to 119.1	$\begin{array}{c} 1.85/-1.30 \\ \hline \\ 4[GaCl_4] \cdot (o\text{-DFB})_{0.33} \cdot (n\text{-pent})_{0.33} \\ C_{113}Cl_{12}F_2Ga_3h_{190}Ni_6P_9 \\ 2852.19 \\ 293(2) \\ trigonal \\ R-3 \\ 62.3366(8) \\ 62.3366(8) \\ 62.3366(8) \\ 17.8833(5) \\ 90 \\ 90 \\ 120 \\ 60182(2) \\ 18 \\ 1.417 \\ 5.121 \\ 26748.0 \\ 0.538 \times 0.351 \times 0.292 \\ CuK\alpha (k = 1.54184) \\ 6.572 \text{ to } 149.804 \\ \end{array}$
$\begin{array}{c} 0.92'{-}0.73 \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & \\ \hline \\ \hline$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline \\ & \textbf{3b[GaCl_4]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 \text{ (estimated } Cu \ K\beta \ (\lambda = 1.39222) \\ 4.676 \ to \ 119.1 \\ -11 \le h \le 12, -17 \le k \le 17, -22 \le l \le 12 \\ \end{array}$	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_{4}]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_{2}Ga_{3}H_{190}Ni_{6}P_{9}\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha(\lambda=1.54184)\\ 6.572\ to\ 149.804\\ -75\leq h\leq 76, -71\leq k\leq 77, -20\leq l\leq 11\end{array}$
$\begin{array}{c} 0.92'{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50}H_{58}AlBr_{3}F_{36}Ni_{2}O_{4}P_{4} \\ & 1914.97 \\ & 293(2) \\ & triclinic \\ & P\overline{1} \\ & 10.5753(4) \\ & 17.8782(7) \\ & 20.7325(8) \\ & 108.035(3) \\ & 103.509(3) \\ & 101.557(3) \\ & 3462.9(2) \\ & 2 \\ & 1.837 \\ & 2.518 \\ & 1896 \\ & 0.328 \times 0.177 \times 0.141 \\ & Mo \ K\alpha \ (\lambda = 0.71073) \\ & 6.538 \ to \ 64.868 \\ 13 \leq h \leq 15, -18 \leq k \leq 26, -31 \leq l \leq 29 \\ & 31980 \\ \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline \\ & \textbf{3b[GaCl_a]} \\ \hline \\ C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 \text{ (estimated } Cu \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_{4}]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_{2}Ga_{3}H_{190}Ni_{6}P_{9}\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha~(\lambda=1.54184)\\ 6.572~to~149.804\\ -75\leq h\leq76, -71\leq k\leq77, -20\leq l\leq17\\ 98135\\ \end{array}$
$\begin{array}{c} 0.92/\text{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & \textbf{C}_{50}H_{5e}A Br_3F_{36}Ni_2O_4P_4 \\ & 1914.97 \\ & 293(2) \\ & triclinic \\ & P\overline{1} \\ & 10.5753(4) \\ & 17.8782(7) \\ & 20.7325(8) \\ & 108.035(3) \\ & 103.509(3) \\ & 101.557(3) \\ & 3462.9(2) \\ & 2 \\ & 1.837 \\ & 2.518 \\ & 1896 \\ & 0.328 \times 0.177 \times 0.141 \\ & \text{Mo K}\alpha (\lambda = 0.71073) \\ & 6.538 \text{ to } 64.868 \\ 13 \leq h \leq 15, -18 \leq k \leq 26, -31 \leq l \leq 29 \\ & 31980 \\ 21606 \ [R_{int} = 0.0258, \ Rsigma = 0.0680] \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_4]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 (\text{estimated} \\ Cu \ \ensuremath{K} \ \ensuremath{G} \ \ensuremath{G} \ \ensuremath{K} \ \ensuremath{C} \ \ensuremath{K} \ \ensuremath{S} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{S} \ \ensuremath{C} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{C} \ \ensuremath{G} \ \ensuremath{T} \ \ensuremath{T} \ \ensuremath{T} \ \ensuremath{T} \ \ensuremath{C} \ \ensuremath{S} \ \ensuremath{K} \ \ensuremath{K} \ \ensuremath{O} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{G} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{T} \ \ensuremath{T} \ \ensuremath{C} \ \ensuremath{T} \ \ensuremath{C} \ \ensuremath{C} \ \ensuremath{K} \ \ensuremath{C} \ \ensuremath{K} \ \ensuremath{C} \ C$	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_2Ga_{3}H_{19}ONi_6P_9\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha(\lambda=1.54184)\\ 6.572\ to\ 149.804\\ -75\leq h\leq 76, -71\leq k\leq 77, -20\leq l\leq 17\\ 98135\\ 26099\ [R_{int}=0.0603, R_{sigma}=0.0432] \end{array}$
$\begin{array}{c} 0.92{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline & C_{50}H_{58}AlBr_{3}F_{36}Ni_{2}O_{4}P_{4} \\ & 1914.97 \\ 293(2) \\ triclinic \\ & P\overline{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 103.509(3) \\ 101.557(3) \\ 3462.9(2) \\ 2 \\ 1.837 \\ 2.518 \\ 1896 \\ 0.328 \times 0.177 \times 0.141 \\ Mo K\alpha (\lambda = 0.71073) \\ 6.538 to 64.868 \\ 13 \leq h \leq 15, -18 \leq k \leq 26, -31 \leq l \leq 29 \\ 31980 \\ 21606 [R_{int} = 0.0258, R_{sigma} = 0.0680] \\ 21606/18/974 \\ \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_a]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ \text{triclinic} \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 (estimated \\ Cu K\beta (\lambda = 1.39222) \\ 4.676 \text{ to } 119.1 \\ \textbf{-}11 \leq h \leq 12, -17 \leq k \leq 17, -22 \leq l \leq 12 \\ 16125 \\ 9775 [R_{int} = 0.0394, R_{sigma} = 0.0718] \\ 9775/151/646 \end{array}$	$\begin{array}{c} 1.85/-1.30 \\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33} \\ C_{113}Cl_{12}F_2Ga_{3}H_{190}Ni_6P_9 \\ 2852.19 \\ 293(2) \\ trigonal \\ R-3 \\ 62.3366(8) \\ 62.3366(8) \\ 62.3366(8) \\ 17.8833(5) \\ 90 \\ 90 \\ 120 \\ 60182(2) \\ 18 \\ 1.417 \\ 5.121 \\ 26748.0 \\ 0.538 \times 0.351 \times 0.292 \\ CuK\alpha (\lambda = 1.54184) \\ 6.572 \text{ to } 149.804 \\ .75 \leq h \leq 76, .71 \leq k \leq 77, .20 \leq l \leq 17 \\ 98135 \\ 26099 [Rint = 0.0603, R_{sigma} = 0.0432] \\ 26099/408/1556 \\ \hline \end{array}$
$\begin{array}{c} 0.92{-}0.73 \\ \hline & & & \\ \hline & & \hline \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \hline$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_a]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 (estimated \\ Cu K\beta (\lambda = 1.39222) \\ 4.676 \text{ to } 119.1 \\ \textbf{\cdot}11 \leq h \leq 12, -17 \leq k \leq 17, -22 \leq l \leq 12 \\ 16125 \\ 9775 [R_{int} = 0.0394, R_{sigma} = 0.0718] \\ 9775/151/646 \\ 1.026 \\ \hline \end{array}$	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_2Ga_{31}H_{190}Ni_6P_9\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha\ (\lambda=1.54184)\\ 6.572\ to\ 149.804\\ -75\leq h\leq76, -71\leq k\leq77, -20\leq l\leq17\\ 98135\\ 26099\ [R_{int}=0.0603, R_{sigma}=0.0432]\\ 26099/408/1556\\ 1.047\\ \end{array}$
$\begin{array}{c} 0.92{-}0.73 \\ \hline & \textbf{3a[TEF]} \\ \hline C_{50}H_{58}AlBr_{3}F_{36}Ni_{2}O_{4}P_{4} \\ & 1914.97 \\ 293(2) \\ triclinic \\ & P\overline{1} \\ 10.5753(4) \\ 17.8782(7) \\ 20.7325(8) \\ 108.035(3) \\ 101.557(3) \\ 3462.9(2) \\ & 2 \\ & 1.837 \\ 2.518 \\ & 1896 \\ 0.328 \times 0.177 \times 0.141 \\ Mo \ K\alpha (\lambda = 0.71073) \\ & 6.538 \ to 64.868 \\ 13 \leq h \leq 15, -18 \leq k \leq 26, -31 \leq l \leq 29 \\ & 31980 \\ 21606 \ [R_{int} = 0.0258, \ R_{sigma} = 0.0680] \\ & 21606/18/974 \\ & 1.053 \\ R_1 = 0.0497, \ WR_2 = 0.0865 \\ \end{array}$	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_3]} \\ \hline & C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 (estimated \\ Cu K\beta (\lambda = 1.39222) \\ 4.676 \text{ to } 119.1 \\ \textbf{-}11 \leq h \leq 12, -17 \leq k \leq 17, -22 \leq l \leq 12 \\ 16125 \\ 9775 [R_{int} = 0.0394, R_{sigma} = 0.0718] \\ 9775/151/646 \\ 1.026 \\ R_1 = 0.0561, wR_2 = 0.1344 \\ \end{array}$	$\begin{array}{c} 1.85/-1.30\\ \hline \\ 4[GaCl_{4}]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33}\\ C_{113}Cl_{12}F_{2}Ga_{3}H_{19}\text{oNi}_{6}P_{9}\\ 2852.19\\ 293(2)\\ trigonal\\ R-3\\ 62.3366(8)\\ 62.3366(8)\\ 62.3366(8)\\ 17.8833(5)\\ 90\\ 90\\ 120\\ 60182(2)\\ 18\\ 1.417\\ 5.121\\ 26748.0\\ 0.538\times0.351\times0.292\\ CuK\alpha(\lambda=1.54184)\\ 6.572\ to\ 149.804\\ -75\leq h\leq76, -71\leq k\leq77, -20\leq l\leq17\\ 98135\\ 26099\ [R_{int}=0.0603, R_{sigma}=0.0432]\\ 26099/408/1556\\ 1.047\\ R_{1}=0.0477, wR_{2}=0.1250\\ \end{array}$
$\begin{array}{c} 0.92'{-}0.73 \\ \hline \\ $	$\begin{array}{c} 0.99/\text{-}0.91 \\ \hline & \textbf{3b[GaCl_a]} \\ \hline C_{46}H_{66}Cl_5GaNi_2P_4 \\ 1107.25 \\ 122.99(13) \\ triclinic \\ P-1 \\ 10.4773(5) \\ 14.5388(8) \\ 18.7053(11) \\ 105.393(5) \\ 105.799(5) \\ 97.951(5) \\ 2574.3(3) \\ 2 \\ 1.428 \\ 7.587 \\ 1148.0 \\ 0.3 \times 0.2 \times 0.1 (estimated \\ Cu K\beta (\lambda = 1.39222) \\ 4.676 \text{ to } 119.1 \\ \textbf{\cdot}11 \leq h \leq 12, -17 \leq k \leq 17, -22 \leq l \leq 12 \\ 16125 \\ 9775 [R_{int} = 0.0394, R_{sigma} = 0.0718] \\ 9775/151/646 \\ 1.026 \\ \hline \end{array}$	$\begin{array}{c} 1.85/-1.30 \\ \hline \\ 4[GaCl_4]\cdot(o\text{-DFB})_{0.33}\cdot(n\text{-pent})_{0.33} \\ C_{113}Cl_{12}F_2Ga_3H_{190}Ni_6P_9 \\ 2852.19 \\ 293(2) \\ trigonal \\ R-3 \\ 62.3366(8) \\ 62.3366(8) \\ 62.3366(8) \\ 62.3366(8) \\ 17.8833(5) \\ 90 \\ 90 \\ 120 \\ 60182(2) \\ 18 \\ 1.417 \\ 5.121 \\ 26748.0 \\ 0.538 \times 0.351 \times 0.292 \\ CuK\alpha (\lambda = 1.54184) \\ 6.572 \text{ to } 149.804 \\ .75 \le h \le 76, .71 \le k \le 77, .20 \le l \le 19 \\ 98135 \\ 26099 \ [R_{int} = 0.0603, R_{sigma} = 0.0433 \\ 26099/408/1556 \\ 1.047 \\ \end{array}$

0.83/-0.51

SUPPORTING INFORMATION

1

A different polymorph of **1** has already been described previously.^[12] Compound **1** crystallised from a concentrated *n*-hexane solution, which was stored at -30 °C for one day. It forms large bright red blocks with the space group $P2_1/n$ containing a single molecule in the asymmetric unit. The respective solid state structure is shown in Figures SI 11.

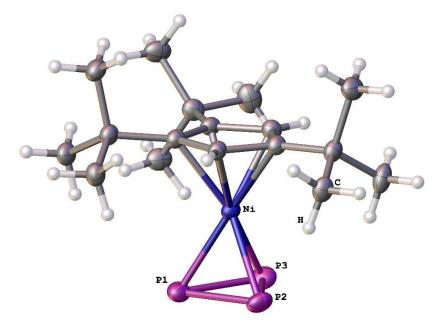


Figure SI 11: The asymmetric unit of 1, ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1410(8), P1-P3 2.1425(7), P2-P3 2.1488(8), Ni-P1 2.2427(5), Ni-P2 2.2455(6), Ni-P3 2.2357(6), P1-P2-P3 59.93(3), P2-P3-P1 59.86(3), P2-P1-P3 60.22(3).

2a[OTf]

Compound **2a**[OTf] crystallised from a concentrated solution in *o*-DFB, which was layered with *n*-hexane (8:1) and stored for several days at room temperature. It crystallises as large dark red plates with the space group $P2_1/n$ containing one anion and one cation in the asymmetric unit. The solid state structure is shown in Figure SI 12.

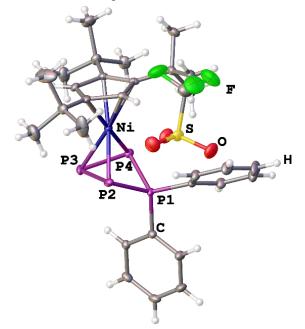


Figure SI 12: The asymmetric unit of **2a**[OTf], ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1723(6), P1-P4 2.1740(5), P2-P3 2.1984(6), P3-P4 2.1889(6), P2-Ni 2.2743(5), P3-Ni 2.2154(5), P4-Ni 2.2778(5), P1-P2-P3 83.66(2), P2-P3-P4 87.48(2), P3-P4-P1 83.84(2), P2-P1-P4 88.51(2), P3-P4-P2-P1 136.21(4).

2a[SbF6]

Compound **2a**[SbF₆] crystallised from a concentrated solution in *o*-DFB, which was layered with *n*-hexane (8:1) and stored for several days at room temperature. It crystallises as large dark red plates with the space group $P2_1/n$ containing one anion and one cation in the asymmetric unit. The solid state structure is shown in Figure SI 13.

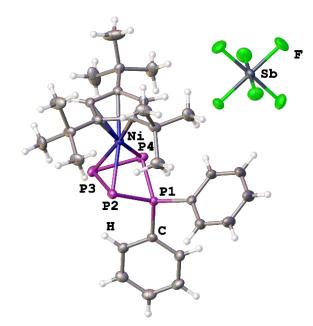


Figure SI 13: Asymmetric unit of **2a**[SbF₆], ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1727(7), P1-P4 2.1737(7), P2-P3 2.1946(8), P3-P4 2.2002(8), P2-Ni 2.2787(6), P3-Ni 2.2130(6), P4-Ni 2.2786(6), P1-P2-P3 83.39(3), P2-P3-P4 87.58(3), P3-P4-P1 83.23(3), P2-P1-P4 88.80(3), P3-P4-P2-P1 135.47(4).

2a[TEF]

Compound **2a**[TEF] crystallised by slowly evaporating the solvent of a CH_2CI_2 solution. Thus, a few red platelets of **2a**[TEF] could be obtained, which crystallises in the monoclinic space group $P2_1/n$ with two anions and two cations in the asymmetric unit. The structure in solid state is shown in Figure SI 14. The severe disorder within one of the anions was treated with restraints. The cations are enantiomers to each other and besides that their structural parameters differ only very slightly. Thus, these structural parameters are given for only one of them.

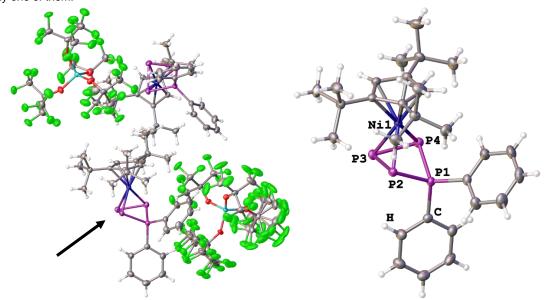


Figure SI 14: Asymmetric unit of **2a**[TEF] (left) and the marked cation denoted with Ni1 (right), ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1659(6), P1-P4 2.1733(6), P2-P3 2.1988(6), P3-P4 2.1967(6), P2-Ni1 2.2598(5), P3-Ni1 2.2192(5), P4-Ni1 2.2867(5), P1-P2-P3 83.56(2), P2-P3-P4 86.93(3), P3-P4-P1 83.44(2), P2-P1-P4 88.35(3), P3-P4-P2-P1 134.70(3).

2a[GaCl4]

Compound **2a**[GaCl₄] crystallised from a concentrated solution in *o*-DFB, which was layered with *n*-hexane (6:1) and stored for several days at room temperature. It crystallises as large dark red plates with the space group $P2_1/n$ containing one anion and one cation in the asymmetric unit. The structure in solid state is shown in Figure SI 15.

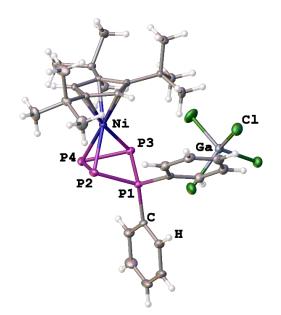


Figure SI 15: Asymmetric unit of **2a**[GaCl₄], ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1790(20), P1-P4 2.1731(14), P2-P3 2.1862(16), P3-P4 2.1940(20), P2-Ni 2.2873(12), P3-Ni 2.2281(9), P4-Ni 2.2780(20), P1-P2-P3 84.85(9), P2-P3-P4 87.54 (11), P3-P4-P1 84.80(8), P2-P1-P4 88.17(9), P3-P4-P2-P1 138.83(11).

2c[GaCl4] ·(o-DFB)0.5

Compound **2c**[GaCl₄] crystallised as an o-DFB solvate from a concentrated solution in *o*-DFB, which was layered with *n*-hexane (6:1) and stored at -30 °C for several days. It forms large dark red plates with the space group $P2_1/n$ containing one anion, one cation and half a molecule of o-DFB in the asymmetric unit. Slight disorder within the [GaCl₄]⁻ anion could be refined without restraints, but DFIX restraints were used for two of the C–H bonds in the disordered *o*-DFB molecule. The structure in solid state is shown in Figure SI 16.

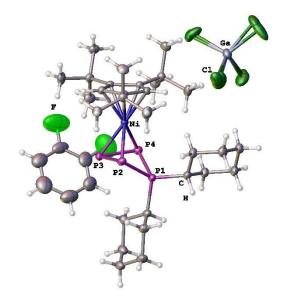


Figure SI 16: Asymmetric unit of **2c**[GaCl₄]-(o-DFB)_{0.5}, ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1738(6), P1-P4 2.1827(5), P2-P3 2.1922(5), P3-P4 2.1951(6), P2-Ni 2.2788(4), P3-Ni 2.2186(5), P4-Ni 2.2854(4), P1-P2-P3 83.59(2), P2-P3-P4 86.98(2), P3-P4-P1 83.32(2), P2-P1-P4 87.75(2), P3-P4-P2-P1 133.96(3).

2d[GaCl4]·(n-hex)_{0.4}

Layering a concentrated CH_2CI_2 solution of **2d**[GaCl₄] with *n*-hexane (5:1) and storing it at -30 °C for two weeks leads to formation of light red crystals of **2d**[GaCl₄]·(*n*-hex)_{0.4}. It crystallises in the monoclinic space group P21/n with five cations, five anions and two n-hexane molecules in the asymmetric unit. Disorder within the [GaCl₄]⁻ anions and one of the Cp^{···} ligands was treated with restraints. Both *n*-hexane molecules are too disordered for proper modelling and thus have been treated with the implemented solvent mask procedure in Olex2.^[9] As the structural parameters within the cations only differ very slightly, just those for one of them (Ni1) are given and the structure of the asymmetric unit and the respective cation are provided in Figure SI 17.

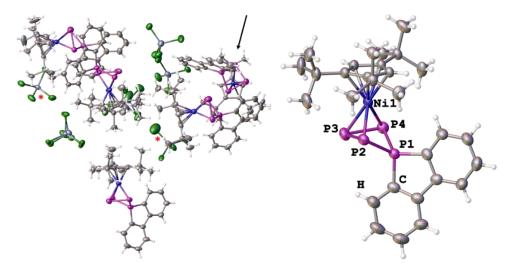


Figure SI 17: Asymmetric unit of 2d[GaCl₄](n-hex)_{0.4}, where * marks two disordered parts of one [GaCl₄]⁻ anion and the arrow points to the cation denoted with Ni1 (left) and the respective structure of this cation (right), ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1629(14), P1-P4 2.1620(14), P2-P3 2.2078(15), P3-P4 2.1919(14), P2-Ni 2.2642(12), P3-Ni 2.2343(13), P4-Ni 2.2952(12), P1-P2-P3 82.59(6), P2-P3-P4 87.53(5), P3-P4-P1 82.97(6), P2-P1-P4 89.46(5), P3-P4-P2-P1 134.74(8).

2e[TEF]

Red crystals of **2e**[TEF] could be obtained from layering a concentrated solution in *o*-DFB with *n*-hexane (1:10) and storing it at 4 °C for ten days. **2e**[TEF] crystallises in the triclinic space group $P\overline{1}$ with four cations and four anions in the asymmetric unit. Heavy disorder within the anions was treated with restraints, but still leads to comparably bad R values. Thus, structural parameters were considered carefully. As the structural parameters within the cations only differ very slightly, just those for one of them (Ni1) are given and the structure of the asymmetric unit and the respective cation are provided in Figure SI 18.

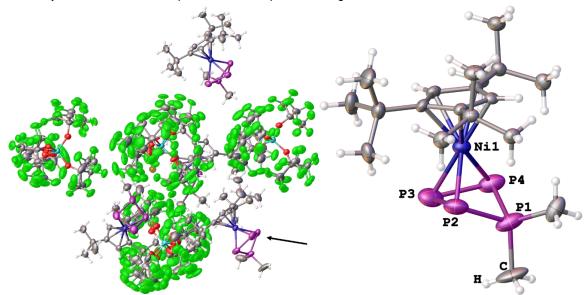


Figure SI 18: Asymmetric unit of **2e**[TEF], where the arrow points to the cation denoted with Ni1 (left) and the respective structure of this cation (right), ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.153(2), P1-P4 2.149(2), P2-P3 2.188(2), P3-P4 2.195(2), P2-Ni 2.260(1), P3-Ni 2.199(1), P4-Ni 2.274(1), P1-P2-P3 84.37(9), P2-P3-P4 87.50(8), P3-P4-P1 84.28(10), P2-P1-P4 89.58(7), P3-P4-P2-P1 139.25(9).

2fendo[TEF]

Layering a concentrated solution of 2f[TEF] in o-DFB with *n*-hexane and storing the solution at 4 °C for two weeks, yields bright red crystals of the *endo*-Ph isomer of 2f[TEF] (Figure SI 19). The X-ray structural analysis of $2f_{endo}[TEF]$ revealed its incommensurate modulated structure in the solid state (Figure SI 20), but the solution and refinement of the average structure yielded a reasonable structural model (R₁ = 7.8%), which may be discussed. Structural parameters were considered carefully. The average structure of $2f_{endo}[TEF]$ forms a monoclinic lattice with the space group $P_{2_1/n}$, where the asymmetric unit contains one anion and one cation. As a result of the modulation, the structure appears heavily disordered, which especially counts for the [TEF]⁻ anion. Disorder has been treated with restraints.

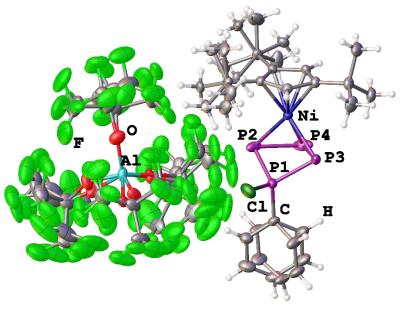
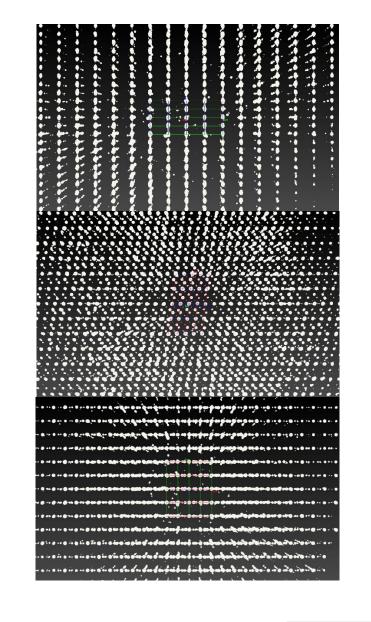



Figure SI 3: Asymmetric unit of the average structure solution of **2f**_{endo}[TEF] with ADPs drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.1462(11), P1-P4 2.1471(11), P2-P3 2.1966(17), P3-P4 2.2038(16), P2-Ni 2.2684(9), P3-Ni 2.2141(9), P4-Ni 2.2708(9), P1-Cl 2.0227(11), P1-P2-P3 79.86(5), P2-P3-P4 88.76(5), P3-P4-P1 79.68(4), P2-P1-P4 91.60 (5), P2-P3-P4-P1 130.52(7).

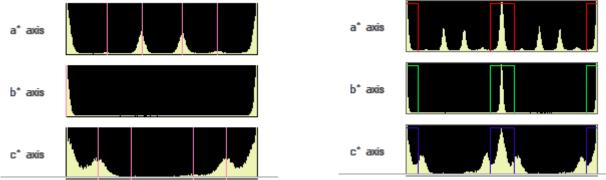


Figure SI 20: Views of the reciprocal space of $2f_{endo}$ [TEF] along the a*(top), b*(middle) and c*(bottom) axis, with clearly visible satellite peaks (along a* and c*) arising from the incommensurate structure of this compound; Bottom: Intensity distribution histograms with (left) and without (right) the refined modulation vector 0.393, 0.0, 0.169 of order 2.

3a[TEF]

Storing a solution of 3a[TEF] in CH₂Cl₂ layered with *n*-hexane at room temperature for six days yield dark blackish red crystals. 3a[TEF] crystallises in the triclinic space group $P\overline{1}$ with one cation and one anion in the asymmetric unit. Disorder within the [TEF]⁻ anion was treated with SIMU restraints and the solid state structure is shown in Figure SI 21.

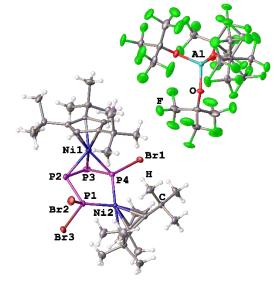


Figure SI 21: Asymmetric unit of **3a**[TEF], ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.2228(11), P2-P3 2.1653(12), P3-P4 2.1623(10), P2-Ni1 2.2562(8), P3-Ni1 2.2691(8), P4-Ni1 2.2209(8), P1-Ni2 2.1035(8), P4-Ni2 2.1573(8), P1-Br2 2.2161(8), P1-Br3 2.2194(8), P4-Br1 2.2146(8), P1-P2-P3 100.82(4), P2-P3-P4 86.47(4), P3-P4-Ni2 116.62(4), P1-Ni2-P4 84.96(3), P2-P1-Ni2 117.12(4), Br2-P1-Br3 100.82(3), P3-P4-P2-P1 135.30(6), P3-P4-P2-Ni2 126.93(7).

3b[GaCl4]

Brownish crystals of **3b**[GaCl₄] are obtained from layering a concentrated solution in *o*-DFB with *n*-hexane (6:1) and storing it for two weeks at room temperature. **3b**[GaCl₄] crystallises in the triclinic space group $P\overline{1}$ with one cation and one anion in the asymmetric unit (Figure SI 22). Disorder within the 'Bu groups and the anion were treated with DFIX and SIMU restraints. The crystal movie recording before the X-ray diffraction experiment failed due to issues with the camera. Thus, the dimensions of the crystal are therefore estimated and only multi-scan absorption correction was applied.

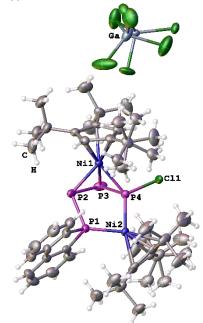


Figure SI 22: Asymmetric unit of **3b**[GaCl₄], ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.2387(16), P2-P3 2.1450 (20), P3-P4 2.1444(16), P2-Ni1 2.2525(13), P3-Ni1 2.2617(13), P4-Ni1 2.2167(12), P1-Ni2 2.1420(12), P4-Ni2 2.1470(13), P4-Cl1 2.0738(16), P1-P2-P3 100.66(7), P2-P3-P4 85.34(6), P3-P4-Ni2 116.16(7), P1-Ni2-P4 85.79(5), P2-P1-Ni2 113.88(5), P3-P4-P2-P1 – 130.58(8), P3-P4-P2-Ni2 – 124.67(9).

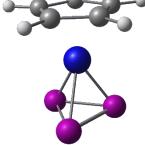
4[GaCl4] · (o-DFB) 0.33 · (n-pent) 0.33

Layering a concentrated solution of $4[GaCl_4]$ with *n*-pentane (8:1) and storing it for four weeks at room temperature afforded dark brownish green crystals of the solvate $4[GaCl_4] \cdot (o-DFB)_{0.33} \cdot (n-pent)_{0.33}$. This compound has the space group $R\overline{3}$ and the asymmetric unit contains three cations, three anions, an o-DFB and a strongly disordered *n*-pentane molecule, which was treated with the implemented solvent mask procedure in Olex2 (Figure SI 23).^[9] Disorder within the Cp^{$\gamma \gamma$} ligands, the anions and two of the three P₃ middle decks was treated with restraints and the cation without disorder is selected for description of structural parameters.

Figure SI 23: Asymmetric unit of **4**[GaCl4]·(o-DFB)0.33·(n-pent)0.33 (left) and the cation without disorder (right), ADPs are drawn at the 50% probability level; Selected bond lengths [Å] and angles [°]: P1-P2 2.2021(11), P1-P3 2.5385(10), P2-P3 2.1975(11), P1-Ni1 2.1842(9), P2-Ni1 2.3566(9), P3-Ni1 2.1831(9), P1-Ni2 2.1746(8), P2-Ni2 2.3920(9), P3-Ni2 2.1786(9), P1-P2-P3 70.48(5), P2-P3-P1 54.84(4), P3-P1-P2 54.68(5), P2-P1-P3-Ni1 82.51(5), P2-P3-P1-Ni2 84.28(6), fold angle in between the planes of the Cp^{***} ligands: 24.48(15).

Details on computational results

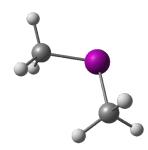
Calculations were carried out using the Gaussian09 software package^{[[13]]} at the DFT level by means of either the density functional BP86^[14] or the hybrid density functional B3LYP.^[14,15] The def2SVP^[16] basis set was used for calculations involving both isomers of **2f** and **2g** and the structures of **3a** and **3b**. The def2TZVP^[16] basis set was used for calculations on the possible reaction mechanism. Implicit solvent correction was applied via a polarisable continuum model for CH_2CI_2 .^[17] NBO analysis of **3a** and **3b** was conducted with the NBO6 software package.^[18] Stationary points were verified by analytical frequency calculations. The transition state **TS2** was verified by slightly changing its molecular geometry along its imaginary frequency and then performing geometry optimisations on the obtained structures.


Cartesian coordinates for all optimised structures:

[CpNi(η³-P₃)]:

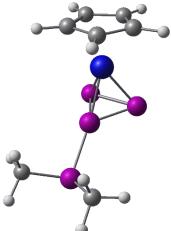
227.85 (ZPVE = zero point vibrational energies) Symbol X Y Z

BP86/def2TZVP: Energies/H = -2726.415940, Enthalpies/H = -2726.414996, Free Energies/H = -2726.462662, ZPVE/ kJ/mol =


•			
Ni	0.2315880	0.0003550	-0.0002530
Р	-1.6581020	0.1405030	1.2453800
Р	-1.6588170	-1.1486330	-0.5009340
Р	-1.6599450	1.0076390	-0.7439290
С	1.9482110	-1.2180120	-0.0684430
С	1.9470460	0.9456500	0.7719540
С	1.9476030	-0.4439540	1.1363480
н	1.9453280	-0.8386160	2.1488960
С	1.9472350	-0.3099050	-1.1810320
С	1.9493720	1.0258080	-0.6589600
н	1.9451030	1.9402720	-1.2462460
н	1.9476710	1.7873270	1.4593890
н	1.9452950	-2.3031370	-0.1298310
н	1.9483070	-0.5859450	-2.2320710

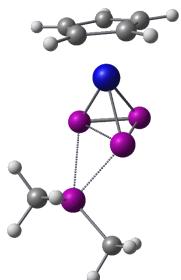
[Me₂P]+:

BP86/def2TZVP: Energies/H = -420.933417, Enthalpies/H = -420.932473, Free Energies/H = -420.966318, ZPVE/ kJ/mol = 182.86


Symbol	х	Y	Z
С	1.3970920	-0.4638670	-0.0245410
Н	2.2782590	-0.0007810	-0.4883890
Н	1.6232810	-0.5021650	1.0746510
Н	1.2053900	-1.4928920	-0.3534430
С	-1.3971220	-0.4638380	0.0245590
Н	-2.2786000	-0.0005020	0.4875270
Н	-1.6224530	-0.5030140	-1.0747920
Н	-1.2055490	-1.4926400	0.3542600

[CpNi(η³-P₄Me₂)]+ (**I2**):

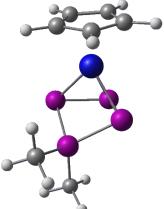
BP86/def2TZVP: Energies/H = -3147.407361, Enthalpies/H = -3147.406417, Free Energies/H = -3147.467349, ZPVE/ kJ/mol = 424.86


Symbol	х	Y	Z
Ni	-1.1354880	0.0281460	-0.0004480
Р	3.2133650	-0.0222500	0.0308580
Р	-0.1746150	-1.7721380	1.1066150
Р	1.0156070	-0.3347520	0.0516700
Р	-0.1268880	-1.7511780	-1.0851130
С	-2.0787760	1.6676670	0.9182250
С	-3.2114140	0.0616430	-0.3109570
С	-2.9171680	0.5176520	1.0209600
н	-3.2587120	0.0533110	1.9418490
С	-1.8646440	1.9345840	-0.4837250
С	-2.5725560	0.9507550	-1.2396520
н	-2.6069620	0.8771180	-2.3228540
С	3.3926220	1.2146770	1.3918260
С	3.3771280	1.0295710	-1.4799650
н	4.4457130	1.2900930	-1.5432480
н	3.1137260	0.4437930	-2.3698380
н	2.7870510	1.9536960	-1.4392070
н	2.7873060	2.1181790	1.2467240
н	3.1569080	0.7450120	2.3551140
н	4.4580050	1.4950690	1.3970920
н	-3.8151020	-0.8044620	-0.5682400
н	-1.6742630	2.2431000	1.7461380
н	-1.2631750	2.7424850	-0.8917120

[CpNi(η³-P₄Me₂)]⁺ (**TS2**):

BP86/def2TZVP: Energies/H = -3147.399502, Enthalpies/H = -3147.398558, Free Energies/H = -3147.458166, ZPVE/ kJ/mol = 422.58

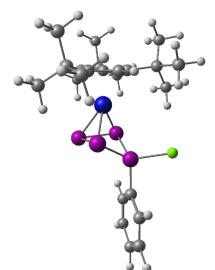
Symbol	Х	Y	Z
Ni	-1.1158950	-0.0587770	-0.0207480
Р	2.8839640	0.2073760	0.4226840
Р	0.4276800	-0.7474120	1.3923110
Р	0.9364150	-0.3681810	-0.8503960
Р	-0.0803630	-2.1539330	-0.1211310
С	-1.9847070	1.8377560	-0.2372500
С	-3.1046150	-0.0092440	0.5885650
С	-2.4581740	1.2220070	0.9584250
Н	-2.3363370	1.6004450	1.9692870
С	-2.3647010	1.0024850	-1.3555270
С	-3.0651360	-0.1246470	-0.8465860
Н	-3.4696500	-0.9472030	-1.4295780
С	2.5662740	2.0261340	0.5041300



С	3.9787380	0.0923470	-1.0732940
н	4.9648770	0.4650240	-0.7501060
н	4.0908910	-0.9586340	-1.3696080
н	3.6188640	0.6901840	-1.9218420
н	2.2284000	2.4575710	-0.4478800
н	1.8372730	2.2453140	1.2949390
н	3.5258180	2.4904640	0.7824410
н	-3.5588960	-0.7209510	1.2727400
н	-1.4342030	2.7723220	-0.3019010
н	-2.1434750	1.2024630	-2.4003390

[CpNi(η³-P₄Me₂)]⁺ (**P2**):

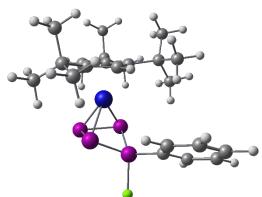
BP86/def2TZVP: Energies/H = -3147.439393, Enthalpies/H = -3147.438449, Free Energies/H = -3147.496319, ZPVE/ kJ/mol = 427.63


Symbol	х	Y	Z
Ni	-0.9306060	-0.1157720	-0.0000030
Р	2.0928060	0.4372400	0.0000010
Р	0.7404110	-0.3961710	1.5208370
Р	0.7404220	-0.3961780	-1.5208400
Р	0.3468100	-1.9608900	-0.0000010
С	-2.1183220	1.4635440	-0.7131780
С	-2.6708930	0.2064030	1.1546360
С	-2.1182840	1.4636190	0.7130680
н	-1.7690020	2.2662400	1.3563070
С	-2.6709550	0.2062820	-1.1545870
С	-3.0272070	-0.5552070	0.0000740
н	-3.4612400	-1.5511810	0.0001370
С	2.2680680	2.2462300	-0.0000080
С	3.7713560	-0.2658940	0.0000130
н	4.3042870	0.0786920	0.8975770
н	3.7115030	-1.3609100	0.0000340
н	4.3042880	0.0786580	-0.8975650
н	2.8222660	2.5580460	-0.8969830
н	1.2723840	2.7059170	-0.0000470
н	2.8222020	2.5580630	0.8970000
н	-2.7949230	-0.1038260	2.1886960
н	-1.7690700	2.2660940	-1.3565210
н	-2.7950410	-0.1040530	-2.1886090

[Cp´´´Ni(η³-P4PhCl)]⁺ (**2f**endo):

B3LYP/def2SVP: Energies/H = -4228.944626, Enthalpies/H = -4228.943682, Free Energies/H = -4229.043422, ZPVE/ kJ/mol = 1366.27

Symbol	Х	Y	Z
Ni	-0.6055810	0.3257590	0.2996010
Р	2.3200890	-0.1159040	-0.3697060
Р	1.1873620	1.7385380	-0.0530340
Р	0.9835470	-1.1957870	1.0023560
Р	0.8255180	0.8235620	1.9506710
С	-2.1020130	-0.7204590	-0.8298670
С	-2.2643850	1.5495960	-0.1990790
С	-1.9589300	0.6314310	-1.2641200
н	-1.6844300	0.9353530	-2.2679190
С	-2.4753900	-0.6482140	0.6082740
С	-2.5828850	0.7454250	0.9280690
н	-2.8612410	1.1340260	1.9026140
С	-0.9531250	-2.9411430	-1.5459320
н	0.0504950	-2.5024910	-1.6366150
н	-1.0267580	-3.7547360	-2.2844480
н	-1.0423020	-3.3869200	-0.5518670
С	-3.4336080	-2.5463150	-1.9283720
н	-3.7116930	-3.0679380	-1.0045050
н	-3.4386780	-3.2895510	-2.7406870
Н	-4.2138290	-1.8010640	-2.1484150
С	-2.4510790	3.0575910	-0.3087710
С	-1.7222180	-1.3331080	-3.2592330
н	-2.4997510	-0.6438630	-3.6209460
н	-1.6742010	-2.1745300	-3.9662250
н	-0.7504160	-0.8188220	-3.2940880
С	-2.9443040	-1.6769070	1.6613270
С	-2.0363220	-1.8823080	-1.8476140
С	-2.3765040	-3.0998510	1.5236260
Н	-2.6894100	-3.5995850	0.6004040
Н	-2.7487530	-3.7104360	2.3598750
Н	-1.2775800	-3.1081160	1.5750620
С	-2.5742190	-1.1931200	3.0856490
н	-1.4871860	-1.0604040	3.1995990
н	-2.8973080	-1.9475840	3.8181040
Н	-3.0653600	-0.2500370	3.3620850
С	-4.4927450	-1.7350610	1.5649240
Н	-4.9402480	-0.7468370	1.7510980
Н	-4.8845480	-2.4339630	2.3207990
н	-4.8300640	-2.0792030	0.5773860
С	-1.9241810	3.7824970	0.9451240
н	-2.3976780	3.4129770	1.8672570
н	-2.1393160	4.8596460	0.8721990

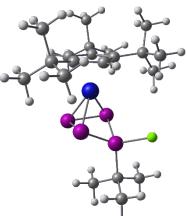


Н	-0.8339770	3.6684830	1.0517830
С	-1.7662080	3.6269620	-1.5647850
Н	-0.6811120	3.4441440	-1.5596020
Н	-1.9226690	4.7154700	-1.6101620
Н	-2.1836190	3.1976540	-2.4884310
С	-3.9802170	3.2938340	-0.4255060
Н	-4.3979650	2.7716860	-1.3002640
Н	-4.1827090	4.3703100	-0.5414580
Н	-4.5120830	2.9401360	0.4709930
С	4.0852880	-0.1212200	0.0449840
С	4.9879660	0.6182050	-0.7412350
С	4.5373350	-0.8409800	1.1630630
С	6.3398140	0.6352540	-0.3994720
С	5.8953480	-0.8195110	1.4915170
С	6.7934410	-0.0823820	0.7143870
Н	7.0428510	1.2093740	-1.0068600
Н	6.2493380	-1.3831770	2.3573140
CI	2.2879980	-0.7214080	-2.3554720
Н	4.6432220	1.1720540	-1.6172070
Н	7.8541170	-0.0674110	0.9755350
Н	3.8422460	-1.4193830	1.7757340

$[Cp'''Ni(\eta^{3}-P_{4}ClPh)]^{+}$ (**2f**exo):

B3LYP/def2SVP: Energies/H = -4228.942000, Enthalpies/H = -4228.941056, Free Energies/H = -4229.037902, ZPVE/ kJ/mol = 1368.80

Symbol	Х	Y	Z
Ni	-0.5924970	-0.5354360	-0.3188020
Р	2.2987130	-0.8281050	-0.8802510
Р	0.8914180	-2.3023750	-0.0791030
Р	0.7229040	0.0512030	-2.1315490
Р	-0.1978040	-1.9732490	-1.9991920
С	-1.3172230	1.2739020	0.6013300
С	-1.9622430	-0.8991660	1.2606660
С	-1.1242600	0.2315880	1.5565660
н	-0.4665750	0.2931250	2.4159140
С	-2.2904240	0.7439970	-0.3906760
С	-2.6654090	-0.5617320	0.0717010
Н	-3.3851690	-1.2062250	-0.4230900
С	0.3127610	3.0969480	-0.2652300
н	1.1999490	2.4476560	-0.2398050
Н	0.6504170	4.1268040	-0.0695810
Н	-0.1026880	3.0687780	-1.2770620
С	-1.8273830	3.7215140	0.9518750
н	-2.3635330	3.8896240	0.0109470
н	-1.3942530	4.6859990	1.2586160

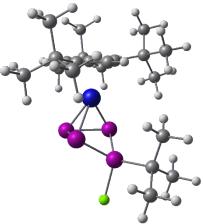

SUPPORTING INFORMATION

Н	-2.5603310	3.4233500	1.7175640
С	-2.2343680	-2.0982030	2.1596430
С	0.0748100	2.7006570	2.1665510
Н	-0.5814870	2.4925680	3.0249400
Н	0.4999780	3.7046650	2.3117350
Н	0.9114840	1.9876160	2.1809720
С	-3.0641310	1.3593220	-1.5776220
С	-0.6948950	2.6727470	0.8253740
С	-2.3009480	2.4187330	-2.3915220
Н	-2.0616760	3.3180370	-1.8143040
н	-2.9271340	2.7380770	-3.2380930
н	-1.3667760	2.0126180	-2.8073570
С	-3.4895820	0.2573820	-2.5795990
Н	-2.6238100	-0.2864420	-2.9871760
Н	-4.0169930	0.7255310	-3.4237380
Н	-4.1801070	-0.4775610	-2.1429100
С	-4.3612800	1.9828220	-0.9946610
Н	-4.9678780	1.2229200	-0.4785880
н	-4.9671580	2.4033320	-1.8127310
н	-4.1489510	2.7889240	-0.2802840
С	-2.4663360	-3.3806280	1.3372400
н	-3.2952760	-3.2707780	0.6217270
н	-2.7202680	-4.2137350	2.0103620
н	-1.5650280	-3.6705740	0.7745870
С	-1.0940070	-2.3258120	3.1685750
Н	-0.1389900	-2.5377080	2.6646410
Н	-1.3337390	-3.1877030	3.8094660
Н	-0.9523890	-1.4566060	3.8288580
С	-3.5316780	-1.7578470	2.9408240
Н	-3.4116900	-0.8380340	3.5340340
н	-3.7756030	-2.5804180	3.6314050
Н	-4.3851700	-1.6179840	2.2599770
С	3.1938150	0.2012260	0.3105940
С	3.0677800	-0.0519830	1.6864110
С	4.0175420	1.2438370	-0.1510770
С	3.7664900	0.7429500	2.5988170
Н	2.4370400	-0.8653510	2.0525140
С	4.7026150	2.0359820	0.7703150
Н	4.1291110	1.4340430	-1.2209340
С	4.5784540	1.7858140	2.1425520
н	3.6757300	0.5435340	3.6687000
н	5.3395940	2.8490820	0.4155940
н	5.1210290	2.4062810	2.8595070
CI	3.8146580	-1.6433910	-2.0441400

$[Cp^{\prime\prime}Ni(\eta^{3}-P_{4}^{t}BuCl)]^{+}(\mathbf{2g}_{endo}):$

B3LYP/def2SVP: Energies/H = -4155.171882, Enthalpies/H = -4155.170938, Free Energies/H = -4155.268938, ZPVE/ kJ/mol = 1447.38

Symbol	Х	Y	Z
Ni	0.3450650	0.3379170	-0.3107430
Р	-2.6130210	-0.1260560	0.1254290
Р	-1.4803510	1.7430840	-0.0630890
Р	-1.1860410	-1.1562480	-1.1961550
Р	-0.9432860	0.8906860	-2.0547910
С	1.7742210	-0.7775190	0.8474630
С	1.9318960	1.5388610	0.4222660
С	1.5662680	0.5286320	1.3803290
н	1.2081460	0.7408260	2.3813360
С	2.2514060	-0.5774700	-0.5484570
С	2.3566820	0.8397270	-0.7394940
н	2.7045670	1.3150820	-1.6516350
С	0.6140420	-3.0589030	1.2988150
н	-0.3987300	-2.6367910	1.3647250
Н	0.6523480	-3.9349950	1.9652270
н	0.7684270	-3.4130250	0.2761870
С	3.0623970	-2.6804860	1.8692860
Н	3.4009340	-3.1307440	0.9284750
Н	3.0298370	-3.4811880	2.6242450
Н	3.8192240	-1.9471500	2.1887540
С	2.0731570	3.0348110	0.6738410
С	1.2605170	-1.5992300	3.1890340
Н	2.0054400	-0.9344860	3.6516520
Н	1.1855170	-2.4979110	3.8189560
Н	0.2805960	-1.1005800	3.2115440
С	2.8167530	-1.5087930	-1.6439330
С	1.6637630	-2.0233300	1.7569640
С	2.2629970	-2.9442160	-1.6688200
н	2.5091990	-3.5183670	-0.7690850
н	2.7078480	-3.4791420	-2.5213400
Н	1.1715850	-2.9578430	-1.8068610
С	2.5466900	-0.9154120	-3.0487220
н	1.4688550	-0.7994850	-3.2408350
Н	2.9493970	-1.5986550	-3.8110240
Н	3.0295700	0.0584270	-3.2076120
С	4.3542640	-1.5583080	-1.4347680
Н	4.7978210	-0.5529580	-1.4987940
н	4.8139610	-2.1839510	-2.2161460
Н	4.6221340	-1.9841670	-0.4579380
С	1.6291500	3.8569360	-0.5522310
Н	2.1791330	3.5743100	-1.4624890
Н	1.8161460	4.9266670	-0.3717540

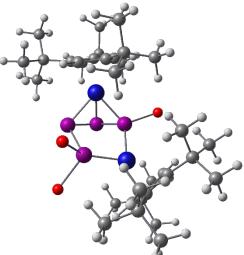


Н	0.5528370	3.7375650	-0.7527110
С	1.2767130	3.4805610	1.9137670
н	0.2014180	3.2732340	1.8053740
н	1.3964950	4.5645940	2.0614090
н	1.6329110	2.9840230	2.8292200
С	3.5823690	3.2859900	0.9305200
н	3.9449670	2.6977300	1.7878360
н	3.7504860	4.3518480	1.1519640
н	4.1885350	3.0193580	0.0511030
С	-4.4503060	-0.1260410	-0.3434640
С	-5.1880790	0.8062220	0.6328760
н	-6.2498610	0.8412420	0.3404750
н	-5.1354180	0.4458720	1.6696590
н	-4.7981060	1.8352600	0.5954950
С	-4.9665680	-1.5716440	-0.2470600
н	-6.0308590	-1.5779220	-0.5319960
Н	-4.4340690	-2.2468020	-0.9343200
н	-4.8884900	-1.9719840	0.7734590
С	-4.5640320	0.3989300	-1.7853670
н	-4.2010630	1.4328590	-1.8840210
н	-4.0305520	-0.2362450	-2.5081320
н	-5.6299310	0.3944690	-2.0640580
CI	-2.6140240	-0.8422690	2.0780280

$[Cp'''Ni(\eta^{3}-P_{4}Cl^{t}Bu)]^{+}$ (**2g**exo):

B3LYP/def2SVP: Energies/H = -4155.165046, Enthalpies/H = -4155.164101, Free Energies/H = -4155.262553, ZPVE/ kJ/mol = 1446.79

Symbol	х	Y	Z
Ni	0.2879420	0.2664310	-0.3633960
Р	-2.7704400	-0.1484860	-0.3778990
Р	-1.5501270	1.6531000	-0.6850400
Р	-1.1247550	-1.3807440	-1.1777160
Р	-0.6867860	0.4592850	-2.3649790
С	1.7526130	-0.6891830	0.9283690
С	1.6663240	1.6305590	0.5141100
С	1.3479750	0.5830030	1.4390620
н	0.9063680	0.7463630	2.4152940
С	2.3065340	-0.4329150	-0.4236380
С	2.2437440	0.9876080	-0.6187650
н	2.5984670	1.5033870	-1.5056020
С	0.7809730	-3.0620100	1.3390580
н	-0.2703010	-2.7429600	1.3983090
н	0.8955080	-3.9491710	1.9813680
н	0.9784290	-3.3676090	0.3070110
С	3.1626300	-2.4976380	1.9957330
Н	3.5505490	-2.9552530	1.0787890
Н	3.1634160	-3.2762000	2.7738540


SUPPORTING INFORMATION

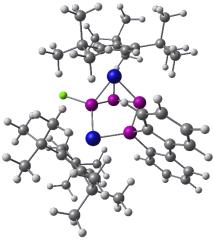
Н	3.8615240	-1.7076310	2.3113960
С	1.6462730	3.1287370	0.7877300
С	1.2551660	-1.5627420	3.2595320
Н	1.9306010	-0.8366700	3.7364080
н	1.2460960	-2.4669500	3.8858620
н	0.2371160	-1.1493440	3.2723590
С	3.0730650	-1.2937290	-1.4524940
С	1.7244940	-1.9441170	1.8353820
С	2.6066680	-2.7562830	-1.5699770
н	2.7698240	-3.3370550	-0.6558690
н	3.1785110	-3.2504650	-2.3697750
н	1.5412670	-2.8235440	-1.8391500
С	2.9649510	-0.6821850	-2.8708060
Н	1.9211560	-0.6127830	-3.2119780
Н	3.5070560	-1.3259930	-3.5790190
Н	3.4167950	0.3169910	-2.9414100
С	4.5736350	-1.2501180	-1.0539700
н	4.9478750	-0.2148760	-1.0492950
Н	5.1657730	-1.8219030	-1.7858510
н	4.7566480	-1.6788910	-0.0607700
С	1.3927230	3.9389190	-0.4980710
н	2.1494190	3.7361820	-1.2708700
н	1.4347060	5.0154490	-0.2725450
н	0.4003010	3.7285140	-0.9260090
С	0.6028110	3.5023190	1.8567740
Н	-0.4181650	3.2421210	1.5396090
н	0.6321670	4.5871620	2.0404980
н	0.8036020	3.0038360	2.8174180
С	3.0601330	3.4751270	1.3278350
Н	3.2872770	2.9124650	2.2466450
н	3.1151470	4.5498190	1.5629610
Н	3.8398640	3.2470710	0.5849090
С	-3.5906340	-0.4868140	1.2909720
CI	-4.3624740	-0.1877760	-1.7149600
C	-2.5039500	-0.3957630	2.3744590
н	-1.7108750	-1.1410780	2.2271030
Н	-2.0465350	0.6034340	2.4246500
н	-2.9740320	-0.5981620	3.3500010
С	-4.1984760	-1.8997750	1.2436040
Н	-4.6837520	-2.1005480	2.2121690
Н	-4.9606340	-1.9956930	0.4574230
Н	-3.4302550	-2.6732110	1.0890160
С	-4.6705170	0.5853590	1.5219060
H H	-5.1232350	0.4070080	2.5104870
н Н	-4.2496910 -5.4694980	1.6028400 0.5379690	1.5279590 0.7697260
	000-000	0.007 3030	5.1031200

[(Cp´´´Ni)₂(μ;η³:η¹:η¹-P₄Br₃)]⁺ (**3a**):

B3LYP/def2SVP: Energies/H = -13431.720505, Enthalpies/H = -13431.719561, Free Energies/H = -13431.862697, ZPVE/ kJ/mol = 2238.06

Symbol	Х	Y	Z
Br	0.4276270	-3.2108310	-0.9767950
Br	-1.7734950	3.3687370	-1.5796430
Br	-0.6430860	2.9114590	1.6925810
Ni	-1.8540770	-0.1688950	-0.2675090
Ni	2.1710910	-0.0228290	-0.0661190
Р	0.1980350	-0.9820290	-0.6017910
Р	-0.8911990	1.7716430	-0.2492840
Р	1.3179120	-0.0123730	-2.2139420
Р	1.2345360	1.8252680	-1.0197630
С	3.4205370	-1.4313050	0.8363200
н	3.2623850	-2.5039240	0.7874840
С	-3.0242700	-1.8426840	-0.6265850
н	-2.5916550	-2.8078670	-0.8690220
С	-3.9084590	-0.1140010	0.6083700
С	-3.4107050	-0.8753860	-1.6010230
С	2.8770810	-0.5844290	1.8626970
С	3.2912630	0.7248010	1.5205670
н	3.0378520	1.6191450	2.0795770
С	-3.8282730	0.2271790	-0.8311640
н	-4.1441360	1.1824360	-1.2405390
С	-3.4187640	-1.4442860	0.7290730
С	4.2594910	-0.6958510	-0.0646960
С	4.1589260	0.7025420	0.3508660
С	-4.6960960	-2.6624210	2.5641490
н	-5.0633030	-1.7702650	3.0836780
н	-4.6242010	-3.4684010	3.3113430
н	-5.4510330	-2.9610250	1.8200690
С	2.2029600	-1.0280920	3.1517760
С	-3.4431690	-1.0231490	-3.1187470
С	-3.3153400	-2.4498120	1.9012450
С	-4.6533930	0.8526050	1.5540420
С	4.9198790	1.9817780	-0.0711430
С	-4.5913220	2.3077910	1.0320210
Н	-3.5589460	2.6709310	0.9393660
Н	-5.1066760	2.9660850	1.7472070
Н	-5.0934360	2.4365280	0.0631470
С	-6.1499040	0.4395600	1.5415840
Н	-6.5556660	0.4642540	0.5180080
Н	-6.7342260	1.1466270	2.1522560
Н	-6.3096540	-0.5689330	1.9427560
С	5.1288540	-1.4808300	-1.0723170
С	-2.2728050	-2.0199370	2.9547360

SUPPORTING INFORMATION


Н	-1.2709930	-1.9831270	2.5058010
Н	-2.2442500	-2.7526420	3.7774690
Н	-2.4820930	-1.0363460	3.3875310
С	-2.5349950	-2.1738960	-3.5874350
Н	-1.4842700	-2.0012590	-3.3096920
Н	-2.5822380	-2.2640960	-4.6836930
Н	-2.8459890	-3.1420080	-3.1652020
С	5.5338770	-0.7277690	-2.3508350
Н	4.6514900	-0.3854440	-2.9118970
Н	6.0949470	-1.4140600	-3.0029610
Н	6.1863690	0.1311660	-2.1585190
С	1.6353250	-2.4520490	3.0216280
Н	0.9002250	-2.5244640	2.2070410
Н	1.1332100	-2.7420510	3.9567910
Н	2.4276160	-3.1920400	2.8315870
С	-4.1233050	0.8852340	2.9992700
Н	-4.2643170	-0.0616260	3.5316530
Н	-4.6664240	1.6559750	3.5675920
Н	-3.0539110	1.1433490	3.0230520
С	-4.9058930	-1.3466870	-3.5128670
Н	-5.2533470	-2.2729310	-3.0285990
Н	-4.9867790	-1.4808200	-4.6037350
Н	-5.5870660	-0.5330860	-3.2179560
С	4.6832390	2.4195240	-1.5339210
Н	4.8420150	1.6193670	-2.2601970
Н	5.3721620	3.2421890	-1.7814440
Н	3.6600060	2.7998790	-1.6672780
С	-3.0095780	0.2795880	-3.8163990
Н	-3.6439150	1.1318350	-3.5288780
Н	-3.0864120	0.1658160	-4.9092460
Н	-1.9666850	0.5349590	-3.5735480
С	1.0906600	-0.0495900	3.5674840
Н	1.4743060	0.9729990	3.7024280
Н	0.6515840	-0.3663490	4.5260690
Н	0.2868540	-0.0126910	2.8184120
С	6.4066120	-1.9196250	-0.3067730
Н	6.9964770	-1.0604520	0.0411210
Н	7.0455020	-2.5243300	-0.9697650
Н	6.1523900	-2.5334960	0.5709580
С	6.4308260	1.7475600	0.1820480
Н	6.6137380	1.4067340	1.2131700
Н	6.9751150	2.6937570	0.0381030
Н	6.8651350	1.0101780	-0.5038180
С	3.3088850	-1.0306570	4.2403680
Н	4.1333600	-1.7095730	3.9724240
Н	2.8857580	-1.3701790	5.1990260
Н	3.7281170	-0.0237090	4.3890610

С	-2.8723070	-3.8369780	1.3793830
Н	-3.5805460	-4.2474080	0.6430760
Н	-2.8296990	-4.5408810	2.2241950
Н	-1.8715110	-3.8114640	0.9247150
С	4.3968950	-2.7620210	-1.5401390
Н	4.1924790	-3.4667760	-0.7223020
Н	5.0332140	-3.2927250	-2.2637680
Н	3.4452370	-2.5248940	-2.0381780
С	4.4998360	3.1780070	0.8151450
Н	3.4238050	3.3940030	0.7356980
Н	5.0397530	4.0756460	0.4792960
Н	4.7506020	3.0220540	1.8749860

$[(Cp''Ni)_2(\mu;\eta^3:\eta^1:\eta^1-P_4biphenC)]^+$ (**3b**):

B3LYP/def2SVP: Energies/H = -6631.766303, Enthalpies/H = -6631.765358, Free Energies/H = -6631.918303, ZPVE/ kJ/mol = 2656.45

Symbol	Х	Y	Z
Ni	1.7698811	-0.6463039	0.3271271
Ni	-2.2512149	-0.2667362	0.2133180
Р	-0.3025568	-1.3049820	0.6963321
Р	0.9694810	1.4211141	0.2737259
CI	-0.6460077	-3.3539850	1.1295232
Р	-1.1571260	1.5448410	1.0978159
Р	-1.3107119	-0.2578070	2.3183080
С	1.3617919	3.7259250	-1.0405592
С	3.2041432	-1.9757749	-0.7643889
С	2.8035032	-2.4268218	0.5666302
Н	2.2939133	-3.3654998	0.7576772
С	3.2920552	-1.5626357	1.5936841
С	3.8073211	-0.6999218	-0.5681399
С	-4.4141279	-0.5917233	0.3922930
С	-4.1248510	0.6537597	-0.3320301
С	-3.1503128	-1.1158433	-1.5423280
С	1.7132639	2.8284541	1.1800609
С	3.7877081	-0.4494687	0.8925381
Н	4.1963920	0.4450003	1.3542470
С	-3.3400579	0.2840407	-1.4945790
Н	-3.0059810	0.9846567	-2.2521171
С	1.8341388	3.9599281	0.3368958
С	0.8673889	2.4172270	-1.2558541
С	-3.7547268	-1.6275203	-0.3390229
Н	-3.7507147	-2.6755873	-0.0598149
С	3.3434802	-1.8282657	3.0953121
С	0.3893940	2.0251269	-2.5078851
Н	0.0169260	1.0128058	-2.6668630

SUPPORTING INFORMATION

С	2.0992179	2.8867512	2.5208989
н	1.9926019	2.0166203	3.1693069
С	-5.3011689	-0.9340623	1.6141710
С	1.3651528	4.6385639	-2.1042492
н	1.7429047	5.6532800	-1.9620353
С	2.3663338	5.1467272	0.8575897
н	2.4725117	6.0299691	0.2242127
С	-2.6872788	-1.9343243	-2.7387249
С	-4.6992660	2.0867277	-0.2659811
С	2.6262158	4.0796503	3.0279208
н	2.9336578	4.1347464	4.0745848
С	2.7606557	5.1999693	2.1976487
н	3.1751977	6.1270043	2.6006517
С	4.6336011	0.2468582	-1.4659290
С	0.3970179	2.9466778	-3.5604791
Н	0.0272470	2.6505517	-4.5447491
С	2.9642553	-2.8775609	-1.9987178
С	-4.8595749	-0.2626062	2.9341580
н	-4.7045130	0.8163058	2.8441459
Н	-5.6298719	-0.4296232	3.7037240
Н	-3.9222739	-0.7053041	3.2988010
С	0.8829018	4.2451039	-3.3558342
H	0.8881468	4.9583708	-4.1833983
С	6.0772141	-0.3209127	-1.5224219
H	6.1196192	-1.3044698	-2.0066919
н	6.7260161	0.3666463	-2.0891100
н	6.4984861	-0.4237306	-0.5099979
С	1.9313862	-2.2669811	-2.9700379
H	2.2352872	-1.2880671	-3.3564329
н	1.7750663	-2.9374681	-3.8307048
н	0.9656892	-2.1405461	-2.4607479
С	4.7356650	1.6580612	-0.8415531
н	5.2873750	1.6633493	0.1089200
Н	5.2808970	2.3197922	-1.5310581
н	3.7474740	2.1034742	-0.6685311
С	-4.9553281	2.6411257	1.1463878
н	-4.0337621	2.6540688	1.7477838
Н	-5.3116472	3.6792377	1.0635968
Н		2.0820647	
С	-5.7234981		1.6919129
	4.0877331	0.4385281	-2.8928500
Н	3.0614551	0.8343890	-2.8761730
H	4.7175570	1.1659721	-3.4282200
Н	4.0937451	-0.4840730	-3.4831159
С	-1.7074758	-1.1415173	-3.6187259
Н	-0.7951908	-0.8841872	-3.0621130
H	-1.4100158	-1.7460863	-4.4889389
Н	-2.1545389	-0.2119324	-4.0018950

SUPPORTING INFORMATION

С	-6.0336530	2.0573675	-1.0626691
Н	-6.7759980	1.3863205	-0.6126551
Н	-6.4641681	3.0709075	-1.0916142
Н	-5.8663450	1.7311705	-2.1007661
С	4.2885013	-3.1772959	-2.7376988
Н	5.0324243	-3.6150148	-2.0537358
Н	4.1038424	-3.9049420	-3.5438808
н	4.7321502	-2.2876189	-3.1989068
С	-3.7725591	3.0984657	-0.9832482
н	-3.6674931	2.8929256	-2.0576322
Н	-4.2087132	4.1044737	-0.8942852
Н	-2.7698811	3.1269068	-0.5339052
С	-3.9697578	-2.2359365	-3.5603789
Н	-4.4540858	-1.3075715	-3.9001120
Н	-3.7113157	-2.8337475	-4.4489669
Н	-4.7004647	-2.8065535	-2.9665649
С	2.4003674	-4.2491240	-1.5575448
Н	1.4263123	-4.1589210	-1.0553788
Н	2.2542714	-4.8815270	-2.4463937
Н	3.0898794	-4.7805869	-0.8835567
С	-6.7711989	-0.5634974	1.2984990
Н	-7.0949309	-0.9946694	0.3382680
Н	-7.4265719	-0.9652234	2.0868000
Н	-6.9340490	0.5206516	1.2612559
С	-5.2721468	-2.4579383	1.8770181
Н	-4.2545018	-2.8182992	2.0920751
Н	-5.8926108	-2.6804222	2.7580401
Н	-5.6791857	-3.0355673	1.0333451
С	-2.0462177	-3.2662223	-2.3151788
Н	-2.7414827	-3.8941193	-1.7376488
Н	-1.7505637	-3.8384973	-3.2076798
Н	-1.1499747	-3.1047782	-1.7012088
С	4.8016552	-2.2151875	3.4461382
Н	5.5005441	-1.3980905	3.2076281
Н	4.8913882	-2.4377415	4.5220102
Н	5.1204943	-3.1084856	2.8861432
С	2.4159572	-2.9916287	3.4898962
Н	2.7026823	-3.9299297	2.9901782
Н	2.4766142	-3.1662196	4.5754452
Н	1.3657722	-2.7811458	3.2395522
С	2.9493471	-0.5748056	3.8977601
Н	1.9124671	-0.2762537	3.6761390
Н	3.0231811	-0.7743756	4.9785541
Н	3.6113460	0.2758134	3.6745730

Selected canonical molecular orbitals of 3a

To obtain further insight into the electronic structure of **3a** we performed a Mulliken population analysis on its optimized geometry. While most of the canonical frontier orbitals (HOMO-5 to LUMO+1, Figure SI 24) are smeared across large parts of the cation, the orbital contributions of P1 and P4 in the HOMO-4 (Significant orbital contributions: Ni2(d) = 20 %, P1(p) = 7 %, P4(p) = 6 %) may yield a possible explanation for the relatively high ${}^{2}J_{P-P}$ coupling constant found in the ${}^{31}P$ NMR spectra of **3a**. The bonding motif found for P1-Ni2-P4 in the HOMO-4 resembles an allylic-type interaction.

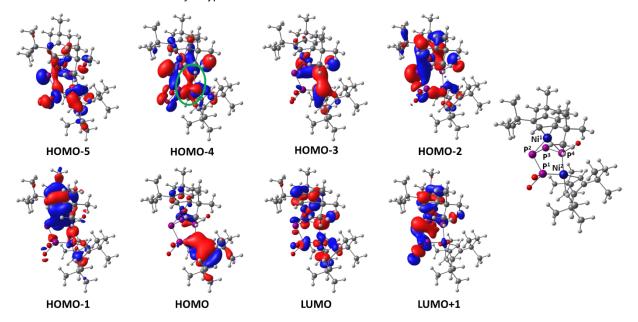


Figure SI 24: Canonical frontier orbitals of **3a**; The allylic part of the HOMO-4, which is stretched across P1, Ni2 and P4 is marked in green, isosurfaces are drawn with both signs and at a 0.03 contour value.

References

[1] https://omics.pnl.gov/software/molecular-weight-calculator, (27.12.2019).

[2] E. Mädl, G. Balázs, E. V. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 7702-7707.

[3] M. Gonsior, I. Krossing, N. Mitzel, Z. Anorg. Allg. Chem. 2002, 628, 1821–1830.

[4] S. J. Connelly, W. Kaminsky, D. M. Heinekey, Organometallics 2013, 32, 7478-7481.

[5] H. T. Teunissen, C. B. Hansen, F. Bickelhaupt, Phosphorus, Sulfur, and Silicon and the Relat. Elem. 1996, 118, 309-312.

[6] M. Fild, O. Stelzer, R. Schmutzler, G. O. Doak, "*Tert-butyldichlorophosphine and Di-tert-butylchlorophosphine*" in (A.Wold, J. K. Ruff, Inorganic Syntheses 1973, *12* - Wiley-Interscience, Hoboken, N. J.), 4–9.

[7] M. Scheer, M. Piesch, S. Reichl, Dielmann, Fabian, Chem. Eur. J. 2019.

[8] Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.

[9] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.

[10] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3-8.

[11] a) G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3–8; b) G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112–122.

[12] Miriam Eberl, Dissertation, University of Regensburg 2011.

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, "Gaussian 09", Revision E.01, Gaussian Inc., Wallingford CT 2013.

[14] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.

[15] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.

[16] F. Weigend, R. Ahlrichs, PhyChemChemPhys 2005, 7, 3297–3305.

[17] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.

[18] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429–1437.